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AN APPLICATION OF STEINBERG'S CONSTRUCTION
OF TWISTED GROUPS

EIVIND STENSHOLT

The construction of the twisted groups uses automorphisms
of certain Chevalley groups derived from symmetries of the
Dynkin diagrams. This paper applies the same method to the
symmetries of the extended Dynkin diagrams. The groups
so constructed turn out to be other Chevalley groups exhibited
in a way which let a particular subgroup structure appear.

Introduction* Let Φ be an ^-dimensional indecomposable crystal-

lographic root system of one rootlength. Steinberg's construction of
the twisted Chevalley groups makes use of a nontrivial isometry of
Φ which permutes the roots of a given fundamental system. Such
isometries exist except for Φ = Aΰ E7; E8 and are defined by symmetries
of the Dynkin diagrams.

This paper applies the same method to another isometry of Φ
which permutes the roots of a set S = {rl9 -, rn, M) of n + 1 roots
where {rl9 , rn} is a fundamental system and S has the following
properties in common with a fundamental system:

(0.1) (M, rτ) ^ 0 , i ^ n

(0.2) The graph with the n + 1 roots of S as nodes, r and s being
connected if and only if (r, s) < 0, is a tree.

The condition (0.1) shows that -M is in the fundamental chamber
defined by {rl9 •••, rn}, and because all roots in Φ are conjugates, M
is uniquely determined as the lowest root. Therefore the graph is
the extended Dynkin diagram as defined by Bourbaki [2, p. 198]. The
cases that satisfy (0.2) are Φ = Dn; E7; E6. The extended diagrams
are:

(0.3)

The extended diagrams suggest the definition of an isometry η
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of Φ. The following five special cases will be treated: Φ — Dm+Z; D2m;
D2m+1; E7; E6 (m ^ 2) and η = λ; μ; v; φ; ψ respectively, where

λ: Vi > rt f or 2 <: i <; w — 2, rw_! < > rn, n > M

(n = ra + 2)

ίθ 4) Λ ^ n * r % " ' f ° r 1 ~ i ~ U ~ lf Tn > M

(n= 2m,2m+ 1)

9>: r x > r x , r 4 > r 4 , r 3 < > r 5 , r 2 < > r β , r 7 > M

ψ: r 4 > r4, n > r3 • r 5 > rίf r2 > r 6 > M .

Because the root Mis uniquely determined by {ru , r j , X(M) = r1,

μ(M) = rny v(M) = rΛ, ^(M) = r7, ^(ikί) = r2. Hence η is an isometry

of order

(0.5) I ΎJ I = 2; 2; 2; 2; 3 for 77 = λ; μ; v; φ; ψ respectively.

About certain automorphisms of Chevalley groups we state a few
facts that are easily checked:

Let Gt and G2 be Chevalley groups defined by the same indecom-
posable root system and the same finite field GF{q), Gx universal,
and let 7 be a homomorphism of G± onto G2 with kernel in Z(G^).
Further let at e Aut G1 and a2 e Aut G2 be either (a) field automor-
phisms or (b) products of field and graph automorphisms as used in
Steinberg's twisting construction, and such that OL2Ί = Ίat.

Let &i be the fixpointgroup of ai in Giy i = 1, 2. Then G2 is
generated by 7(Gi) and α2-invariant elements of the diagonal subgroup
in G2, 7(G0 0 G2 and the index [G2: 7(G0] is prime to q. The inclusion
may be proper.

If G2 is adjoint, 7(G0 is in case (b) a twisted group which is
simple with a few exceptions. If G2 is not adjoint, 7(G0 is in
general a central extension of the mentioned twisted group. We will
still call it a twisted group and denote it by the usual symbol, 2An(q2)
etc.

The content of the paper is as follows.
Section 1 describes the ^-orbits of the roots in Φ. Let Pr be

the orthogonal projection of the vectorspace spanned by Φ onto the
subspace of ^-invariant points. Pr'^O) contains a root system Φk e r.
It is shown that Pr(Φ) — {0} is a root system, and it will be denoted
by ΦPr. Subsystems Φ-Ub, i = 1, — ,N, that are conjugates under

ΐ), the reflection group defined by Φk e r, are defined such that

(0.6) η{Φfh) = ΦΓb , ΦTh Π Φ k e r = 0 , Pr(ΦTh) = ΦPr .

Let j*f(Φ) be the simple complex Lie algebra defined by Φ, and
let ^ ( Φ f b ) , ^ ( Φ k e r ) be the subalgebras supported by Φfb, l^i^N,
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and Φk e r. Similarly, let Φ(q) be a Chevalley group defined by Φ and
the field GF(q), and let Φluh(q), Φker(g) be subgroups. In §2 automor-
phisms of Jk?(Φ) and Φ(qm) corresponding to rj are defined. They
are shown to be of order as in (0.5) and will also be denoted by
η — λ; μ; v; φ\ ψ. The subalgebras and subgroups introduced above
are ^-invariant, and the group automorphism η is so defined that the
restrictions η \ Φluh(qlrA) are the usual twisting automorphisms, defining
subgroups of the types

m+1(q2)',
( 0 7 )

for Ύ] = λ; μ; v; <p; ψ respectively.

Then §§ 3 and 4 establish the following main result:

(0.8) THEOREM. The Φ(q]rA)-automorphism rj is conjugate in Aut Φ(qm)
to a field automorphism if rj Φ v and to the product of a graph- and
a field automorphism if rj — v.

Hence the fixpointgroup of rj is or contains (see the discussion
above) a group of one of the types

(0 9) D^y> AΛff); A.+ i(g); E7(q); Eβ(q)

for Ύ] = λ; μ; v; <p; ψ respectively.

As a consequence of (0.9) and (0.7) one obtains the embeddings

2Dm+1(g2) c Dm+2(q)

(0.10) 2A2m_x(g2) c D2m(q) , 2A2m(g2) c 2D2m+1(Q2)
2S6(α2) c E7(q) ,

In § 5 these embeddings are described somewhat closer. The
paper aims at a unified presentation of the arguments, with special
treatment of the individual cases η = λ; μ; v\ φ; ψ only when technical
reasons call for it.

1* The isometry of the root system* We first derive some
information about the isometry η of Φ defined in (0.4). This infor-
mation is given in the following table, using the notation of the
introduction.

η Φ dim Pr~\ϋ) Φ k c r Φfb ΦPr

~λ ~D^2 2 ~A\ Ίΰί, ~B^Γ
(1.1) μ D2m m AT A 2 m _, C w

A 2 m BCm

λ

μ
V

Ψ

Dm+2

Am
Am + 1
E7

E

2
m

m + 1
3
4

A\
Al
A:
Al

At
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This may be checked in each case by means of the standard
models of the root systems Φ = Dn; E7; EQ, but for convenience we
offer a reasonably unified argument.

Since M is a negative root, M — η(M) for η Φ f and M — 1/3.
(M + τ](M) + η\M)) for η = ψ is not in the subspace spanned by the
fundamental roots different from y](M), τf(M). Hence the multiplicity
of an eigenvalue different from 1 of Ύ] equals the number of ^-orbits
of length > 1 containing a fundamental root. Therefore dim Pr~ι{§) =•
2; m; m + 1; 3; 4 and dim V — m; m; m; 4; 2 where V is the space of
^-invariant points.

(1.2) Let ΦΓh be the ^-invariant subsystem of Φ of type Dm^ A2rιl^;
A2m; E6; D4 generated by fundamental roots. See (0.3). Then the
restriction η \ Φf° is the usual twisting isometry, and so Pτ{Φ\uh) is
a root system of type Bm; Cm; BCm; F4; G2 which clearly spans V.

Let Φfιh be another ^-invariant subsystem of Φ of the same type
as Φ?ub spanned by roots in the extended diagrams (0.3) if η = λ; μ; v,
by rl9 M + r2, r3, r4, r5, r6 + r7 it TJ = <p and by τλ + Jlί, r2 + r3, n, r5 + r6

ί f }y — Q/Γ.

Now P?^(Φl'ah} and Pr(Φfh) are root systems of the same type, each
of them spanning V. We will show that they coincide:

To any root r e Pr(ΦΓb) U Pr(ΦTh) the usual twisting procedure
assigns an element ιυre W(Φ), the reflection group defined by φ, such
that wr(V) = V and wr\ V is the reflection along r. Consider the
group generated by the elements wr,

Vίr - (wr; r e Pr(ΦTιh) U Pr(ΦΓh)) .

Since W c W(Φ), W and W \ V are finite. Since Wf \ V is a finite
reflection group, Pr(Φtnh) U Pr(Φfιh) generate a root system Φ' in V.

If Pr(Φ[nh) Φ Pr(Φfuh), there is a proper inclusion Pr(ΦΓh) c Φ'.
But the only inclusions between indecomposable root systems we have
to consider are Bm c BCm, Cm a BCm, B, c F4, C, c F*. The first two
possibilities are excluded by the fact that Pr(ΦΓh) and Pr(Φfύ) consist
of the same types of roots. The two last possibilities (η = λ; μ, m = 4)
may then be excluded by regarding η = λ; μ as a restriction to an
57-invariant D6; I?8-subsystem of Φ = Dm+2; D2m with m > 4. Hence
Pr(Φ[nh) = Pr(ΦVιh).

All fundamental roots of Φ are contained in Φtu]\ Φfb or Φ™0 -f Φiub.
Therefore Φ' - Pr(Φ) - {0}, and so ΦPr = Pr(Φΐιh), i = 1, 2. This
establishes (0.6) for i = 1, 2, and that Φ P r is of type 5 m ; Cm; BCm; i^4; (?2

in the cases ^ = λ; μ; v; φ; ψ respectively.
The classification of the systems Φ k e r = Φ Γ\ Pr-1(0) may now be

done by the following counting argument:
Φ!ub contains ^-orbits of lengths 2 and 3 of the same types as
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Φ[nh contains, that are not contained in Φtnh. This is obvious when
there is only one such type to consider, and for rj = v (M, r2m+1) and
(M + r2 + + rm, rm+1 + + r2m^ + r2m+1) are examples, with
reference to (0.3). Thus one, hence (by application of elements of
W) all short roots and halves of long roots in ΦPr are projections of
more than one 77-orbit of roots in Φ.

Φ contains 2m2 + 6m + 4; 8m2 - 4m; 8m2 + 4m; 126; 72 roots. ΦPr

contains 2m; 2m2 —2m; 2m2 —2m; 24; 6 short and 2m2 —2m; 2m; 2m; 24; 6
long or mixed roots. So far then, Pr~ι{ΦPr) accounts for 2m 4 +
(2m2 - 2m)Λ; (2m2 - 2m) 4 + 2m l; ( 2 m 2 - 2m) 4 + 2m 5; 24-4 + 24-1;
6-6 + 6-1 roots of Φ, and 4; 2m; 2m; 6; 30 remain to be placed.

But for Ύ] = ψ, all 30 roots cannot be in Pr - 1(0), since no root
system of dimension <£ 4 has 30 roots. So in this case 3 ^-orbits of
length 3 have the same projection. Now the remaining 4; 2m; 2m; 6; 12
roots are so few that none of them can be in Pr~\ΦPr). Hence they
form a root system Φ k θ r c Pr~\0).

W{Φ*QT) permutes the roots inside each Pr~\r), r e ΦFr. Since
Φ Π Pr~ι{ΦPr) generates Φ (it contains Φ*ub U $Γ b), TF(Φker) has a
faithful permutation representation on Φ Π Pr~ι(ΦPr). For

ηφψ, η\Pr-1(0)= - 1 ,

so η centralizes TF(Φker) and FF(Φker) permutes the 37-orbits inside each
Pr-'ir) Π Φ, r e ΦPr. Hence the elements of W(Φkeτ) have orders 1, 2
or (conceivably) 4 if η Φ ψ. For η = ψ we remark that the only one-
rootlength systems with 12 roots and dimension ^ 4 are A2 x A2 and
A3. But if Φ k e r = A3, the restriction of ψ to the subspace spanned
by Φ k e r must have an eigenvalue equal to 1. Hence Φ k e r = A2 x A2.
Consequently the only possibilities are Φ k e r = A2; AT; AT; A\; A\ in the
five cases rj ~ λ; μ, v; φ; ψ respectively.

This establishes (1.1).

(1.3) In the sequel, Ω will denote an arbitrary component of Φ k e r .
By (1.1) Ω is of type A1 if η Φ ψ and of type A2 if η = f.

The discussion above shows that any root in Φ belongs to one of
five classes: K, L, 4, 5, 9 defined as follows:

K: a root in Φ k e r .
L: an ^-invariant root, i.e., a long root in Φ P r .
4: a root in an 37-orbit of two orthogonal roots, i.e., belonging

to a set Pr~\r) Π Φ of 4 roots, r e ΦPr a short root,
5: a root in an ^-orbit of two roots making a 120°-angle, i.e.,

in a set Pr~ι({s, 2s}) Π Φ of 5 roots, s e Φ P r a half-root, η = v.
9: a root in an 57-orbit of three orthogonal roots, i.e., in a set

Pr~\r) Π Φ of 9 roots, r e ΦPr a short root, η = ^ .
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Let η Φ ψ and let r, s e ΦPr, r a short root, s a half-root. Then
Pr~\{rf —r})ΠΦ and Pr^iφs, s, —s, —2s}) Π Φ generate root systems
X and Y of dimensions ^ 3 with ^ 8 and ^ 10 roots respectively.
Hence Y is an A3-system. X must be an A2 x Ar or an A3-system,
but the first is impossible, since the 8 roots would have to form 4
^-orbits of orthogonal roots. X contains four if-roots and Y contains
two. It is useful to show η \ X and η \ Y in two figures. Only a
positive subsystem is shown.

K

We now introduce a new ordering of the roots in Φ, with the
property that if Pr(r) = Pr(s) ^ 0, r, seΦ and r is positive in the
new ordering, then also s is positive. This is done by selecting
positive systems ΦPr+ in ΦPr and φ k e r + in φ k e r (i.e., in each component
Ω of Φker), and defining

Φ+ spans a convex cone containing one half of Φ, hence Φ+ is a
positive system in Φ, different from the one defining the original
fundamental roots in (0.3).

The fundamental roots in Φ+ span the extremelines of the cone.
Therefore the numbers of fundamental roots of types K, L, 4, 5, 9
may be read off from (1.1). They are listed in Table (1.7):

V K

X

μ
V

ψ
ψ

2
•m
m
3
4

m — 1
1
0
2
1

1
m —
m —

4
0

1
1

0
0
2
0
0

0
0
0
0
1

(1.7)

From (1.5) we see that in the Dynkin diagram with the funda-
mental roots of Φ+ as nodes, a 4-root or a 5-root always occur in a

subdiagram K
o-

K
-o

K
The if-roots

and any L-root form a subdiagram of type Φk e r x A^



AN APPLICATION OF STEINBERG'S CONSTRUCTION 601

These remarks together with (1.7) suffice to determine the new
Dynkin diagrams by simple conbinatorial arguments. They are:

(1.8)

Now we make the following observations:
(1.9) If 7] Φ ψ, a reflection along a ϋΓ-root in (1.5) interchanges the
two ^-orbits with the same projection.
(1.10) If η= ψ, (1.8) shows that the 18 roots in Pr^r, -r}) Π Φ,
r e ΦPr a short root, generate an ^-invariant A5-system

K K 9 K K
o o o o- o

ψ rotates the two ^-components of Φk e r 120 degrees. The centralizer
of ψ in TF(Φker) is isomorphic to Zz x ZZ1 and it is easily checked that
a subgroup permutes the three ^-orbits in Pr~\r) (Ί Φ cyclically.

Any subsystem Φfb c Φ which satisfies (0.6) is specified by the
selection of one ^-orbit inside each Pr'^r) Π Φ where r e ΦPr+ is a
fundamental short root or half-root. The distribution of if-roots in
(1.8) together with (1.9) and (1.10) now show that there are exactly
N such subsystems, with

(1.11) N = 2; 2m~1; 2m; 4; 3 for η = λ; μ; v; <p; ψ respectively.

In the sequel ^-invariant subsystems of the types shown in (1.5)
and described in (1.10) play an important role. We therefore introduce
the following notation:
(1.12) The ^invariant A^-system with four K-roots and eight 4-roots,
7] Φ ψ, will be called a KAK-system. The η-invariant A^system with
two K-roots, two L-roots, and eight 5-roots, Ύ] = v, will be called a
5K5-system. The ^-invariant Aδsystem o/(1.10) with twelve K-roots
and eighteen 9-roots, rj = ψ, will be called a KK9KK-system.

Clearly there are one-to-one correspondences between if41£-systems
and pairs {r, — r}, r short, η Φ ψ, between 5JΓ5-systems and pairs
[s, — s}f s SL half-root, η = v, between KK9KK-sγstems and pairs
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{r, -r}, r short, η = ψ. See (1.5) and (1.10).

2* The Lie algebras and the Chevalley groups* In the complex
simple Lie algebra £?{Φ) defined by the root system Φ, let

(2.1) {Xr; reΦ}{J {Hr.; r, fundamental in Φ)

be a Chevalley basis, ru r2, being the original fundamental roots
of (0.3).

From the theory of Lie algebras we recall a few facts:
(2.2) The selection of a Cartan algebra in £f(Φ) determines the
rootspaces, and inside these the selection of

{Xri) rt fundamental in Φ)

is arbitrary and determines the Chevalley basis (2.1) except for signs.
For every r eΦ, Xr determines X_r through the equation

[[Xr, X_r], Xr] = 2Xr .

We introduce some subalgebras of J*f(Φ):

h) = (Xr; r e Φfb>, 1 ^ i ^ N

**) = (Xr; r e Φker>

(2.3) £f{Ω), £f{KΔK), <2?(5K5), ^f(KK9KK) denote four types of

subalgebras generated by the Xr-elements with r in an Ω-f

K4K-, 5iΓ5- or KK9KK-$ystem. See (1.3) and (1.12).

(2.4) LEMMA. For any i, 1 ^ i ^ N, <J^(ΦΓb), ^f(Φkeτ)} =

Proof. Observe that for any i,l^iS*N, and any given KiK-,
5K5- or iΠ£9J<LiΓ-system and with Φ+ as in (1.6),

φ+ η ŝub p| jζj^ consists of one ̂ -orbit of two orthogonal roots,

φ+ p| φsub η 5^5 consists of three roots, r, 7}(r), r + η(r),

φ+ p| φsub p| j£jζ§j£jζ consists of one ^-orbit of three orthogonal
roots.

This follows from (0.6) and the Definition (1.12). Taking Lie-products
inside each &>{KAK\ £f(5K5), and £f(KK9KK) one obtains ±Xr for
all r ί Φker U Φ|u b.

(2.5) DEFINITION. Let ^(=λ; μ; v; φ; ψ) denote an .S^(Φ)-automorphism
such that
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where rl9 r2, are the original fundamental roots from (0.3).

This defines an ^(ΦJ-automorphism by the isomorphism theorem
for Lie algebras, but because of the facts (2.2) it is necessary to make
the following remark:
(2.6) The Definition (2.5) is ambiguous, given the elements Xri, Xr2,
• , pending the choice between two possibilities for XM in the
Chevalley basis, M being as in (0.3).

(2.7) LEMMA. All the subalgebras of (2.3) are rj-invariant.

Proof. This follows from (2.5) and the fact that all the root
subsystems ΦΓb(l £i£N), Φk e r, £ c Φ k e r , K4K, 5K5, KK9KK of Φ are
^-invariant (for the isometry rj).

(2.8) LEMMA, η is expressed by an integral matrix with respect to
the Chevalley basis (2.1).

Proof. The ^-images of the Chevallay basis elements different
from Hy_1{M) of (2.1) are clearly in the Z-span of that basis. But also
7](Hv-i{M)) = η[Xη-ι{Mh X-*-i(Jf,] = [XM, X-M] belongs to this Z-span, by
a fundamental property of a Chevalley basis.

Clearly, for every reΦ either η(Xr) or —η{Xr) belongs to the
Chevalley basis. Hence the =S:?(Φ)-automorphism η has order | η \ =
2; 2; 2; 2; 3 if and only if η{XM) = XV{M). The lemmas (2.10)-(2.13)
show that this is actually so, and also settles the question of how
the choice of XM affects the ^(Φ)-automorphism r/. See (2.6).

(2.9) Two =Sf (Φ)-automorphisms cc and β will be called equivalent if
there exists an ^(Φ)-automorphism 7 such that

7(Xr) = ±Xr for all reΦ and a = T /S T"1 .

(2.10) LEMMA. In case r] = ψ, the two choices of XM give two equi-
valent £?(E^-automorphisms.

Proof. Call the two ^(i?6)-automorphisms ψx and ψit so that

UXr) = -f*(Xr) See (0.4) .

Define 7 by

l(Xr) =-Xu, 7(Xr.) = Xr. for %Φ 4 .

The highest root in Ee with respect to the ordering of (0.3) is
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— ikΓ= Σ h-rt = 2r, + r2 + 2r3 + 3r4 + 2rδ + r6 ,

so, in particular, k4 is odd. Expressing X_M as a repeated Lie-product
of the Xr{-elements we see that

7(X_M) = ~X_M, hence by (2.2) Ί{XM) = -XM .

It is now easily checked that Ί-ψ^Ί'1 = ̂ 2 .
Because of (2.10) it is not necessary to distinguish between the

two cases, and ψ will mean any of the two i^(2?6)-automorphisms
of (2.5).

(2.11) LEMMA, ψ3 = 1 as an £?(E^-automorphism.

Proof. As remarked above it suffices to show that ψ(XM) = Xr2

Suppose contrariwise f(XM) = —Xr2 Then fz(Xri) = Xu f<>r i = 1,
3, 5, 4 and ^3(X r.) = - X r . for i = 2, 6 and ^3(X^) = -X M . Express
X.^ as in the preceding proof. Since k2 + k% is even,

f \X_M) = 1(XLM) = X_^ , hence by (2.2) ψ\XM) = XM ,

which is a contradiction. Consequently ψz = 1.

(2.12) LEMMA. jPor 57 9̂  ̂ , ^2 = 1 as a^ &\Φ)-automorphism, for
both choices of XM.

Proof. Let Φ*ub be as in (1.2). Clearly rf \ £f(Φ*ul>) = 1, and so
by (2.4) it suffices to prove that rf \ j ^ ( 0 k e r ) = 1.

For a given ϋΓ-root r e Φ , there exist α, δ = ± 1 such that
)?(Xr) = αX_r and ^(X_r) = δ-X̂ r The equation in (2.2) becomes
[[αJ_ r, bXr]f aX-r] = 2αX_r, which shows that ab — 1, a = 6 and con-
sequently ?f(Xr) - X r .

(2.13) LEMMA. For r) Φ ψ, the two choices of XM give two inequi-
valent Sf(Φ)-automorphisms ψ and ψ (see (2.9)) where

η+{Xr) = X-r and ψ{Xr) - -X-r for all K-roots reΦ .

Proof. Let Φfuh be as in (1.2). Since η \ £f(Φluh) is independent
of the choice of XM9 the two choices must give different restrictions
η I j ^ ( Φ k e r ) because of (2.4).

Let r, s, t be fundamental roots of a i£4i£-systein, r and t being
iΓ-roots and s a 4-root. See (1.4), (1.5), (1.12). In the standard model
for £f(K4:K) of 4 x 4-matrices, let Eίi9 E2d, Eu represent Xr, Xs, Xt

respectively. Identifying SfiKkK) with this matrix algebra we have
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rj\ E12, EUj E1Z, Ezlf Eu, E4l > aE2lf bE^y cEUj cEi2, dE23, dES2

for certain α, b, c, d == ± 1 . By (2.12), rf — 1 and so

cEu = rj{Elz) = )?([#12, #23]) = [α#21, d#M] = adE2i

= 7]{[EU, E42\) =

Hence cd = abed, ab = 1, α = δ and so ^(Xr) = αX_r,
Applying this result to all iΓ4iΓ-subsystems defined by the Dynkin
diagrams of (1.8), we find that η(Xr) = αX_r for all ίΓ-roots reΦ
with a = ± 1 independent of r.

The next result shows that the restrictions 37 | =S^(ΦΓb), 1 ^i ^ N,
are related to each other in a sense similar to (2.9):

(2.14) LEMMA. For every pair (i, j) such that 1 ^ i < j ^ Nf there
is an isometry βiά of Φ which maps Φlnh onto Φ̂  u b and a corresponding
isomorphism (also denoted βi3) of ^f(ΦΓh) onto ^(Φf*), i.e., βij(Xr) =
±Xβ..{r) for every reΦ^uh

f with the additional property:

β<rV I ̂ f b ) ' ^ - V I ̂ (ΦT)

Proof. The subsystems ΦΓb, 1 ^ i ^ N are conjugates under
TΓ(Φker) (see the remarks in connection with (1.11)). Let ye W(Φ*eΐ)
be such that τ(ΦΓb) = Φf \ Let 7 also denote a corresponding ^ ( Φ ) -
automorphism, such that Ί{Xr) = ± X r ( r ) for all r e Φ . Then

(2.15) Ί-rj ] ̂ ( Φ ^ J - T - 1 = 17 ] £f(Φfh)-β

where /9 is an ^(Φ5u b)-automorphism such that β(Xr) = ±Xγ for
reΦfh, since 7^7- 1 = rj as isometries.

Now, if )?(r) = r, i.e., if r is an L-root, then r e Φ f b Π Φfb and
7(r) = r. Hence by (2.15) η{Xr) = Ί η>Ί~ι(Xr) = 7]-β{Xr) which implies

(2.16) β(Xr) = Xr if r is an L-root.

All mappings a:Xr—> ±Xr where r belongs to the fundamental
system in Φ+ Π ΦJub extend to ^(Φf b)-automorphisms. Hence for a
suitable ^(Φ5u b)-automorphism a, because of (2.16),

a (η I .^((p;.^)-/?)-^-1 = η

Now βij = ay meets the requirement of (2.14).
(2.17) Let GF(q) be the finite field with q elements, and let θ be the
automorphism t-+tq of GF(q{ϊ]l) over GF(q).
(2.18) Let Sf(Φ, q) be the Lie algebra £?(Φ)Z (x) GF(q) over the field
GF(q), £f(Φ)z being the Z-span of the Chevalley basis (2.1). Xr (x) 1
is for short denoted Xr, reΦ. Let Φ(q) be the Chevalley group with
generators
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xr(t) = exp (t ρ{Xr)) , t e GF{q) , reΦ ,

/9 being a representation of <Sf(Φ, q)-

We introduce some subgroups of Φ(q). <%fτ is the rootgroup
defined by reΦ, and:

ΦΓh(q) = <JT r; r e Φfb>, 1 ^ i ^ JNΓ

φ k e %) = < ^ ; r e Φ k e r > .

), K4K(q), 5K5(q), KK9KK(q) denote four types of subgroups
( s-j JL »/)

generated by the rootgroups ^ with r in an £?-, iΓ4if-, 5iΏ>~
or Z-iΓ9iΓiΓ-system. See (1.3) and (1.12).

?/r = < ^ ; s e Pr-χ(r) Π Φ>, r e ΦPr.

The structure of ^ r depends on r as follows:

r a long root: r = s, %fr — <%?*, s an L-root in Φ.

r a short root: ^ r is a direct product of | η |2 rootgroups

defined by 177 |2-roots s e Pr~ι{r) Π Φ.

r a half-root: Here η ~ v and J^r is a nondirect product of

4 rootgroups ^ s defined by 5-roots s e Pr~ι{r) Π Φ and

2r G Φ Π Φ P r being an L-root.

(2.21) LEMMA. The subgroup {Ψrj ^ _ r > , r e ΦPr, is of the type A^q);
K4K(q); 5K5(q); KK9KK(q) for r long; r short and η Φ ψ; r a half-
root and Ύ) — V) r short and ΎJ — ψ respectively.

Proof. With Chevalley's commutator formulas one easily obtains
a set of generators for these groups.

Because of (2.8) η may be regarded as an βSf (Φ, g)-automorphism
and we proceed to define a corresponding Φ(g!^)-automorphism:

(2.22) DEFINITION, η will also denote the Φ(<?l3?l)-automorphism given

by

V: Xr(t) > exp {θ{t).p{r]{Xr))) = exp (P-p(±Xη{r))) = xvU±V)

The special cases are denoted η — λ; μ; v, <p; ψ, occasionally subdi-
vided into τ]+; ψ = λ+; λ~; μ+; μ~; v+; v~; φ+; φ~. See (2.13).

(2.23) LEMMA. All the subgroups of (2.19) are η-invariant.

Proof. This is so because the sets of roots which support these
groups are 77-invariant.
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(2.24) LEMMA. The Φ(q^)-automorphism η has order \ η \ = 2; 2; 2; 2; 3
in the cases rj — λ; μ; v; φ; ψ respectively, independently of whether
7] = ψ Or Ύ] = Ύ]~.

Proof. By (2.5) the sign ± in (2.22) is a + if r or - r is one
of the original fundamental roots rlf r2, in (0.3). Also

VMt)) = exp (θ(t) p(η(Xx))) = exp (£* ^(X W ) )) - α?9(Jf)(ίff)

because of (2.11) and (2.12). Similarly η(x-M{t)) = X-vm(tq) . This
implies (2.24).

(2.25) LEMMA. In ΦΓh(qlr]l) there is a subgroup, denoted ^ιΦluh(q^ι)f

of ψinvariant elements which is isomorphic to the groups in (0.7)
for 7] — λ; μ; v, φ; ψ respectively, independently of i, 1 ̂  i ^ N, and
of whether η = η+ or η = η~.

Proof. Because of (2.14), the fixpointgroups of the N restrictions
η I φ|ub(g!3?l), 1 <; i ^ N, are all isomorphic. Hence it suffices to con-
sider η I ΦΓb(g|5?1), Φluh being as in (1.2). But this restriction is just the
automorphism which is the basis for Steinberg's twisting procedure.

3. The restriction η \ Ω(q]7ίl), Ω c Φk e r* Let M{n, q) be the algebra
of n x ^-matrices over GF(q). Let

B+ c AΓ(2, g2) i2" c M(2, g2) S c

respectively consist of the matrices

(3.1)
\u v I \u

where u,ve GF(q2), x, y, ze GF(q*) and a, b, c = ± 1 are constants such
that abc — 1.

(3.2) LEMMA. There exist similarity transformations a+; a~; β of
M(2, q2); M{2, q2); M(3, g3) respectively such that

a+(M(2, q)) = R+ a~(M(2, q)) = R~ /9(M(3, q)) = S .

Proof. Let K - GF(q2); GF(q2); GF(q3) and let U be the Z-vector-
space GF(q2)2; GF(q2)2; GF(q*)3 in the three respective cases. Let V be
the GF(g)-subspace of U consisting of the vectors

(vq, v) (Zvq, v) (cwq?, bwq, w)
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where v e GF{q2), w e GF(q*\ 6, c are as in (3.1) and Ze GF(q2) - GF(q)
is such that Zq = —Z~\ This means that

Z= ft(ί+i/2)(?-D for q odd and Z= kt[q-l) for q even,

t being an integer and (k) = GF(q2) — {0}.
The j&Γ-span of Fis [/since the vander Monde determinant \kί'qJ\Φθ,

i, j = 0,1; 0,1; 0, 1, 2, in the three cases and (k) = K - {0}.
Clearly B+; R~; S have the same number of elements as M(2, q);

M(2, q); M{3, q) and it is easily checked that R+; R~; S act GF(q)-
linearly on V by right multiplication.

Now replace the standard if-basis of [/with a Gi^-bas i s of F.
This basis-change defines a+; a~; β.

Since ΦkΘr(gί?:!) is a direct product of groups Ω(qlr'1) (see (1.3)) and
since each Ω{q]rΛ) is ^-invariant (see (2.23)), the study of v \ Φ^er(qlrjl)
reduces to the study of rj \ Ω(qlηl). Two cases must be distinguished:
7] Φ ψ with Ω of type Ax and η = ψ with Ω of type A2.

(3.3) η Φ ψ, Ω = {r, - r } , r a K-τoot in Φ.
Let 7: SL(2, q2) —> Ω(q2) be a homomorphism such that

i

o
Then, by (2.22)

j-^ 7 U i
with α, h = ± 1 , i.e., in general

7 U v) \\b θ)[uq vqf[h 0//

Hence we get a set of fixpoints of η \ Ω(q2) (all the fixpoints if 7 is
an isomorphism):

(vq ahuq\
7 , u,ve GF(q2) .

\U V )

By (3.2) there exists an ae Aut SL(2, q2) such that

(3.4) ΊaSL{2y q) is contained in the fixpointgroup of rj \ Ω(q2) .

Note that ab = 1 for η = ψ and ab = — 1 for 77 = 37".

(3.5) 77 = α/ry Ω = {r, α/r(r), r + ψ(r), -r, -ψ(r), ~r - f (r)}, r a
in Φ.
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Let 7: SL(3, qz) —> Ω(qs) be a homomorphism such that

/I 0 0\ lit 0V /I 0 t\

71 0 1 ί J = xr(t) , 710 1 01 = xψUt) > 71 0 1 0 I = xr++w)(t)

\0 0 1/ \0 0 1/ \θ 0 1/

/I 0 0\ /I 0 0\ /I 0 0\

7| 0 1 01 = s_r(ί) , 7U 1 01 = x-irir)(t) , 710 1 0 I = X-r-inΛt) .

\0 ί 1/ \0 0 1/ \ί 0 1/

Then, by (2.22)

and similarly for the transposed matrices, with a, b, c = ± 1 , i.e., in
general

/ 9 h\ liO a 0\/fg Qq

v w j = 7(1 0 0 b I ug vq

x y z I \\c 0 0/ \x9 yq zq

= 7 abyq zq

\acgq bchq

Hence we get a set of fixpoints of ψ \ Ω(q3) (all the ίixpoints if 7 is an
isomorphism):

/ zq2 aexq2 beyq2 \

(3.6) 7[ abyq zq bcxg 1 , x,y,ze GF(q3) .

\ x y z j

By (3.2) there exists a β e Aut SL(3, g3) such that

(3.7) 7/SSL(3, q) is contained in the fixpointgroup of ψ \ Ω((f).

(3.8) Clearly, the restrictions of η Φ ψ to subgroups of types K£K(q2),
5K5(q2) and of ψ to subgroups of type KK9KK(q*) can be treated the
same way by means of homomorphisms

SL(4, g2)

SL(6, q*) > KK9KK(q") .

The matrices are conveniently subdivided into 2 x 2-blocks or 3 x 3-
blocks. Thus the fixpointgroup of η \ KiK(q2) contains the image
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of the matrices (equals in the case of isomorphism):

gq abfq btq ahq

f g h t

bvq

u

auq yq abxq

V

with determinant 1,
/, g, h, t, u, v,x,ye GF(q2) .

Similarly 6 x 6-matrices with blocks like (3.6) give ίixpoints of
ψ I KKdKK(q*).

(3.9) LEMMA. Let reΦPr be a short root. Then the fixpoίntgroup

of has order q[γjγjl\

Proof. There are | rj | 97-orbits of roots in Pr~\r) Π Φ. With one

such orbit we associate as in the usual twisting procedure qlv] fixpoints

xr{t)xv{r){±tq) if V Φ Ϋ and xr{t)xηw)(±tq)^U±tq2) if V - Ψ-

For later reference we need a result which is derived by means
of a matrix model for the 5if5(g2)-groups. We consider the following
situation:

(3.10) η = v, reΦPr a half-root, (β/r, ^_ r > a 5ϋΓ5(g2)-group.
Let 7: SL(4t, q2) ~+ <^ r , ^_ r > be a homomorphism such that

7(1 + Eiάt) = xs(t) where

s is a ϋΓ-root in Φ+ if (i, j) = (2, 3) ,

an L-root in Φ+ if (ΐ, j) = (1, 4) ,

a 5-root in Φ + if (i f i ) - (1, 2), (1, 3), (2, 4), (3, 4) .

Then

7(7-

7(7-

7(7-

7(7-

This determines η

for AeSL(4,q2),

I ΊP -A v f^/ί T I ΊP svf-Q\
Γ •t^iΦ) /^i -j- JUJ^QΛ/ )

f- ί?Mt) - ^ 7(7 + /ί136ί5)

t- JS721ί) -^— 7(7 + Ei2at")

in the 5iΓ5(g2)-group.

, α, b = ± 1 .

One may easily verify that

where

0 -a 0 0

0 0 - 6 0

1 0 0 0/
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6(A) is obtained by applying the field automorphism of (2.17) on each
entry of A, and T denotes transposing. Hence we have:

(3.11) The fixpointgroup of η | <^ r , g^_r> contains a homomorphic
image of SU(4, g2).

Here ah = 1 for v = v~ and ab = — 1 for v = v+ .

(3.12) LEMMA. Lei r e ΦPr be a half-root, η = v. ΓAβw £Ae fixpoint-
group of rj\^/r has order g5.

Proof. Clearly rj\^/r is a one-to-one mapping. It then suffices
and is easy to verify that the fixpoints of η \ Ψr are the elements

with x, y, ze GF(q2) and

/1 x byq z \

0 1 0 axq

0 0 1 7 /

\0 0 0 1 /

4* The proof of Theorem (0.8).

(4.1) LEMMA. Let σ:t—>x-tq be an additive automorphism of GF(qn)f

x Φ 0 and let <fc> = GF(qn) — {0}. Then σ has fixpoints different from
0 if and only if xe(kq~1}. The set of fixpoints is then to GF(q),
t0 Φ 0 being an arbitrary fixpoint.

Proof. Let x = ka, t = kh. Then t = σ(t) is equivalent to the
congruence (g — 1)6 + a == 0 (mod (g% - 1)), which implies a = (g - l)c
for some c and H C Ξ O (mod(g% ~ l)/(g — 1)). Hence

•I- 7/.—c + d(Qn — 1 ) / ( ? — 1) y-7 A 1 n O

where ^^"-^/(^i)) = GF(g) - {0}.

(4.2) LEMMA. Let Ί be a homomorphism of SL(m, qn) onto a group
H, and let ^3{qa) = Ί{I + Eiάt\ t e GF{qa)}, iφ j and a = 1 or a = w.
Suppose a e Aut £Γ Aαs £Ae property a^j(q) = <^ζj(q) for all {iy j).
Then also <xj??ίά{qn) = ^.(g^) /or all (ΐ, i ) .

Proo/. Let JK"̂  - {(α, b); a Φ b and [^-(g71), ^ & ( g ) ] = 1}. Then
it is easily verified that ^lj{qn) is the only p-Sylowgroup (p = char
GF(q)) in the centralizer of <<^6(g); (α, 6) e iΓ^ >. This proves the
lemma.

In (4.3)-(4.5) we list some facts about automorphisms of Chevalley
groups over the field GF(q).
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(4.3) A Chevalley group acts by conjugation transitively on the set
of ordered pairs of disjoint p-Sylow groups, p = char GF(q).

(4.4) An automorphism which normalizes U and V (the products of
the rootgroups Jόfr for r > 0, resp. r < 0) permutes the rootgroups and
can be expressed by diagonal, field and graph automorphisms.

(4.5) Any set {dr e GF(q); dr Φ 0 and r is a fundamental root} deter-
mines a diagonal automorphism d where

d: xr(t) > xr(drt) , x_r{t) > x_r(d7ιt) .

See Steinberg [4, p. 158].

(4.6) LEMMA. Φk e r(g^) normalizes Ψr for all reΦPr.

Proof. This is an immediate consequence of Chevalley's commu-
tator formulas (one-rootlength case) since s e Φk e r and t e Pr~ι(r) Π Φ
implies t + s e Pr~\r).

Proof of (0.8). Consider first a component Ω of Φkeτ. By (3.4)
and (3.7) there exists a homomorphism

such that ΎΩSL(\η\, q) is contained in the fixpointgroup of η \ Ω(qlvl).
An application of (4.3) and (4.4) to each component Ω of ΦkθΓ

shows that there exists an inner automorphism ω: x—>gxg~ι of Φ(qlvl)
defined by an element g e Φkeτ(qlηl) such that

o)7Ω{I + Eiόt; t e GF(q™)}

is a rootgroup in Φker(g^ !) for all rootgroups {1+ Eίόt) of SL(\η\, q]vι)
Then, for t e GF(q)f

(4.7) ωηω-^ωiail + Edt) = ωΎΩ(I + EiSt)

and so, because of Lemma (4.2)

ωrjω-^ωΎΩ{I + Ei5t\ t e GF(q™)} = ωΊΩ{I + Eidt; t e

i.e.,

(4.8) ωrjω-γ^fr = £fr f o r a l l i f - r o o t s reΦ .

By (4.6) and (2.23)

(4.9) ωηω~ι^/r = %/r for all reΦPr .

In particular, when r is a long root, this by (2.20) becomes
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(4.10) ωηβr1^ = gfr for all L-roots r e Φ .

From (4.8) and (4.9) it follows that ωηω~ι normalizes the subgroups
U and V where

U= Π JZΪ- Π

V= Π ^ Π
f P

Hence, by (4.4), ωηω~ι either normalizes all rootgroups ^ , r e Φ ,
or permutes them according to a graph automorphism. By (1.1) the
ϋΓ-roots and L-roots span the space of Φ if and only if η Φ v. Thus
we have, by (4.8) and (4.10),

(4.12) ωηω-1^ = gfr for all r e Φ if rj Φ v .

(4.13) ωηω-1^ = Jgfjα(r) for all r e Φ if )? = v, a = 0 or a = 1

where α is the graph automorphism of Φ = A»+i> α to be determined
later. By (4.7) it is clear that a field automorphism is needed to
express ωηoΓ1 as in (4.4). Hence by (4.12) and (4.13)

(4.14) ωηω~ιxr{t) = xs(br tq) for all reΦ

with δ r 6 GF(qW), s = r ίor η Φ v, s = aa{r) Ίi η = v.
Now design a diagonal automorphism ώ of Φ(qlη{) such that
( i ) If reΦ+ is fundamental and ωηω'1^ = ^ , then {d(α?r(ί));

teGF(q)} are the o^αrMnvariant elements in ^ . This is possible
by (4.1) and (4.5).

(ii) If reΦ+ is fundamental and ωηω'1^ = Jίfs Φ J?fr, then
ώ(xs(ίg)) = ωηω~ιd(xr{t)). s is fundamental in Φ+ because the rootgroups
are permuted according to a graph automorphism, so this may be
achieved by adjusting ds in (4.5).

Now it is easily verified that (4.14) is changed into

(4.15) d^ωηω-^dixrίt)) = x s ( t q ) , f o r r o r - r f u n d a m e n t a l .

It remains to determine whether a = 0 or a = 1 in (4.13). If
a = 0 however, the fixpointgroup of v, hence of ωvω~\ in an arbitrary
5i£5(<f)-group would contain an image of SL(4, q), contradicting (3.11).
Hence a — 1. This proves (0.8).

We remark that similar twists may be performed on the Chevalley
groups F4(q2) and FJjf). The long roots in F4 form a Z^-system
supporting a subgroup of type D£q2) or D4(qz). Defining rj as the
isometry used for one of the twists of D4, the short roots of F4 form
)7-orbits of roots making 60°-angles and a kernel system of type Aγ

or A2. One may check that corresponding ^(jy-automorphisms of
order 2 and 3 exist and proceed as above. The group automorphism
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η is conjugate in Aut F4(qlvl) to a field automorphism, and so one
obtains embeddings 2A(g2) c F,(q) and 3Afo3) c F4(g).

5* A property of the embeddings (0.10)* Let G be the subgroup
of the fixpointgroup of η in Φ(qlvl), of the type (0.9). G contains the
groups w<P!ub(qrW) given in (0.7), because of (2.25).

G may be described in two ways:

First description. We first remark that
(5.1) the Φ(#l3? ̂ -automorphism ω~ιd of (4.15) normalizes %/r for all
r e ΦPr.

This follows from (4.6) and the definitions of ω and d.

We now introduce new rootgroups <%fr of Φ(qlvl) with elements

xr(t),teGF(qW) by defining

(5.2) M = ω-'d^. , αr(i) = ω-'dixrit)) .

Then, by (4.15)

(5.3) ηxr(t) = x8(f) for r or -r fundamental in Φ+,

s = r iί η Φ v and s = α(r) if η — v, a being the graph symmetry of

Φ = A w + i
This yields a description of G as a group with a JSiV-pair with

root system Φ n e w where

φ n β W = ^ ^ ; D*~ ; ^ 2 W ; E τ ; E°
( ' } G^ Dm+2(Q) DJLq) 2 A. + 1 (g 2 )

in the cases >? = λ; ^ y; <£>; o/r respectively.
Thus only the third Dynkin diagram of (1.5) must be changed

when we move our attention from Φ(qlvl) to G. We repeat the other
four diagrams however, indicating by A, B, C some fundamental roots
for later reference:

L L

A B = C

K 4 K 4 4 K

~Λ^B ° C~ " ' S
K 4 K 4 4 K 4 K

~A^B ° C~

(5.5) L L 4 K 4

^ ϋΓ 9 iΓ iΓ
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The rootgroups of G will be called ^ n θ W , r e Φ n e w, with elements

x*ew(t). If η Φ v or η == v and r is a long root in Φ n e w (i.e., r e Φ Π Φn e w),

then ^ n e w = J ^ Π G and a£βw(ί) - 2r(ί), ί e GF(g). If ^ = v and r is

a short root in Φn e w, then Jg^new = Jg^ <Jξ(s) Π G with s e Φ , r = l/2(s +

α(s» and x™(t) = xs{t)-xa{s){tq),teGF{q2). See (5.3) and (5.4).

Second description. G is described in terms of
( i ) the subgroups Ω(q]vl) Π G, Ω being a component of Φ k e r .

These groups are homomorphic images of SL(\η |, q). See (3.4), (3.7).
(ii) the rootgroups of the twisted subgroups lvlΦΓb(qlηl), i.e., the

groups

j??rT = ^ n Φ?ub0?|3?l) n e , reΦPr, l^ί^N

with elements a;^?(ί) or ojj^ίί, ^ ) . The parametrization is as follows.

r a long root: r e ΦPr Π Φ, a?"?(*) = a?r(ί), ί = *β if V ^ y a n ( i * =
-tq if 57 = v. (See the proof of (3.12).)

r a short root, η Φ ψ: xT,ϊ(t) = »,(*)• ^ ( >(±*ff) w i t h s , ^(s) e φ™h n

r a half-root, 57 = v: αĵ ?(ί, w) = ^s(ί) ^vU)(±ίg) ^s+v(^)(^) w i t h ^ +
^ = ± ί ί g . (See the proof of (3.12).)

r a short root, η = ψ*: ^ ( ί ) = a:β(ί) cc^(β)(±ίff) a?^2(4r)(±ίff2) with

*, f («), Ψ2(«) e Φluh Π P r - ^ r ) .
If r is a long root in Φ P r , the groups £f*£* coincide for i = 1,

• , JV. If not, there are | 7̂ | different groups for i = 1, , N.
Between the elements of gfr*£> and g?,*£°, r, se ΦPr, there are

commutator relations as described in Steinberg [4, p. 181]. In the
case rj = ψ there is another nontrivial commutator relation of the
type [<grr*ϊh, <^,?b] S <̂ ?+usbk where r, s, r + s are short roots in
ΦPr = G2 and i Φ j Φ k Φ i.

(5.6) LEMMA. Le£ Ω be a component of Φ k e r . Γ/tβ elements in
Ω(q{vl) D (? which for every r e ΦPr permute the rootgroups <^.*ϊh

9 i = 1,
• ••, iV are, witfe notation from (3.3) araZ (3.5):

if 7)= f .

Proof. This is checked by means of matrix models of the K4K(q2)-
groups and KK9KK(q*)-growps as indicated in (3.8) or the model of
the 5iΓ5(g2)-groups in (3.10). Note that these elements are ^-invariant



616 EIVIND STENSHOLT

elements of the monomial group of Φ(q{7]l).

(5.7) Let Ufuh, l^i^N, be the p-Sylowgroup (p = char GF{q)) of
the twisted group lϊίlΦTh(qlηl) defined by UΓh = U Π ΦTh(qlηl) Γ) G with
U as in (4.11), i.e.,

(5.8) Let UPr+

r e φ P r +

Expressing g^r Π G in each of the two descriptions of G we get
because of (5.1)

(5.9) υprΛ = π <^rT = Π ^ n e w

reί»ί" r+, l^ί^iV r e ί > n e w + , r a non-A'-root

(5.10) LEMMA. Let H he the highest root in Φ P r i \ Then HeΦPr ΠΦO

Φnew and ̂ n f f = J ^ n e w = Z(UPr+) = £f£f =

Proof. The highest root in ΦPr+ is long, hence H is an L-root
in Φ, and HeΦPr f] Φ Π Φ n e w . The rest is easily checked with commu-
tator formulas in G using the first description above and in the
twisted subgroups using the second description.

(5.11) Let R be the set of fundamental roots in (5.5). Let JaR.
We recall that the parabolic subgroup Pj defined by J has a normal
series

Pj> Pϊ > OP(Pj) , p = char GF(q)

where Pj is generated by O^Pj) and the rootgroups ^ n θ W with r
or — r expressible by the roots in J. Pj is generated by P* and the
diagonal subgroup of G, so the index [P/. P*] is prime to p. PJ/Op(Pj)
is isomorphic to the direct product of the Chevalley groups (twisted
or not) defined by the connected components of J (regarded as a
subset of the Dynkin diagram).

(5.12) The maximal parabolic subgroup PR-[r] will be denoted simpler
by Pβ_r and the parabolic subgroup defined by all iί-roots in (5.5) will
be denoted Pκ.

The main result of this section is

(5.13) T H E O R E M . N G ( U r h ) c P κ , l ^ i ^ N .

Proof. Let B be as in (5.5) and i ϊ a s in (5.10). Then (5, H) > 0
and (r, H) = 0 for r Φ B, r fundamental in (5.5). Hence, using (5.10),
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We want to show that NG(Ufub) S PR_A with A as in (5.5). This
is clear if η Φ λ, because then A = B.

(5.14) If r] = λ, we argue as follows: Suppose y eNG{UΓh), and
2/ — u'hnwu in the Bruhat decomposition of G associated with the
first description above. Since y e PR-B, w = w > w ' where w^ is the
reflection along A and w' is expressible by reflections along funda-
mental roots difierent from A and B. Clearly a = 0 or a = 1, and
we will show that α = 0. Since A is an L-root, <^A f)G = <^AT =
^ / e w c £7Γb c ?7Pr+. Let 1 Φ xT\t). Then, using commutator formu-
las, u xA

ew(t) ΉΓ1 = #Γw(0 Πs>^ΓwOQ for certain £s. Hence if a = 1,
%ww #5ew(£) * u~1^w1 £ UPr+ and consequently 7/ #Sew(£) y"10 UPr+. This
implies y £ NG{UΓh). Hence a = 0 and 2/ e P ^ .

It is now enough to compute modulo OP(PR_A). The non-iΓ funda-
mental roots in (5.5) are removed one by one. The detached K's
define direct factors as described in (5.11), so the situation repeats
itself.

If rj — ψ, the 9-root in (5.5) can be removed by an easy calcu-
lation with 6 x 6-matrices. If η Φ ψ, the non-K fundamental roots
are removed by repeating the argument, starting with C. If η Φ v,
the last two steps are removal of a 4-root and an L-root as in the
argument (5.14). If rj = v, the last step is removal of the short root
in the subsystem K o=>=o, an easy verification.

(5.15) COROLLARY. Let y eNG(Uϊnh). Then

V = h-( Πcrl/i?) ̂ +

with h in the diagonal group of G, yoeΩ(ql1>ι) Π G, y+ e UPr+ and yΩ

as in Lemma (5.6).

Proof. The decomposition of y follows from Theorem (5.13) and
the description (5.11) of parabolic groups. Note that OP(PK) = UPr+.
Because of (4.6) yΩ normalizes ^ , ί l G for all r e ΦPr. It is checked
with the models of (3.8) and (3.10) that yΩ is as in (5.6).

(5.16) Let E be a finite group, D a subgroup and p a prime. We
will say that D is ̂ -maximal in E if for a subgroup F with greater
p-part than D, DczF^E implies F = E.

(5.17) COROLLARY. If η Φ ψ and p Φ 2 or if η = v, then
is p-rnaximal in G, p = char GF(q).
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Proof in outline. If not, we may suppose that y e NG(U uh) — £/Γb

is a p-element. By (5.15) and the argument of (1.11), y e UPr+. Then
we may assume that

Λ -μ nι TT /y»sub (4. \ -TTrΐf ih ^ ^ s u b rf TTsuh
•*• t-1 y — J[J[ *"r,j (r)\pr) WltΠ <^-r,j(r) Ψ- Ui

Taking commutators between y and elements from Z7|ub we may
reduce to the case with just one term in the product. Conjugation
by elements from the monomial group of Wφiul>(qW) then yields
sufficiently many elements to show that (y, |1?lΦ|ub(gl'?l)> = G.

In particular this shows that if p Φ 2 the embedding 2Dm+1(q2) c
Dm+2(q) obtained for η — λ, cannot be refined to the sequence

2Dm+1(q2) C Bm+1(q) C Dm+2(q)

which may be obtained in orthogonal geometry by choosing appropri-
ate nonisotropic vectors and their orthogonal complements. See e.g.
Artin [1, p. 147].
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