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COUNT ABLY COMPACT GROUPS AND FINEST
TOTALLY BOUNDED TOPOLOGIES

W. W. COMFORT AND VICTOR SAKS

The first main result formalizes the general principle that
each totally bounded group G is dense in some group H, not
much larger than G, in which every subset of small cardi-
nality has a complete accumulation point. For example: If
G is totally bounded and \G\ = n ̂  ^0» then G is dense in a
countably compact group H such that \H\ ̂  n**o. A corollary:
If K is an infinite compact group with weight not exceeding
2", then K contains a dense, countably compact subgroup H
with I iί | ^ n*o.

The following results are given in §2: If t is the finest
totally bounded topological group topology on an infinite
Abelian group G, then every subgroup of G is ^-closed and
(G, t) is not pseudocompact (both conclusions can fail for G
non-Abelian); a closed subgroup of a pseudocompact group
need not be pseudocompact; if {(G<, U}: iel} are nontrivial
Abelian groups with their finest totally bounded topologies
and (G, J7~) is their product, then J7~ = t if and only if

\i\ < No.

1* Countably compact groups* Throughout this section the
word group refers to a topological group which satisfies the Hausdorff
separation axiom. Such spaces are known to be completely regular
topological spaces. A group is said to be totally bounded if for each
non-empty open subset U of G there is a finite subset {xk: k < n} of
G for which G — \Jk<n%k U. Each subgroup of a compact group is
totally bounded, and Weil [26] has shown the converse: Each totally
bounded group G is (homeomorphic with) a dense subgroup of a compact
group and this compactification is unique to within a topological iso-
morphism leaving G fixed pointwise. We refer to this compactification
of G as the Weil completion of G, and we denote it by the symbol G.

A completely regular Hausdorff space X is countably compact if
each of its infinite subsets has an accumulation point, and pseudo-
compact if each continuous, real-valued function on X is bounded
(equivalently: each locally finite family of open subsets of Xis finite).
It is easy to see that each countably compact space is pseudocompact,
and (as in [6], for example) that each pseudocompact group is totally
bounded. Examples abound of pseudocompact groups which are not
countably compact; see for example Kister [18] or H. Wilcox [28].

A number of theorems in the works of Itzkowitz [16], [17], and
H. Wilcox [28] are devoted to showing that (in various settings and
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under various hypotheses) between a totally bounded group G and its
Weil completion G there is a pseudocompact group which is in a certain
precise sense not much larger than G. The principal result of this
section is a theorem of compactness type which has a number of
corollaries improving these results. We show, specifically, that the
groups of Itzkowitz and H. Wilcox may be chosen countably compact.

Notation. If m is a cardinal and S is a set, then

&n(S) = {AaS:\A\ <m} .

If m and rt are cardinals then

π 5 = Σ {n?: ϊ is a cardinal and f < m] .

It is well-known and easy to prove that if m and tι are infinite
cardinals and m <^ π+, then

(Here as usual, the symbol rt+ denotes the smallest cardinal greater
than n.)

Recall that if X is a space and F c l , then a point p of X is a
complete accumulation point of Y provided that

\UΠY\ = \γ\

for each neighborhood U oί p in X. It is obvious that if X is compact,
then each infinite subset of X has a complete accumulation point in X.

The weight and density character of a space X are denoted w l
and dX, respectively.

DEFINITION. Let m and n be cardinal numbers with ^ 0 ^ m < it.
The space X is [m, tΐ]-compact in the sense of complete accumulation
points provided: If 7 c l and m ^ \Y\ < tt, then F has a complete
accumulation point in X.

The term we have just used is often defined as above except that
it is required that \Y\ be a regular cardinal. Even this weaker property
is strong enough to yield a compactness condition of covering type;
in the interest of completeness we give a proof below. For positive
results in the converse direction, see Alexandrofϊ and Urysohn [2]
and Aleksandrov [1], and for negative results in the converse direction
see Mishchenko [21].

We note that in our terminology the spaces which are [V$o, fc$i]-
compact in the sense of complete accumulation points are the countably
compact spaces: each countably infinite subset has a (complete) accumu-
lation point.
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PROPOSITION. Let m and n be cardinal numbers with #0^m < n
and let X have the property that if Yd X and m <; | Y\ < it and \ Y\
is regular then Y has a complete accumulation point in X. Then for
each open cover ^ of X such that m <, | <2S | < tt and \Ϋ/\is regular,
there is a cover T c ^ and \T\ < \ *%f |.

Proof. Suppose that ^ = {Uζ: ζ < | ^ | } is a counterexample, and
for ξ < 1^1 choose recursively ί ) { e l and f(ζ) < \%f\ as follows:

(i) poeX\Uo and p0e Z7/(o);
(ii) if p7 and f(r/) have been defined for all η < f, then

U ϋ>(9)) and ^ e ϋ>(e) .

Then with Γ = {̂ : f < | ̂ /1} we have | F | = | ̂  | so there is a complete
accumulation point p of Y in X If 37 is chosen so that p e Uη9 then
there exists ζ > η such that pξe Uη. This contradiction completes
the proof.

THEOREM 1.1. Let G be a totally bounded group such that \G\ =
rt ^ ^o and let m be a regular cardinal for which m rg rt+. Then
there is a group H, with G c H c G , such that H is [^0, m]-compact
in the sense of complete accumulation points and \H\ g π-.

Proof. For A e &m(G) with | A \ ̂  ^ 0 let pA be a complete accumu-
lation of A in G, and for SaG let

F(S) = S U {p,: A G ̂ m (S), i A| ^ «0}

and for SczG let <$> denote the subgroup of G generated by S.
Now let Ho = G and i^ = (F(H0)y and recursively, if f < m and

JE^ has been defined for rj < f, let

We show by induction \Hξ\ ^ π^ for <f < in. This is true for ξ
0 because

\HQ = it ^ π™

and for f = 1 because

If \Hη\ ^ n3 for 97 < f then H J ^ e ^ l ^ |c | ns = ns, so

|F(UH 9)l^(ti2)5 = n5;

this last equality holds because m is regular (see Bachmann [3], pp.
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152-153). Thus \H,\ ̂  n5.
Now let

H=[JHt.

Then H is a group and GaHaG and

IJEΓ| ^

And if A e &m{H) with | A | ^ y$0 then because m is regular there is
ξ < m such that A c Hζ, and we have

thus if is [y 0̂, m]-compact in the sense of complete accumulation points.
Our first corollary, but with "pseudocompact" in place of "countably

compact", was given in the general case by H. Wilcox [28] and earlier,
for Abelian groups G, by Itzkowitz [16], [17].

COROLLARY 1.2. Let G be a totally bounded group such that \G\ —
n ^> y$0 Then there is a countably compact group H such that G c
HczG and \H\ ̂  n*°.

Proof. This follows from Theorem 1.1, upon taking m = y^.

COROLLARY 1.3. For each infinite cardinal π there is a totally
bounded group H which is [^0, n

+]-compact in the sense of complete
accumulation points but not compact, and for which dH ̂  π and
H\ £ 2\

Proof. Let K be the compact group 22\ According to a well-
known result of Hewitt [11] and Pondiczery [22] there is a dense
subset S of K with |S | = n. Let G be the subgroup of K generated
by S, so that | G| = tt and K = G by Weil's theorem. The result now
follows from Theorem 1.1, upon taking m = n+ and noting that

x\5 = rtπ = 2" .

COROLLARY 1.4. There is a separable, countably compact group
which is not compact.

Proof. This is the case n = ^ 0 of Corollary 1.3.

COROLLARY 1.5. Let n be a cardinal and let K be a compact
group such that \ξ0 ̂  wK ^ 2\ If m is a regular cardinal for which
m ^ n+, then K contains a dense subgroup H which is [^0, vn\-compact
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in the sense of complete accumulation points such that | H | ^ π£.

Proof. According to Kuzminov [20] there is a continuous function
/ from the compact group 2wK onto K. (For an English-language proof
that K is the continuous image of 2" for some cardinal rt when K is
compact and Abelian, see Hewitt and Ross [12], pp. 423-424. That
n may be chosen to be wK follows from general topological con-
siderations as in Engelking [9] p. 162.) Again by the theorem of
Hewitt [11] and Pondiczery [22] there is a dense subset D of 2wK

with \D\ ̂  n. Then f[D] is dense in K, so there is a dense subgroup
G of K such that \G\ = rt. Then K = G by Weil's theorem, so the
result follows from Theorem 1.1.

The following two corollaries, with "countably compact" in place
of "pseudocompact", are given by H. Wilcox [28]. The first of these
is given by Itzkowitz [16], [17] for the case in which K is Abelian.

COROLLARY 1.6. Let n be a cardinal and let K be a compact
group such that ^ 0 ^ wK ^ 2Π. Then K contains a dense, countably
compact subgroup H such that \H\ ^ n**°.

Proof. This follows from Corollary 1.5, upon taking m = ̂ x .

We note that Corollary 1.6 may be proved by appealing to Wilcox's
theorem in place of the result of Kuzminov. If K is given as in
Corollary 1.6 and H is a dense, pseudocompact subgroup of K with
|jff| <; n*° (as afforded by H. Wilcox [28]) then according to Corollary
1.2 above applied to the pair {H, K) there is a countably compact
group H' for which

HcH' dH= K

and \H'\S (n*°)*° = rt*°.

COROLLARY 1.7. Assume the generalized continuum hypothesis. If
n is a cardinal and K is an infinite compact group such that \K\ —
22Π, then there is a dense, countably compact subgroup H of K such
that \H\ ^rt*°.

Proof. It is known that \K\ = 2wK. (A direct proof is given by
H. Wilcox [27]. Earlier Hulanicki [14] [15], using essentially an
argument of Cech and Pospίsil [4], showed that |JBΓ| = 2ΘK where ΘK
denotes the smallest cardinal which is the cardinality of a family <%/
of open subsets of G such that | Π ̂  I — l Since ΘK — wK—see
Hewitt and Ross [13], pp. 99-100—we have again \K \ = 2wK.) From
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the generalized continuum hypothesis it follows that wK = 2", so
Corollary 1.6 applies.

We have shown in this section that several of the pseudocompact
groups considered in [28] may in fact be taken to be countably
compact. We close with an example showing that not all of the
conclusions of [28] may be strengthened in this manner.

We continue the notational convention used earlier: If G is a
group and S c G , then (S) denotes the subgroup of G generated by
S. For xeG we write (x) in place of ({x}}

Here and later the symbol T denotes the circle group

T = {z: z is a complex number and \z\ = 1} ,

and Q is the "rational subgroup" of T— i.e.,

Q = {z e T: arg z is rational} .

DEFINITION. Let G be a group and x e G. Then x is a metric
element of G if c\G(x) is metrizable.

THEOREM 1.8. Let M be the set of metric elements of the group
T*1. Then M is not a countably compact group.

Proof. We have Q c T, and hence Q*1 c T*1. It is easy to see
that every element of Γ*1 is the limit of a sequence of elements of
QKl. (In detail: Let pe T*1 and for ξ < y$: and each integer n > 0
let q1^ be chosen in Q so that

\qr - pξ\<lln.

Then q{n) e Q*1, and q{n) —> p.) Thus it suffices to show
(a) Q^dM; and
(b) M S Γ * \
For (a) let xeQ*1 and let S c ^ d have the property that | S | ^

y$0 and for each ί < i^i there is η e S such that xξ = xη. We claim
that the natural projection π: TKl—> Ts is one-to-one on <#>. If xm Φ
xn there is ξ < fc^ for which xf Φ xn

ζt and then choosing rj e S such
that xζ — xη have

(π(x"))η - {xm)η = (x% Φ {x% = {x% = (π(xn))η

thus π(xm) Φ π(xn) and the claim is established.
We claim next that π is one-to-one on the closure in T*1 of (x}.

Indeed if p, q e cl {x} with pζ Φ qζ for some ζ < ^ L , then upon choosing
Ύ] G S such that xζ = xη we note that the projections πξ and πη from
T*1 onto Tξ and Tη respectively agree on x, hence on (oo), hence on
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cl <&>, hence at p and q. Thus

(π(p))η = πη(p) = πζ(p) = pξ Φ qζ = πξ{q) = πη(q) = (π(q))v ,

so π(p) Φ τc(q).

Thus π is a one-to-one, continuous function from the compact
group cl (x) into the metrizable group Ts.

Thus the function π, when restricted to the compact group cl (x),
is a one-to-one continuous function into the metrizable group Ts.
This restricted function is then a homeomorphism, cl (x} is metrizable,
and x e M. Assertion (a) is proved.

For (b) it suffices to cite from [12] pp. 407-408 the familiar fact
that there exists x e ΓK l such that cl <x> = T*1. Since ΓX l is not
metrizable, we have x e T^M.

2. Finest totally bounded topologies. Throughout this section
the word group refers simply to a non-empty set together with a
multiplication and inversion satisfying the usual group axioms; no
topology is assured. Topological groups are denoted by the symbols
(G, J7~), (G, t) and the like. It is assumed that these satisfy the Haus-
dorff separation axiom.

It is known (see for example Dixmier [8], p. 296 if.; Kurosh [19],
p. 157; von Neumann [25]; T. Wilcox [29]; and Hewitt and Ross [12],
pp. 348-351) that there are groups G with the property that for no
topology J7" on G is (G, ̂ ~) a totally bounded topological group.
But if G is an Abelian group then, because there are sufficiently many
homomorphisms from G to the circle group T to separate points of G,
the group G may be embedded algebraically into a product of copies
of T and therefore there is a totally bounded topology ^Γ on G
relative to which (G, ̂ ~) is a topological group. According to Comfort
and Ross [5], the totally bounded group topologies on the Abelian
groups G are precisely the topologies induced on G by point-separating
group of homomorphisms into T; the finest such topology is the one
induced by the group of all such homomorphisms.

It is well-known [8] that if a (not necessarily Abelian) group G
admits a totally bounded group topology J7~ then it admits a (neces-
sarily unique) finest such topology. We denote this latter topology
on G, when it exists, by the symbol t. It is not difficult to see that
(G, t) has the property that each homomorphism from (G, t) to a
totally bounded group is continuous. Indeed t may be defined as
follows: Let {(Hif /<): i e 1} be a listing of all pairs (H, f) with H a
totally bounded topological group and / a homomorphism from G onto
a dense subset of H, and let

e:G >P= UiezH,
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be defined by the rule

= fi(χ)

then e is a one-to-one map because (G, id) is one of the pairs (Hi9 /*),
and t is the topology induced on G (more precisely: on e[G]) by P.

It is clear from the foregoing remarks that the finest totally
bounded group topology t on G is characterized by the property that
each homomorphism from G to a totally bounded group is ί-continuous.

In this section we prove that for each infinite Abelian group G
the topological group (G, t) is not pseudocompact. This improves
an observation made in 1,8 of [5]. We show also that a product of
infinitely many nontrivial totally bounded Abelian topological groups
does not have its finest totally bounded topology.

LEMMA 2.1. Let G be an Abelian group and H a subgroup of
G. Then H is t-closed in G.

Proof. If x e G\H then H and xH are different elements of G/H
so there is a homomorphism X from G/H into T such that X(xH) Φ 1.
If φ denotes the natural mapping from G onto G/H then X°φ is a
homomorphism from G to T and

The result now follows from the fact that X°φ is ^-continuous, so
that (Xoφy^l}) is a closed subset of (G, t).

THEOREM 2.2. Let G be an infinite Abelian group. Then (G, t)
is not a pseudocompact topological group.

Proof. It is well-known and easy to prove from standard struc-
ture theorems (see for example [12], page 227) that there is a sub-
group H of G such that | G/H\ = #0. If (G, ί) were pseudocompact then
G/H in the usual quotient topology would be pseudocompact (being the
continuous image of G), a Hausdorίf space (because H is closed by
Lemma 2.1), and countable. Since G/H is a pseudocompact, Lindelof
space it is countably compact ([10], Exercise 3D); indeed, it is compact
([10], Theorem 8.2 and Exercise 5H). But this is impossible, since
an infinite countably compact group has cardinality at least 2*° ([12],
page 31).

REMARKS 2.3. (a) An early version of this paper showed only
that (G, t) as in Theorem 2.2 could not be countably compact, and
left unsettled the question whether (G, t) might be pseudocompact.
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We are grateful to Lew Robertson for formulating the argument
given above, which shows in effect that a pseudocompact group never
contains a closed, normal subgroup of countably infinite index.

(b) If the word Abelian is omitted from Lemma 2.1 or from
Theorem 2.2, the resulting statements are false. It has been pointed out
to us by Lew Robertson that according to a result of van der Waerden
[24] the real, special orthogonal group SO(3, R), which is an infinite,
compact, connected, Lie group, admits no discontinuous homomorphism
into any compact group. (It follows from (22.13), (22.14), and (22.22.h)
of [12] that the complex special linear group SL(2, C) admits no
algebraic isomorphism, continuous or discontinuous, into any compact
group. Such a group is said to be minimal almost periodic; see [25].)
According to the discussion preceding 2.1, then, this compact, metric
topology on the (non-Abelian) group SO(3, R) is the finest totally
bounded topology t on SO(3, R). Since SO(3, R) contains copies of
T— and hence also non-closed copies of Q—not every subgroup of
SO(3, R) is ί-closed.

There is another property relating to finest totally bounded
topologies which, though it fails for the non-Abelian group SO(3, R),
holds for each Abelian group: According to Theorem 2.2 those closed
copies of T inside SO(3, R) do not inherit their own finest totally
bounded topology. But if H is any (necessarily ^-closed) subgroup of
a topological group (G, t) with G Abelian then the topology induced
on H is its finest totally bounded topology. To prove this it suffices,
according to Theorem 1.7 of [5], to show that each homomorphism
f:H—*Tis continuous in this induced topology. Because T is divisible
such a homomorphism / extends to a homomorphism / : G •—> T; since
/ is ^-continuous on G its restriction to H is also continuous.

Our next result answers a question suggested by 2.1 and 2.2.
The construction follows an argument given in Theorem 2.3 of [28],
and is clearly susceptible to substantial generalization.

THEOREM 2.4. There is an Abelian pseudocompact group with a
closed subgroup which is not pseudocompact.

Proof. Let K = Γ* and let

H={xeK:\{ζ< «,: xξ Φ 1}| ^ «0} .

(H is an example of what Corson [7] calls a J-space.) That H is
countably compact is seen as in [7] or [18]: If AczH and
then for some countable subset S of y^ we have

Ac(Π f β 5 Γ { ) x I L K Λ S W ^ ^ '



42 W. W. COMFORT AND VICTOR SAKS

so that each countable subset of H is contained in a compact subspace
of H.

Let ze T have the property that zn Φ 1 for each integer n and
let p be that element of K for which pξ = z for all ξ < y$x; and let
J denote the subgroup of K generated by p.

Now let G be the subgroup of K generated by H and J. Clearly

( * ) G = {x e K: | {ξ < ^ αe =£ zn) | ^ fct for some integer n) .

We complete the proof by showing
(a) the group G is pseudocompact;
(b) J is a closed subgroup of G; and
(c) J is not pseudocompact
For (a) we note that H is dense in G (because HaGa K andiϊ

is dense in K) and that H is countably compact and hence pseudo-
compact. Thus G is pseudocompact.

For (b) we note that since the subgroup of T generated by z is
dense in Γ, we have

(**) c l * J - {x e K: x ξ = x η for a l l ξ,η< N J .

From (*) and (**) it follows that

so that J is closed in G.
For (c) we note that J is (homeomorphic with) the group [zn e T: n

is an integer}. This countable, infinite group is obviously not pseudo-
compact.

The proof is complete.

THEOREM 2.5. Let {(G^t^iiel) be a family of groups Gι each
with its finest totally bounded topology t{. If \I\<\$0 and (G,^)
is the product of the spaces (G, , t{), then the totally bounded topology
j ^ is the finest totally bounded group topology for G.

Proof. It suffices to treat the case I = {1, 2}. Let / be a homo-
morphism from G = G, x G2 to a totally bounded group H, and let
U be a neighborhood in H of the identity e of H. Let V be a
neighborhood of e such that V2 c U, and let f1 and f2 be defined from
Gλ and G2 respectively to H by the rules

Because ^ and t2 are the finest totally bounded topologies on Gx and
G2 respectively, the homomorphisms /\ and f2 are continuous. Thus
there are neighborhoods W, and W2 of the identity elements eι and e2
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such that

fλWάaV and / 2 [TF 2 ]cF.

It is now clear that

f[Wx xW2]aV2czU.

We conclude that / is continuous on (G, J7~). Thus J7~ is the finest
totally bounded topology for G.

Our final result is in contrast with Theorem 2.5.

THEOREM 2.6. Let {(Gi9 J7~i): ie 1} be a family of totally bounded
Abelian groups with |G<| ̂  2 for iel. If \I\ ^ ^ 0 and {G, J7~) is
the product of the spaces (Gif ^~,), then the totally bounded topology
J?~ is not the finest totally bounded group topology for G.

Proof. Let e{ be the identity element of Gif and let

H={xeG:\{ίeI:xiΦei}\ < * U

Then H is a dense, proper subgroup of (G, J7~). The result now
follows from Lemma 2.1.
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