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A CLASS OF ABELIAN GROUPS CLOSED UNDER
DIRECT LIMITS AND SUBGROUPS FORMATION

CHIN-SHUI Hst

This is a solution to the following problem: Which classes
of Abelian groups are closed under taking subgroups and
direct limits. (Problem 6(a), L. Fuchs, Infinite Abelian Groups,
I,A— P.) Each such class is uniquely determined by its
subclass of finitely generated Abelian groups, which in turn
can be described by a set of numerical invariants.

In like manner, an analogue for modules over a Dedekind
domain is also obtained.

Throughout this paper, we shall make no distinction between
isomorphic copies of the same Abelian group. Thus when we say that
an Abelian group belongs to a class we mean that the former is
isomorphic to a member of the latter.

In many places, proofs of our results are omitted. This is because
our discussion is of a constructive nature. As soon as a construection
is carried out, the fact that it has the desired property becomes self-
evident. Thus a formal proof is not necessary.

2. A reduction of the problem. Suppose [” is a class of
Abelian groups satisfying:

(I) Aerl, and B is a subgroup of A4, implies Be [l

(D) If {A,, 7.} is a direct system with A, € ", then (lim A,) eI
Define I, to be the subclass of finitely generated Abelian_g)roups in
I". Suppose @ is a class of finitely generated Abelian groups satisfying
(I), define @ as follows: Ae@ if there is a direct system {A,, Tqp} s.t.

A, @

T.s are monomorphisms
limA, =4

—_—

(i.e., an Abelian group A e if it is the union of a directed (by in-
clusions) family of finitely generated subgroups each of which belongs
to 0).

LEMMi& 21, If {A., 7.} s a direct system s.t. A,e®, then
(lim 4,) € 9.

Proof. For a fixed «, among the subgroups (Ker z,;) of A,, (8=
a), there is a maximum one, (because A, is finitely generated). The-
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refore, there is o' = a s.t. (Ker 7,,) = (Ker z,)V8 = a. Let A, =

A,/(Ker 7,,), then for v = a, 7,,: A,— A, induces a monomorphism

w,: A, — A}, Obviously {4, 7,} is a direct system and (lim 4}) =
~ —_—

(lim A,). Therefore, (lim A,) € @.

—_— —_—

THEOREM 2.2. If I' is a class of Abelian groups satisfying (1),
(II), then

(i) I, satisfies (1),

(ii) (L) =1

If @ is a class of finitely generated Abelian groups satisfying
1), then

(iii) @A satisfies (I), (II),

(iv) (9), = @.

Proof. (i) is obvious.

(ii) If Aerl, let {A,} be the family of all finitely generated
subgroups of A, then each A,e ", Since A = 4., 4 ().

(iii) & satisfies (I): Suppose A e®, and B is a subgroup of A.
We have a direct family {A,} of subgroups of A s.t.

A, e,
A=UA,.
Let B, = BN A,, then
B,e o,
B=UB..

Hence Be 9.
¢ satisfies (II): Suppose we have a direct system {4, Tugba,pes Sot.

A, ed,
A=1lmA,.

For each «, we have a directed family {A4..}.c,, of finitely generated
subgroups of A, s.t.
A, 0,
A, =UA.. .
Let 4 = {(«, a)|a e 4,} and define (¢, a) < (B, b) if
ax=pB,
ﬂaﬁ(Aa,a,) g Aﬁ,b .

We claim that A is a directed set: Given (a, a), (8, b) € 4, there
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is ved sit. a, 3 =< 7. Since 4,, finitely generated and A4, = U 4,..,

there is ¢'e€4, s.t. 7, (4., & A,,.. Likewise there is ¢’ e 4, s.t.

s (As) S Arere Choose ce 4, s.t. ¢/, ¢” < ¢, then (@, a), (B, b) < (7, ¢).
For (¢, a) =< (B, b), define

Tiarar, o0’ Aaya — Ay
by 71'(,,,,,),(5,1,)(90) = wp(x)Vr € A,,,, then

{Ave, Tiarism}

is a direct system with
limAd,,=A.

Therefore, A e . R
(iv) If Ae(®), then there is a directed family {A,} of subgroups
of A s.t.

A, c?,
A=UA..

Since A is finitely generated, A = A, for some a. Therefore Ac@.

3. A further reduction. Let 3 be the class of all finitely
generated Abelian groups. For A, Be ¥, A < B means A is (isomorphic
to) a subgroup of A. Clearly this is a partial ordering on X. A
subclass @ of 3 is called an ideal if it satisfies (I) and

(III) A, Be® implies there is Ce® s.t. A, B<C.

LEMMA 3.1. The unton of a directed (by inclusions) family of
ideals is an ideal. In particular the union of a linearly ordered family
of ideals is an ideal.

The proof is obvious.

Suppose @ is a class of finitely generated Abelian groups satisfying
(I), we use @, to denote the family of all maximum ideals in @, (i.e.,
those which are maximum among ideals contained in @). Suppose 4
is a family of ideals. We say that 4 is irredundant if none of its
members is contained in another member, (i.e., each member is max-
imum in the family). We say that 4 is closed if given an ideal &' =
Uoe.s 0 there is 0" e 4 s.t. 0' S 6”. We define ¢(4) = Us.,0.

THOREM 3.2. If @ is a class of finitely generated Abelian groups
satisfying (1), then
(i) 2 =92,),
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(ii) @, s irredundant,

(iii) @,, s closed.

If 4 is a closed irredundant family of ideals, then
(iv) @(4) satisfies (1),

(v) (@) = 4.

Proof. (i) and (iii) are obtained through a routine use of Zorn’s
Lemma.

(ii) and (iv) are obvious.

(v) is a consequence of the definition of closeness.

THEOREM 3.3. If 4 is a closed, irredundant family of ideals,
and @ = O(4), then

@ == U@edé .
Proof. Clearly i) Uee‘,@.

If Ae®, then there is a directed family {A.} of finitely generated
subgroups of A4 s.t.

A, c?,
A=UA..

Define @, as follows: Be®, if B< A, for some a. Clearly @, is
an ideal contained in @. Since 4 is closed, there is #c 4 s.t. 0, &
6. Clearly Acé.

Therefore, & = Us..0.

4. Arithmetization. Let

= the set consisting of 0 and all positive integral powers of
every prime number,

/If = the set of all nonnegative integers,

2 = the set of all mappings p: & — N satisfying the condition:
u#(p™) = p(p™) whenever m < n, (4" is ordered in the obvious manner),

2, = the set of all € 2 satisfying the conditions: (i) #(z) # ~Vxe
Z; (i) m(x) = 0 for almost all xe &~

For \, e 2, = ¢t means Mzx) < p(x)Vee & Obviously this is a
partial ordering on 2. Define y: 3 — 2, as follows: For Ae X A=
A @+ P A, where each A; is isomorphic with Z/xZ for some xz¢
. Set

2 (A)(xz) = the number of A; = Z/xZ .

Clearly y is an order isomorphism. Suppose that O is an ideal in 2.
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Define %(6) € 2 as follows:
2(0)(@) = Lu.b. {y(A)(x)|Ac ®} .
For p¢ e 2, define
() ={AeZ(y(4) =1 .

Suppose that 4’ is a subset of 2. We say that 4’ is irredundant if
every element of 4’ is maximum in 4. We say that 4’ is closed if
the following condition is satisfied: Given weQ with the property
that for each pe 2, s.t. ¢t < w, there is ¢’ e 4’ s.t. # < &', then there
is ded st w £4.

LEMMA 4.1. If © is an ideal in ¥ and Ac X s.t. y(4) < x(0),
then Ae€0.

Proof. Since A € ¥, thereare z,, +++, z, € & s.t. y(4)(x) = 0 except
& =@, 0, %. Since y(A) = x(0), for each x;, there is A;€0 s.t.

(A (x;) = x(A)()) .
Since @ is an ideal, there is A'€ @ s.t.
A, A, - A
Obviously ¥(A) < (4", i.e., A < A’, and hence Ac06.

COROLLARY 4.2. Given two ideals 0,0, x(0) = x(0") iff 6 = 6.

LEMMA 4.3. For pref,
(i) @(r) s an ideal,
(i) x(@(w) = r.

Proof. (i) @(p) satisfies (I) is obvious.
O(p) satisfies (III): Suppose A, Be @(¢). Define N: & — 4+~ by

Ma) = max {y(4)(x), x(B)(@)}

vze . Obviously neQ, and » < ¢, Since y is an isomorphism,
there is Ce X s.t. x(C) = x. Obviously A, B < C, and Ce @(p).

(ii) According to the definition, for xze .7 A e ®(y), we have
2(4)(@) = £(a). Therefore, 1(d(p) = .

If x(D(2)) = 1, then there is x € & s.t. 1(O(1))(x) < m(x). Suppose
1(@()(®) =n. (We cannot have x(@(t))(x) = o because co < () does
not hold.) Let A = (Z/xZ) @ -+ @ (Z/xZ), (n + 1 copies), then
2A) (@) =n +1 = px), x(4)(2) = 0< p(2)Vz # x. Therefore, Ac @(p).
This contradicts the assumption that y(@(x))(xz) = n. Hence y(9(1)) = .



500 CHIN-SHUI HSU

THEOREM 4.4. If 4 is a closed irredundant family of ideals in
2, then {x(©)|0¢c 4} is

(i) closed,

(i) irredundant.

If 4 is a closed irredundant subset of Q, then {O()|pe 4} is

(iii) closed,

(iv) irredundant.

The proof is obvious.

Combining all the earlier results together we have
THEOREM 4.5. (i) If 4’ is a closed, trredundant subset of 2, then

S
;':;’m@(#)
is a class of Abelian group satisfying (I) and (II).
(ii) If I" is a class of Abelian groups satisfying (I) and (II), then

P
=y oy

red

where 4" = {x(0)|0 € (I")..}-

5. An explicit construction. We shall adopt the following
notations:

T(A), A is an Abelian group: The torsion part of A.

T(A): A/T(A).

T,(A), p is a prime number: The p-primary component of T(A).

rank (A): the number of summands in the direct sum decomposi-
tion of the injective envelope of A into indecomposable subgroups.

THEOREM 5.1. For pte Q, 5(;) consists of Abelian groups A subject
to the following conditions:

(1) If p(0) = co, then Ty(A) can be arbitrary.

If 1(0) # oo, then rank (Ty(4)) < ©(0).

(i) For each p* e 7, if p(p*) = oo, then p**T,(A) can be arbitrary.

If n(p*) # oo, then rank (p*—'T,(4)) = w(p®).

Proof. This is obvious. (Observe that these conditions are pre-
served under taking subgroups 7o ), T,( ) and direct limits.)

REMARK 5.2. In view of Theorem 4.5, there can be classes of
Abelian groups satisfying (I) and (II) whose structures are extremely
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complicated. However, almost all known examples take the simplest

T
possible form, viz., they are @(z) for certain e, e.g.,
(1) The class of all (p-primary) co-cyclic groups is given by

1, s=9p4kk=12---
He) = {0, otherwise.
(2) The class of all locally cyclic groups is givin by
A ~ 1, xr = O 9y 0, r = 0
o 1) = p) =
UdE) s =10 77 e = ()

(3) The class of all torsion groups is given by

@) {0, =0,
xr) =
“ o, x=0.
(4) The class of all torsion-free groups is given by
() ioo’ 2=9
xr) =
£ 0, 2+0.

(5) The class of all groups is given by
Mx) = oo Voe P .
(6) The class of all groups annihilated by % is given by

oo, x|n,

”@)Zio, ohm .

S
REMARK 5.3. @(y) generalizes the class of all subgroups in a
given Abelian group. In fact, for a fixed cardinal number ¥, the

P
members of @(x) with cardinality < ¥ are exactly the subgroups in
the direct sum constructed as follows:
(a) For each prime number p, if
H(p) = -0 = pp") =N
< HPHTY) = eee = ppR) =N,

<P = e =
where k, < k, < «++ < k,, (including » = 0 to mean p(p) = -+ = \,)), we
put in the following summands:
N\,1. cOpies of Z(p~),
(\; — N4, copies of Z/p“Z,j =2, -+, 1,
M — )\, copies of Z/p“Z, (\, < <), or
W copies Z/p"Z, (A, = o),
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(in case r = 0, N, = = these are W copies of Z(p~)).
(b) We also put in the following summands:

2(0) copies of @, (14(0) < =), or
R copies of @, (1(0) = ) .

REMARK 5.4. One may wish that a class satisfying/\(l), (II) can

be expressed either as a union of a finite number of &(y) or as a
family of such which are mutually disjoined. The following example
shows that this is not always possible.

Let p, ,, -+ be a set of prime numbers and g, t, --- €2 be
given by

() = 1, 7=%2 or k=1,
PP =10, j2ik>1.
. RS
Obviously 7" = U @(y;) satisfies (I), (II), and cannot be decomposed
into finite or disjoined union in the above mentioned way.

REMARK 5.5. The definition of closed irredundant subsets of 2
is closely related to the concept of closed sets in a topological space.
For an irredundant subset 4 of 2, let

4 ={wellw < for some decd},

then 4 is closed iff the least upper bound of every net in 4’ is still
in 4.

6. A generalization. The results in the previous sections can be
extended to modules over a Dedekind domain. (For basic properties
of a Dedekind domain we refer to [2].) This is carried out in the
following. Proofs are omitted because they are essentially the same
as the case of Abelian groups. We adopt the following notations:

R: A Dedekind domain.

. The set of all primary ideals in R, (i.e., 0, and powers of
nonzero prime ideals).

A The set of all nonnegative integers.

AT U o)

2: The set of all mappings y: & — 7~ satisfying p(x) = u(y)
whenever x|y, x, ¥y = 0.

2,: The set of ¢ ¢ Q2 satisfying: (i) p(x) = oo, (ii) p(x) = 0 for almost
all xe &2

T(A), (A is an R-module): The torsion part of A.

T(A): A|T(A).

T.(A), (p is a prime ideal of R): The p-primary component of
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T(A).

rank (A): The number of summands in the direct sum decomposi-
tion of the injective envelope of A into indecomposable R-modules.

For », e 2, » < ¢ means that )M2) < u(x)veze P A subset 4
of 2 is irredundant if every element of 4’ is maximum in 4. It is
closed if the following condition is satisfied: Given we Q with the
property that for ¢ e Q, ¢t < w implies there is ¢’ € 4" s.t. ¢t < &', then
there is 64’ s.t. w < 6.

For pe Q, define @ as the class of all R-modules subject to the
following conditions:

(i) If p(0) = oo, Ty(A) can be arbitrary.

If 2(0) % oo, rank (To(A)) < £(0).

(ii) If p(p*) = o, (p is a prime ideal of R), p*'T,(A) can be
arbitrary.

If p(p*) # oo, rank (p*~'T,(4)) = 1(p").

THEOREM 6.1. (i) If 4’ is a closed, irredundant subset of 2, then

T
U @)

is a class of R-modules closed under direct limits and submodules
Sformation.

(i) Every class of R-modules closed under direct limit and sub-
module formation can be obtained in this manner. 4" is uniquely
determined by the class.
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