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ON STRONGLY RADICIAL EXTENSIONS

YaAsuJi TAKEUCHI

Let A be a commutative ring and C a commutative
ring-extension of A such that the canonical morphism: Spec (C)
— Spec (A) induced by the inclusion map: A — C is radicial. In
this paper a Galois theory of such extension C/A is given,
with certain additional assumptions.

Let A be a commutative ring with an identity such that for each
prime ideal p in A the residue ring A/p is of prime characteristic.
We say that a commutative ring-extension C of A is strongly radicial’
if C is finitely generated projective as an A-module and the Kernel
of the multiplication map: C®,C— C is a nil-ideal. In this paper,
we shall study a Galois theory of strongly radicial extensions. The
main tool used here is higher order derivations, which have been
studied in [5], [6], and [7]. The reader should consult them, especially
[5], [6], for relevant definitions and basic properties.

In §1 we introduce differentiably simple rings and exhibit a
structure theorem. We shall later apply this to study the structure
of strongly radicial extensions.

In §2 we give criteria for strongly radiciality. We also gener-
alize some of the results about purely inseparable field-extensions to
our case. Moreover, we show a structure theorem of strongly radicial
extensions.

In §3 we give a Galois correspondence theorem for a strongly
radicial extension.

In all that follows all rings are commutative with an identity,
and all homomorphisms and all modules are unitary. Unadorned @
will mean @,. If A is a subring of a ring C, both A and C are
assumed to have the same identity.

1. Differentiably simple rings. Let C be a commutative ring.
For any qth order derivation D on C and any a<€C, [D, a] denotes a
(¢ — 1)th order derivation on C which is defined by [D, al(x) = D(ax) —
aD(@) — D(a)x for xe C. Let 57 be any nonempty set of higher
order derivations on C with [D, a]e 5# for all De 27 all acC. In
this case, the set {acC|D(a) = 0 for all De 57} forms a subring
of C, denoted by Ker (£#°). If C has no nontrivial S#%-stable ideal,
C will be called an S#Zsimple ring. For an S#Zsimple ring C, let A
denote Ker (5#°). Then the following properties hold:

(1) A is a field.

! For the definition of radicial, see [Grothendieck: E.G. A.I (3.5.4)].
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(2) The exponent of C over A is finite if A is of prime charac-
teristic and C is finite dimensional over A.

The proof is omitted, because it is quite similar to the proof of
Lemma 2.1 in [12].

PropPOSITION 1. Let C be a commutative ring of prime charac-
teristic p and SZ any nonempty set of higher order derivations on
C with [D, a]le &7 for all De 27, all ae C. Suppose that the orders
of the derivations in 577 are bounded and C is S#-simple. Then C
18 a local ring whose radical @ is a nil-ideal. Moreover, we have
C=F+ Q for a subfield F of C containing Ker (57).

Proof. Let ¢ be the supremum of orders of the derivations in
57, For any zeC, we have D(z**) = 0 for Dec 57 where p°>gq,
and so 2" belongs to Ker (%) [c.f., 5, Chap. I, Prop. 10]. Since
Ker (27) is a field, we obtain 2°° = 0 for any nonunit # in C. This
shows the radical @ of C is a nil-ideal and is a uniquely maximal
ideal. Now we shall show the second statement. Let E(S) denote
a set {2""|xe S} for a subset S of C. Let s be the minimal positive
integer with ES(C) € Ker (5#). Then ESC) is a field. We shall
show EC) = F, + E(Q) for 1 =0,1, --- s where F, are a subfield
of E(C), respectively. Assume we have already proved this fact
for t=7r+1, .-+, s. Let F, be a maximal field contained in E"(C)
with F,.,, & F,. Suppose F, + E(Q)# E"(C). Then there is an
x ¢ E"(C) not belonging to F, + E7(Q). We can write 2” = a + y for
acF, ., ye E"(Q). Since E™(Q) = EY(E"(Q)), we obtain (x —y,)’ = ¢
for ¥, E"(Q). Then z — y, does not belong to F, + E"()), which is
denoted by x,. Since w(F.)[7(x,)] is a field properly containing n(F,)
where 7 is the canonical map of E"(C) onto the field E7(C)/E"(Q), a
polynomial X” — ¢ is irreducible in F,[X]. So F,[z,] is a field, which
is a contradiction. So we have C = F,+ Q. TUnless F, contains
Ker (57), take a maximal subfield F of F,Ker(5#) containing
Ker (5#°). Then we claim C = F + . Assume this is not the case.
Then there is an element « in F, not belenging to F + Q. Let ¢ be
the minimal positive integer with z?*e F. Then a polynomial X7 — z**
in F[X] is irreducible. Hence F[z] is isomorphic to a residue field
F[X]/(X™ — «*"), that is a contradiction to the maximality of F. This
completes the proof.

2. Strongly radicial extensions. Let A be a commutative ring
and C a commutative ring-extension of A. Let J,, denote the Kernel
of the multiplication map ¢: C® C— C.

DEFINITION. Let A and C be as above. Suppose the integral
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domain A/p is of prime characteristic for each pe Spec (4). We shall
call C a strongly radicial extension of A if the following conditions are
satisfied:

(1) C is finitely generated and projective as an A-module.

(2) The ideal J,, is nilpotent.

The C-module of qth order A-derivations on C is denoted by
Der,(C/A). We shall set Der(C/A) = Ui, Der(C/A). Then there are
C-module isomorphisms @,: Hom (2 (C), C) — Der,(C/A) by P.(f) =
f+0? and @: Homg(J s, C) — Der(C/A) by @(f) = f-0 where 0 is an
A-module map: C— J,, by 0(c) =1X®e—c®1 for ¢ceC and 09 is
an A-module map: C— 2¢(C) by 6“(c) = {the class of d(c) modulo
(Jo )%}, The map 69 is called the canonical gth order derivation
of C/A.

Let v be the map: C— Hom,(C, C) by v(c)(x) = cx for ¢, xecC.
We shall put Z,(C/A) = v(C) + Der,(C/A) and =2 (C/A)=v(C)+
Der(C/A). Then =(C/A) forms an A-algebra [e.f., 5].

PROPOSITION 2. Let A be a commutative ring such that the
domain Afp is of prime characteristic for each pc Spec(A). Let C
be a commutative ring-extension of A which s finitely generated
projective as an A-module. Then the necessary and sufficient condition
that C is a strongly radicial extension of A is (C/A) = Hom,(C, C).

Proof. The necessity is obvious. Suppose = (C/A) = Hom,(C, C).
Then the C-module Der(C/A) is generated by finitely many derivations,
because it is a C-module direct summand of the finitely generated
C-module Hom,(C, C). So 2,(C/A) = Hom,(C, C) for the supremum ¢
of orders of their derivations. In order to show J,, is nilpotent, it is
sufficient to observe the canonical epimorphism: J,— 2¢(C) is
injective, accordingly so is the canonical epimorphism: Jo, ., — 24(C,)
for each peSpec(A4). This is obvious from the following lemma,
because {1®u;, —u; ®1|t=1,2, ---, m} form a C,-module basis for
JCP,AEB where {1, u,, u,, -+, u,} is an A,-module basis for C,.

LEMMA 3. Let A be a commutative ring and C a commutative
A-algebra which ts a finitely generated free A-module with a basis
{1, wy, gy =+, U} If Z(C/A) = Hom,(C, C) for some positive integer
q, then QP(C) is a free C-module with a basis {6‘°(u,), 0'“(uy), -+,
0'(u,,)} where 0 is the canonical qth order derivation of C/A.

Proof. From the hypothesis, we have a C-module isomorphism
¥: €D Hom(24'(C), C) — Hom,(C, C) by v(c+ f) = cx + (f-0)(x)

2 0@ (C) denotes the module of gth order differentials Jo,4/(Jg/4)7+! [c.f., 5].
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for ¢, ze C, f e Homy(22(C), C). Let D,(i =1, 2, ---, m) be elements
of Hom,(C, C) such that D,(1) =0 for all ¢+ and D,(u;) = d,; for
%, J=12 ---, m. Moreover, let f; be elements of Hom(2{'(C), C)
with ¥(f;) = D,. Then we have fi(6°(u;)) = 0,;. Since the set
{09(u,), 0'“(uy), - - -, 6'“(u,,)} forms a set of generators of 2(C) as a
C-module, 2(C) is a free C-module with {6‘“(u,), ‘" (us), * -, 0 (u,)}
as a basis.
We obtain a following corollary to Proposition 2.

COROLLARY. Let A be a commutative ring of prime characteristic
p and Ca commutative ring-extension of A which is finitely generated
projective as an A-module. Then C is a strongly radicial extension
of A if and only if C has a finite exponent over A.

Proof. If C has a finite exponent over A, then J, is a nil-ideal.
This shows the “if” part, because J;, is finitely generated as a
C-module. Conversely assume C is a strongly radicial extension of
A. Then Z,(C/A) = Hom,(C, C) for some positive integer ¢. Since
A = Ker (Der,(C/4)), it follows from [5, Chap. I, Prop. 10] that E°(C)
is contained in A for a positive integer ¢ with p° > ¢q. This completes
the proof.

Now we give a structure theorem of strongly radicial extensions.

THEOREM 4. Let A be a commutative ring such that the domain
Alp is of prime characteristic for each peSpec(4). Then, for a
strongly radicial extension C of A, the followings hold:

(1) The map “i: Spec (C) — Spec (A) induced canonically by the
anclusion map 1. A— C 18 bijective.

(2) For each prime ideal p in A we have CQR Ap)Y = F, + @Q,
where F, is a subfield of C®Q A(p) being purely inseparable over A(p)
and @, is a nilpotent maximal ideal in C & A(p).

Proof. For simplicity of notation set A = A(p) for any p € Spec (4),
and set C = C® A. Then we have 2(C/4)® A = Homy(C, C) and
so D(C/A) = Homy(C, C). Hence C is a Der(C/A)-simple ring and
Ker (Der(C/A)) is equal to A. So (2) follows from Proposition 1.
Since C® A(p) is local for any pe Spec (4), the map * is injective.
Since C is integral over A, the map °¢ is surjective. This completes
the proof.

COROLLARY. Let A and C be as above. Then an A/R,-auto-
morphism of C/R, induced canonically by any A-automorphism of

3 A(p) usually denotes the residue field A4,/pA,.
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C reduces always to the identity map on C/R, where R, R, are the
nil-radical of A, C, respectively.

Proof. Let o be any A-automorphism of C. For any prime ideal
B of C, we have a(P) = P, because *(ad(P)) = “¢(P) where * is as
above. So o induces canonically an automorphism of C/¥, which
reduces to the identity map on C/P. This shows z — o(z) e P for all
zeC and so x = o(x) mod. R,.

PROPOSITION 5. Let A be a commutative ring such that the
domain Aflp is of prime characteristic for each prime ideal p in
A. Let C be a commutative ring-extension of A which is a finitely
generated projective A-module. Then C is a strongly radicial extension
of 4 if and only if C, is a strongly radicial extension of A, for each
p e Spec (4).

Proof. The “only if” part is obvious. In order to show the
“if ” part, it is sufficient to prove the fact that the canonical injection:
C & Der(C/A) — Hom,(C, C) is an epimorphism, accordingly so is the
canonical injection: C,@ Der(C/A), — Hom ,(C, C), for each p € Spec (4).
Let @ be the composition of the following canonical maps

C,D Der(C/A), — Hom,(C, C), — HomAp(Cp; C,)— C, © Der(C,/4,) .

Then we have @(Der(C/A),) & Der(C,/A,). We shall show ¢ maps
Der(C/A), onto Der(C,/A,). By the above isomorphisms any element
D, of Der(C,/A,) can be identified with an element of form (1/s)D in
Hom,(C, C), for se A — p, De Hom,(C, C). If D, is of order g, we
have finitely many equalities in C,

LD@a, - w) = D7 8w,

11 <i9< e <1y

1 - "
mlk<_‘;>D(x0 e By e By e x4 ,

where x,(¢ = 0, 1, ---, ¢) range over a finite set of generators for the
A-module C. So there is an element ¢ in A — p such that ¢D is a
gqth order A-derivation on C. Hence we have (1/s)D = (1/st)-tDe
Der(C/A), and @((1/s)D) = D,.

COROLLARY. If C is a strongly radicial extension of a commuta-
tive ring B and B is a strongly radicial extension of a commutative

ring A, then C is also a strongly radicial extension of A.

Proof. By the above proposition we may assume, without loss
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of generality, that A and B are local. Hence C is B-free and B is
A-free. Then we have a C-module exact sequence 0— (CQ C)Jy, —
Joia— Jos— 0. Since both J,; and (C & C)Jy, are nilpotent, J,,, is
also nilpotent.

We conclude this section, showing a converse to Theorem 4 under
certain assumption on the basic ring.

PROPOSITION 6. Let A be a commutative ring such that, for each
peSpec (4), A, is artinian and A(p) is of prime characteristic. Let
C be a commutative ring-extension of A which is finitely generated
projective as an A-module. Then C is a strongly radictal extension
of A if, for each pe Speec(A), we have CR A(p) = F, + Q, where Q,
18 the nil-radical of C R A(p) and F, is a subfield of C & A(p) which
18 purely inseparable over A(D).

Proof. From Proposition 5 if suffices to prove when A is local.
Let nt be the maximal ideal of A. Then m is nilpotent. Now we
have a commutative diagram

N
JC/A JC(m)/A(m)

0—CRCCRXM— CRC — Cm) ® C(m) — 0
l/z@l @
0 — C®m — C —> Cm) — 0

l

0 0 0

whose all the vertical and horizontal sequence are exact where z is
the multiplication map: CX C— C and the other maps are also canonical.
From this diagram, we obtain an exact sequence 0— Ker (#® 1) —
Jors = Jowmyram- Since Ker (#® 1) = J,, @ m, Ker (#® 1) is nilpotent.
So J¢;, is nilpotent. This completes the proof.

3. The Galois correspondence theorem. An aim in this section
is to show a Galois correspondence theorem on strongly radical ex-
tensions as follows.

THEOREM 7. Let C be a strongly radicial extension of a com-
mutative ring A. Let 4 be the set of C-module direct summands &
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of Der(C/A) with DD'e€ & and [D, z]e & for all D,D'c¢ & and all
xeC. Let I' be the set of intermediate rings between A and C, over
which C is projective. Then correspondences 0: A— I, v: I'— 4 given
respectively by 0(Z) = Ker (£7), v(B) = Der(C/B) are inverse to each
other.

In order to prove this theorem two lemmas are necessary.

LEMMA 8. Let A, C be as above and B an intermediate ring
between A and C. If C is projective as a B-module, then C is a
strongly radicial extemsion of B and B is also a strongly radicial
extension of A. In this case, the C-module Der(C/B) is a C-module
direct summand of Der(C/A).

Proof. In order to show the first statement, it suffices to observe
Hom,(C, C) is contained in =(C/B). For any f € Homg(C, C), we have
f=c¢+ DforceC, De Der(C/A). Then cbx + D(bx) = f(bx) = bf(x) =
cbe + bD(x) for any be B, any xze(C. This shows D belongs to
Der(C/B). The second assertion follows obviously from the fact that
B is an A-module direct summand of C and Jy, is contained in the
nilpotent ideal J;,. Now we shall prove the last statement. For
any pe Spec (4), a sequence of canonical C,-module homomorphisms

0— (C, ®Ay Cv)JB;./A,, > Joya, Jcppr —0

is exact, because both B, and C, are A,free. Hence a sequence of
canonical C-module homomorphisms

0— (C & C)J 514 Jera Jois 0

is exact and so is split, since J,; is C-projective. So we have a
C-module isomorphism:

Hom(Joy4, C) — Home(Jyy5, C) B Hom((C R C)Jz4 C) -

Since Der(C/A) = Homy(J, 4, C) and Der(C/B) = Hom(J;5 C), our
requirement is obtained.

LEMMA 9. Let C be strongly radicial extension of a local ring
A. Let & be a C-module direct summand of Hom,(C, C) which is
finitely gewmerated free. Then there exist elements ¢, ¢, ++-, ¢, in C
and a C-module basis D, D, ---, D, for & with D(c;) = 0,; for
1,7=12 --- n.

Proof. In this case C is local by Theorem 4. Let m be the
maximal ideal in A and @ the maximal ideal in C. Put A= A/m
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and C = C/mC. Since 2(C/4) = Homz(C, C), C is a Der(C/A)-simple
ring. Let D,, D,, -+, D,, be a C-module basis for &. We show
first D, (C) & Q for all ?. Assume this is not the case. For the minimal
positive integer ¢ with Q° < mC, we have zD,, = 0 mod. mC where
« ranges over the elements of Q°'. Since D, is free mod. mC, we
obtain x emC, which is a contradiction. Suppose we have already
found ¢, ¢, -+, ¢, in C and a basis D,,, D,,, ---, D,, for a C-module
& with D, ,(¢c;) =6,; for 1<1=<m, 1<j=<Il. If | <r, there is an
element ¢;,, in C such that D, (¢c,,,) is a unit in C. Set D,,,,;,, =
Dy 141(€1:)) ' Dyyyy and Dy = Dy — Dy (€141)Dyyiyyn for ¢# 1+ 1
Then we have D, (¢;)=6,; for 1<41=<n 1=<j=<10+1 and the
D, s are a basis for &. Proceeding in this fashion, we find ¢, ¢,
«++,¢,and D, D, --- D, as desired.
Now we can prove Theorem 7.

Proof of Theorem 7. It follows from Lemma 8 that 7 is well-
defined. We have to show 0 is well-defined. For any & €4, put
B = Ker (£). In the case of any local ring A, we shall first observe
C is free over B. From the above lemma there are elements ¢, ¢,
«++, ¢, in C and a C-module basis D,, D,, -+, D, for & with D,(¢;) = 0,,;
(t,7=1,2, +--,7r). Then we have D,D; =0 for ¢, j, =1,2, .-, r.
In fact, we can write D,D; = %D, + --- + z,D, for x,€ C. Then we
have x, = ., #;D))(c,) = D:Di(¢,) =0 for k=12 ---,r and so
D.D; = 0. Since D(bx) = bD(x) + xD(b) + [D, z](b) for any De &,
any be B, any z¢C, any element of & is a B-homomorphism. Set
C.,= B+ B¢, + +++ + Be,. Then C, is B-free. We shall show C = C..
Assume this is not the case. Then there is an element % in C not
belonging to C,. Suppose inductively that we have already found an
element u, in C not belonging to C, with D,(u;) = 0 for all k = 1.
Then D, (u;) belongs to B. Set u,,, = w; — D, ,(u;)e;y;. Then u,y,
does not belong to C, and we have D,(u;.,) =0 for all k =1 + 1,
because D,D; = 0 for ¢, j = 1,2 --- r. Repeating this construction,
we can obtain an element %, in C with u,¢ C, and D,(u,) = 0 for
1=1,2 --- . Then u, belongs to B, which is absurd. Hence we
have C= C, and so C is a free B-module when A is local. In the
case of any general ring 4, &, is a C,-module direct summand of
Der(C,/A,) for each pe Spec (4). Moreover, we have B, = Ker (&,).
So, from the result above, C, is a free B,-module of rank equal to
rank, (&,) + 1. Since & is a finitely generated projective C-module,
the map of Spec(A) into the domain of rational integers by p+—
rank. (&,) + 1 is locally constant [2, Chap. II, § 5, No 2, Theorem 1].
On the other hand, by Theorem 4, we have Spec(C) = Spec (B) =
Spec (4) as the topological spaces and rank,(&,)+ 1 = rank,(&,) + 1
for any PeSpec(B), p = PN A. By [2, ibid], Cis projective over B
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and so 0 is well-defined. Hence we have Der(C,/B,) = Hom, (J,,/B,, C,)
for each peSpec(4). This shows Der(C,/B,) is generated by such a
C-module basis D, D,, ---, D, for &, as the above augument. So we
obtain &, = Der(C,/B,) for each pec Spec(4) and so & = Der(C/B).
This shows v-¢ is the identity map on 4. It is obvious that d-v is
the identity map on I". This completes the proof.
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