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CONTINUOUS MEASURES, BAIRE CATEGORY,
AND UNIFORM CONTINUITY
IN TOPOLOGICAL GROUPS

GERALD L. ITZKOWITZ

In this paper we use an observation of M. Rajagopalan to
show that each nondiscrete locally compact topological group can
be written as a disjoint union of continuumly many closed nowhere
dense Gj sets. This observation also enables us to give a new
constructive proof of a theorem of Kister. We show that in a
nondiscrete noncompact locally compact group it is always possi-
ble to construct a bounded continuous function that is not left
uniformly continuous. Finally this construction motivates a simi-
lar construction which yields examples of functions in LUC(G) but
not in RUC(G) when G'is a nondiscrete and nonunimodular locally
compact topological group or when G is a nondiscrete locally
compact metric group with inequivalent right and left uniform
structures.

1. Introduction. In this paper we show that a simple observation
concerning continuity of the Haar measure in a locally compact topological
group may be used to derive some interesting set theoretic and topological
properties of such groups. This observation has been used by M. Rajago-
palan in [6] to show that extremally disconnected compact topological
groups are discrete. Throughout this paper we shall assume that the con-
tinuum hypothesis holds.

Our underlying simple observation is the following one.

1.1 Observation. If G is a locally compact nondiscrete topological
group, and if A is left Haar measure then

(i) A{x} =0foreachx € G,

(ii) there exists a nested sequence {U,: n = 1, 2, ...} of neighbor-
hoods of the identity e € G such that A(U,) — 0.

In the sequel we will be employing the terms nowhere dense, first
category, and second category, with their usual meaning.

DErINITION. M is of the second category at x € M if M N Uis of the
second category for each neighborhood U of x.

Obviously M is of the second category in every neighborhood in X if
and only if M is of the second category at each x € X.
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2. Decomposition into nowhere dense G; sets. The author wishes to
thank the referee for pointing out the following stronger form of a theorem
of Kakutani and Kodaira [5] (see also 8.7, [4]) which is proved in Halmos
64G, [3]. His observation has as corollaries a strengthening of our original
Theorem 2.2 from compactly generated groups to o-compact groups, and
the resulting more complete statement in Theorem 2.4 for all nondiscrete
locally compact topological groups G. For completeness we give below a
direct proof of the Kakutani-Kodaira Theorem suggested by the referee.

2.1. THeOREM (Kakutani-Kodaira). Let G be a o-compact, locally
compact group with identity e. Then for every countable family {U,:n = 1,2,
... »} of neighborhoods of e, there is a compact normal subgroup N C G such
that N C N2, U,, and G/N is metrizable and has a countable base for its
open selts.

Proof. Write G as an increasing union U2, F, of compact sets F,.
Select a sequence {V,: n = 1, 2, ...} of neighborhoods of e so that ¥, is
compact, V> C V,_, N U,, and such that xV,x~' C V,_,forall x € F,.
Now 5.6(iv) in [2] holds and so N = N V,,is a closed normal subgroup and
hence also compact. It now follows exactly as in 8.7[4] that {¢(V,) : n = 1,
2, ...} isacountable base at N in G/ N, where ¢ is the natural map of G onto
G/N. Thus by 8.3 [4], G/N is metrizable. Also since G = U;2,F,and ¢ is
continuous, G/N must be o-compact and hence Lindelof. Thus G/N has a
countable base for its open sets.

2.2 THEOREM. Every infinite o-compact locally compact nondiscrete
topological group G may be written as a disjoint union of continuumly many
nowhere dense compact G sets.

Proof. Choose a nested sequence {U,: n = 1, 2, ...} of open neigh-
borhoods of e € G, such that A(U, )— 0. By Theorem 2.1 there is a compact
normal subgroup N C G such that N C NU,, and G/N is metrizable and
has a countable base for its open sets. Therefore card(G/N) < ¢. However
G/N is not discrete since N is not open (A(N) = 0). But then card (G/N) =
¢. (See Hewitt and Ross[4], 4.26, for an interesting proof of this fact.).
Clearly each X € G/N is a compact G;. Hence so is each coset of N in G.
Finally since

G=U{xN:x € 97! (%), x € G/N, ¢ the quotient map},

the theorem follows .
Our method of proof allows us to deduce the following.
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2.3. THEOREM. Let G be a locally compact topological group. Then the
Sfollowing are equivalent:
(i) G s not discrete
(ii) G contains a nowhere dense compact G, subgroup N.
(iii) There exists a nested sequence {U,} of neighborhoods of e € G
such that \(U,) — 0, where A is Haar measure.

Proof. (i) = (iii) is our observation 1.1, and (ii) = (i) since e € N is
nowhere dense and hence not open. Thus we need only show that (ii)
follows from (iii).

Choose a sequence of neighborhoods {V,: n = 1, 2, ...} of e such that
V2 C V,_, N U,. Thensince ¥, C V?it follows that

N =

n

=¥

Vv,c IV,c Av:c NV,., =N,
2 n=2 n=2 n=2

so that N is closed. Clearly N C N U, so that A(N) = 0. Thus N is nowhere
dense. By Theorem 5.6 in [4] N is a subgroup. Since we may assume that U,
is compact, our theorem is true.

24. THEOREM. If G is a nondiscrete locally compact topological
group then G may be written as a disjoint union of continuumly many closed
nowhere dense Gj sets.

Proof. G contains an open nondiscrete o-compact subgroup J to
which Theorem 2.2 applies. Thus J may be written as a disjoint union
U qeq F, where card (4) = cand each F, is a compact nowhere dense G, set.
Let B be a subset of G such that BJ = G and such that the family {bJ: b €
B} isdisjoint. For each o € 4, let E, = U,czbF,. Then each E, is a closed
nowhere dense Ggsetin Gand U ,c4E, = G.

That Theorem 2.4 cannot be extended to read “G may be written as a
disjoint union of continuumly many compact nowhere dense Gj sets” is
evident from the following example.

ExamPLE. LetG = R X G,where G, is discrete, card (G,) > ¢,and R
is the real numbers with the usual topology. Clearly any compact subset of
G is contained in a union of only finitely many of the disjoint open sets {R
X {x}:x € G,} C G. Thus any c compact subsets of G are contained in a
union of the form E = U,,R X {x}, where card (4) < ¢. Thus Eis a
proper subset of G and hence so is a union of any ¢ compact subsets of G.
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3. Decompositions into continuumly many disjoint sets of second
category. S. Ulam in 1933 [10] (and [9]), proved the following assuming
the continuum hypothesis holds.

3.1. THEOREM. Let X be a perfect space and let Z C X be of the
second category in X where card (X) = c. Then there exists a collection of ¢
mutually disjoint sets in Z which are all of the second category.

DErFINITION. A perfect space is a complete metric space with no
isolated points.
For topological groups the above theorem takes the following form.

3.2. THEOREM. Each nondiscrete o-compact locally compact metric
group G may be written as a disjoint union of ¢ sets each of the second category
inG.

W. Sierpinski in [8] was able to use Ulam’s theorem to prove a consi-
derably strengthened version for the real line which we state below.

3.3. THEOREM. Each subset of the line of the second category in each
interval of the line may be written as a disjoint union of ¢ sets each of the
second category in each interval.

We will show that the method of proof employed by Sierpinski is valid
in the more general setting of locally compact, s-compact metric spaces
with no isolated points.

34. LeMMA. Let X be alocally compact o-compact metric space with
no isolated points. If M C X is of the second category, then there exists a
neighborhood U C X such that M is of the second category at each point of U.

Proof. Since X is a o-compact metric space it has a countable dense
set {x;} and the open balls B, ; = { y : d(y, x;) < r, rrational} form a base
for the topology. If the Lemma is false, then for each B, ; there is some B, ;
C B, ;such that B, ; N M is of the first category. Let { B;} be the collection
of all B, ;such that B, ; N M is of the first category. Then
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is a closed set which contains no open set (since each open set contains a
B;). Thus D is of the first category. But then D N M is of the first category so
that

M= (DA M u[il:ll(Mn B,.)]

is a set of the first category, a contradiction.

Convention. Let {B;} denote the basis of open balls { B, ; } of rational
radii for X.

35. LEMMA. Let X be alocally compact 6-compact metric space with
no isolated points. Let M C X be of the second category in each open subset of
X and let U C X be open. Then there exists Q C U N M of the second

category such that M — Q is of the second caiegory in each neighborhood of
X.

Proof. By the theorem of S. Ulam the set U N M contains ¢ mutually
disjoint sets each of the second category. Let ® denote this family of sets
andlet4 € ®.Let {C;} C {B;) be the relative basis for the open setsin U.
Since 4 is of the second category, there is C; such that 4 N C; is of the
second category at each point in Cy.

Observe now that the family {C;} is countable though @ is uncoun-
table. Thus there is a closed ball C, such that uncountably many members
of ® are of the second category at each point of C,. Let 4, 4, € ® be two
such sets.

Let Q = C; N A,. Clearly the set Q C U'is of the second category in U.
Also

M—-Q=M-CH)UMNC -0
=M-C)UCNM—42))D(M—C)U(CNA4)

since A, N A4, = ¢, A, C M, A, C M. Thus M — Q is of the second
category at each point of C; and at each point of X — C,. This proves the
lemma.

3.6. THEOREM. Let X be a locally compact a-compact metric space
with no isolated points. Then each set M C X of the second category in every
neighborhood of X contains ¢ mutually disjoint sets, each of the second
category in every neighborhood of X.
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Proof. LetB,, B, ..., B,, ... be the countable basis of open sets with
rational radii. We proceed by induction.

By Lemma 3.5 given U an open set in X there existsaset 0, C M N U
such that M — Q, is of the second category in every neighborhood in X. Let
U = B 1- :
Suppose now thatsets Q,, ..., Q,_ have been defined so that M —.(Q,
U ... U Q,_;)is of the second category in each neighborhood in X. By 3.5
there exists a set Q, of the second category contained in {M — (@, U ... U
0._1)} N B, such that

M—(QU..UQ, )} —Q=M-{Q,U..UQ,}

is of the second category in every neighborhood. The sets {Q,} thus
defined obviously satisfy

@ 0.CB,NM n=12 ..
and are mutually disjoint.

By the theorem of S. Ulam, each Q, contains ¢ mutually disjoint sets
each of the second category. Let £ be the first uncountable ordinal. We
denote the subsets of Q,, whose existence we’ve shown, by (Q4: ¢ < Q).
Then

() Q.cQ,CB,NMfort<Q n=12 ..

(i) kN QO =9dfort<n<Qn=123,..

We define

(iv) M= U, Qiforeacht < Q.

The set Q% C B, is of the second category. Thus M¢ is of the second
category in every neighborhood in X since B, is a basis for the topology of
X. Obviously M* C M for ¢ < Q.

Since each of the sets Q, ... , Q,, ... are mutually disjoint, (i) implies
that 05 N Q' = dform#nm ¢ <Qn<Q.ThusMiN M= dfor§<n
< @, proving the theorem.

3.7. CoROLLARY. Each nondiscrete o-compact locally compact me-
tric group may be written as a disjoint union of ¢ mutually disjoint sets each of
the second category in every open set.

4. Haar measure and uniform continuity in topological groups. In
this section we show that the continuity of the Haar measure on nondiscrete
locally compact groups takes the part of the metric in a metric space. This
fact should be evident from the work of the first two sections. Below we give
a new proof of the theorem of J. M. Kister [6]. The method of proof has
been used by others in metric spaces, and was suggested to the author in the
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case of metric spaces by Professor C. Chou. The proof for metric spaces
rests on the fact that it is possible to choose a descending sequence of open
balls whose intersection contains no open sets (actually only a point).

4.1. THEOREM. Let G be a locally compact nondiscrete noncompact
topological group. Then there exists a bounded real valued function f that is
continuous on G but not left uniformly continuous on G.

Proof. Let U be a neighborhood of the identity such that U is com-
pact. By induction choose a sequence x;, x,, ... , X,, ... such that x, &
U’!'x; U. Let B be a symmetric neighborhood of e satisfying ¥ C U.
Then the sets {x;/" : i = 1} are pairwise disjoint. Since G is not discrete
there is a sequence V), V5, ... , V,, ... of nested neighborhoods of e
satisfying A(V;) — 0. We may choose ¥, = V without loss of generality. We
define now functions f;, i = 1, as follows:

fi(xi) =1, f,.(l:x,.V,.) = {0}, 0<f, <1

Such functions always exist because G is completely regular. Let f =
22, f;- Then fis continuous. However fis not left uniformly continuous. To
see this, suppose that given ¢ > 0 we have that there exists W a neighbor-
hood of e such that x "y € W implies that | fix) — f{ y)| < . Without loss
of generality we may suppose W C V. Observe thatife < 1, and if x €
x,W then | f(x) — f(x,)| < e. This means that x € x,V, so that x,W C
x,V,and hence WC V,. But then W C NV, contradicting the fact that
A(V)— 0.

ReMARK. It was pointed out by the referee that the above proof is
similar to though simpler than the proof of Theorem 4.10, page 68, in R. B.
Burkel [1]. This theorem is as follows: “If G is a locally compact topological
group then W(G) = C(G) if and only if G is compact.” Here W(G) is the set
of weakly almost periodic functions on G, and C(G) is the set of continuous
functions on G. Our construction yields a simpler proof of the part of
Burkel’s theorem that deals with the nondiscrete case. We also note that the
construction in Burkel also proves our Theorem 4.1.

Finally we observe that the method of proof used in 4.1 has actually
been anticipated by Comfort and Ross [2]. Specifically their Theorems 1.2
and 2.2 employ a similar construction of a continuous function.
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4.2. ExampLE. The function f = 2, f;, where
fil) =1, f(CxV) = {0}, 0S54,

is an example of a function that is continuous, unbounded, and not uni-
formly continuous, if { ¥;}, V are as above.

4.3. CoroLLARY (Kister). The following are equivalent for a
nondiscrete locally compact topological group G:

(@) G iscompact

(b) Every continuous real valued function on G is left uniformly con-
tinuous.

The above theorem is concerned only with existence of a continuous
function that is not left uniformly continuous. A natural question to ask at
this point is whether there is a left uniformly continuous real valued
function that is not right uniformly continuous. It is clear that if the right
and left structure are equivalent then the answer is obviously negative.
However, if the two structures are not equivalent this is a meaningful
question. We show next that if the group is not unimodular then such
functions always exist. The construction is similar to the above one but the
technical details are slightly more complicated.

Let R* denote the multiplicative group of positive real numbers.

DEerINITION. Let A be the Haar measure on G. The modular function
A : G— R*is defined by

) atar)

a0 = Jor()atary

e Cyb(G).

Gisunimodulariff A = 1.

PROPERTIES.
(1) A is a continuous homomorphism
(i) A (x) = MEx)/NME) where E C G is such that A(E) > 0.
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4.4. THEOREM. Each locally compact, nondiscrete, nonunimodular
group admits a function that is left uniformly continuous but not right uni-
formly continuous.

Proof. Since G is not unimodular we have that A and 1/A are
unbounded on G. Let U be a compact symmetric neighborhood of e.
Inductively we can choose a sequence {x,} C G such that

n-1

(a) Xn é Un-l = 'l]l Uin
and
(b)) Ax,)>n

To see this observe that U,_, is compactso G ¢ U,_,. Also A(U,_,)isa
compact subset of (0, o), so there is a point x, € G such that A(x,) > n
and A(xn) $ A((Jrl—l )

Now let ¥ C U be a symmetric neighborhood of e satisfying V> C U.
Then it is easily seen that each of the following hold

(1) xVNxVy=90 i#j

) Vx,iNVx;=90 i#j

() Vx,NxV =09 i#]j

Let f (x) be any continuous function such that

fAlx) =1, A€V =0}, 0<f/<1.
Define, foreach i > 1,
fix) = filaxi '),
so that fi(x;) = fi(x;) = 1 and
fi(Cx; V) = {0}.
Observe that the function f = 232, f; is continuous and even left uniformly
continuous on G. However fis not right uniformly continuous. For if fwere

right uniformly continuous then given 1 > ¢ > 0 there is W a neighbor-
hood of e such that xy~' € W implies that

) —fl <e
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Without loss of generality we may suppose that W C V. Thenif x € Wx,
we have x & Vx,,, x & x,V(m # n)and | f(x) — f(x,)| < & Defining V,
= x,Vx;! we see that x € x,V = V,x, and hence W C V,. Since n is
arbitrary we have W C N ,,V,. Observe now that

0 <A(V) = AxuV) = AMVoxy) = MV,) Alxy):

Since A(x,) — co, we must have A(V,) — 0. But then A(W) = 0, a
contradiction. Therefore fis not right uniformly continuous.

ReMARK. This construction shows that in Theorem 4. 1. the function f
might possibly be right uniformly continuous if G is not unimodular.

4.5. THEOREM. If G is a nondiscrete locally compact metric group
with inequivalent uniform structures then G admits a function f that is left
uniformly continuous but not right uniformly continuous.

Proof. 1t is well-known (see [2], 8.18) that G has equivalent uniform
structures iff given x,— eand { y,: n = 1} any sequence in G then y; 'x, y,
— e. Thus if G has inequivalent uniform structures, there is a neighborhood
Uofe,asequence { y,} C G, and a sequence x,—> e, such that y, "X yn &
U for each n.

We observe now that { y, : n = 1} is not contained in any compact
subset F of G. This follows from the well known theorem (see [4], 4.9) that
given any neighborhood U of e and compact set F there is a neighborhood
V of e such that x~! Vx C U, for all x € F. (The condition In X, yn €U for

each n, implies that there is.no neighborhood ¥ of e such that y; ! ¥y, C U,
for all n).

Without loss of generality we may assume that U is compact. Passing
to subsequences if necessary we may assume that y, satisfies

n-1 _ _
yn é U inU, n=2, 3,4, cen
i=1

Let ¥ C Usatisfy ¥? C U. Then as in 4.4 we have

(i) {Vy;:i=1} are pairwise disjoint

(i) {»V:1= 1} are pairwise disjoint

i) yVnNvy=0ifi#j
Define fas in 4.4. As before let V, be defined by y,V = V, y, and suppose f
is right uniformly continuous. Then given € > 0 there is a neighborhood W
such that xy~' € Wimplies that | f(x) — f(»)| < e. Since we may suppose
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W C V we see asin 4.4 that W C V,, for each n. Thus W C N V,. Clearly
this implies

)’n—‘W}’nc)’;an)’n= Vc U’

for all n. But then this contradicts the statement that there is no neighbor-
hood V of e such that y,; ' Vy, C U for all n. Therefore f is not right
uniformly continuous.

REMARK. Itappears from this last theorem that the classes of left and
right uniformly continuous real valued functions on a locally compact
topological group with inequivalent uniform structures cannot coincide.
However the author was not able to use this construction to prove this.
What is clear is that the construction here may be used provided either

i) MNV,)—0
or

@ii) N V,contains no open sets for some sequence of points {x,} C G
such that

V,=xVx;\
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