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AN APPLICATION OF STEINBERG’S CONSTRUCTION
OF TWISTED GROUPS

EIvIND STENSHOLT

The construction of the twisted groups uses automorphisms
of certain Chevalley groups derived from symmetries of the
Dynkin diagrams. This paper applies the same method to the
symmetries of the extended Dynkin diagrams. The groups
so constructed turn out to be other Chevalley groups exhibited
in a way which let a particular subgroup structure appear.

Introduction. Let @ be an n-dimensional indecomposable crystal-
lographic root system of one rootlength. Steinberg’s construction of
the twisted Chevalley groups makes use of a nontrivial isometry of
@ which permutes the roots of a given fundamental system. Such
isometries exist except for @ = A,; E;; E, and are defined by symmetries
of the Dynkin diagrams.

This paper applies the same method to another isometry of @
which permutes the roots of a set S={r,, --+, 7,, M} of n 4 1 roots
where {r, ---, r,} is a fundamental system and S has the following
properties in common with a fundamental system:

(0.1) Mr)=0, 1l=si=n.

(0.2) The graph with the » + 1 roots of S as nodes, r and s being
connected if and only if (r, s) < 0, is a tree.

The condition (0.1) shows that —M is in the fundamental chamber
defined by {r, .-+, r,}, and because all roots in @ are conjugates, M
is uniquely determined as the lowest root. Therefore the graph is
the extended Dynkin diagram as defined by Bourbaki [2, p. 198]. The
cases that satisfy (0.2) are @ = D,; E; E;. The extended diagrams
are:

7

The extended diagrams suggest the definition of an isometry 7

595



596 EIVIND STENSHOLT
of @. The following five special cases will be treated: @ = D,,,,; D,.;
D,yiis B Es (m = 2) and 1) = \; 44 v; @; 4 respectively, where
Mor,— o, for2si=n—2,r,,— 1, rn— M
n=m+ 2)
pyv: r,—r,forl<i<n—-17r,—M

(0.4)
(n = 2m, 2m + 1)
P Ty, Ty > T4y T3 75 T Tey 17 M
PP, > 1y, 1y > 1y 75 > Ty Ty Ts > M .

Because the root M is uniquely determined by {r,, ---, 7.}, MM)=7r,,
WM =r, viM)=r, (M) = r, y(M) = r,. Hence 7 is an isometry
of order

(0.5) 7] =2;2;2;2;3 for = N\; t; v; @; ¥ respectively.

About certain automorphisms of Chevalley groups we state a few
facts that are easily checked:

Let G, and G, be Chevalley groups defined by the same indecom-
posable root system and the same finite field GF(q), G, universal,
and let v be a homomorphism of G, onto G, with kernel in Z(G)).
Further let a, e AutG, and «,c Aut @, be either (a) field automor-
phisms or (b) products of field and graph automorphisms as used in
Steinberg’s twisting construection, and such that a,y = 7«..

Let G, be the fixpointgroup of a, in G, i =12. Then G, is
generated by ¥(G,) and a,-invariant elements of the diagonal subgroup
in G, 7(G,) < G, and the index [G,: 7(G,)] is prime to ¢. The inclusion
may be proper.

If G, is adjoint, ¥(G,) is in case (b) a twisted group ;Which is
simple with a few exceptions. If G, is not adjoint, v(G,) is in
general a central extension of the mentioned twisted group. We will
still call it a twisted group and denote it by the usual symbol, 24,(¢)
ete.

The content of the paper is as follows.

Section 1 describes the 7-orbits of the roots in @. Let Pr be
the orthogonal projection of the vectorspace spanned by @ onto the
subspace of 7-invariant points. Pr-*(0) contains a root system @*.
It is shown that Pr(®) — {0} is a root system, and it will be denoted
by @f7. Subsystems @5*,7=1 ... N, that are conjugates under
W(®@*"), the reflection group defined by @*¢*, are defined such that

(06) 77(@5“‘)) — @iub s @fzub m @ker — @ , P?"(@?“b) — @P'r .

Let &~(®) be the simple complex Lie algebra defined by @, and
let Z(05™), . (@%°*) be the subalgebras supported by @i, 1 <17 < N,
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and 9**. Similarly, let @(¢) be a Chevalley group defined by @ and
the field GF(q), and let @5*(q), @***(q) be subgroups. In §2 automor-
phisms of (@) and @(¢") corresponding to 7 are defined. They
are shown to be of order as in (0.5) and will also be denoted by
N =N tt;v; @; . The subalgebras and subgroups introduced above
are 7-invariant, and the group automorphism 7 is so defined that the
restrictions 7 | @;*°(¢'"") are the usual twisting automorphisms, defining
subgroups of the types

Drii(@%); 2 Asn—i(0°); *Asn(@®); *E(@%); *Di(q°)

0.7) :
for 7= \; 1 v; p; ¥ respectively.

Then §8 3 and 4 establish the following main result:

(0.8) THEOREM. The @(q")-automorphism n is conjugate in Aut @(¢"")
to a field automorphism if 1 # v and to the product of a graph- and
a field automorphism if 1 = v.

Hence the fixpointgroup of » is or contains (see the discussion
above) a group of one of the types

D,,:49); Dyu(Q); *Den+1(9%); EAq); Ee(q)

0.9) .
for n = X; p;v; @; ¥ respectively.

As a consequence of (0.9) and (0.7) one obtains the embeddings

"Dyi(q%) € Do)
(0.10) A () € Do), *As(@?) C D)
‘Bl < Edq),  °*Ddg®) < Eq) -

In §5 these embeddings are described somewhat closer. The
paper aims at a unified presentation of the arguments, with special
treatment of the individual cases 7 = \; g¢; v; @; 4 only when technical
reasons call for it.

1. The isometry of the root system. We first derive some
information about the isometry 7 of @ defined in (0.4). This infor-
mation is given in the following table, using the notation of the
introduction.

7 @  dim Pri(0) @ @ oFr
N D, ., 2 A} D, B,
1.1) v D, m Ar Ay C,
3 Dpey  m+1 Ar A, BC,
» E 3 A E, F,
v E, 4 Aj D, G,
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This may be checked in each case by means of the standard
models of the root systems @ = D,; E,; E;, but for convenience we
offer a reasonably unified argument.

Since M is a negative root, M — p(M) for n # v and M — 1/3.
(M + 7(8) + 7*(M)) for 7 = 4 is not in the subspace spanned by the
fundamental roots different from »n(M), 7*(M). Hence the multiplicity
of an eigenvalue different from 1 of 7 equals the number of 7-orbits
of length > 1 containing a fundamental root. Therefore dim Pr~'(0) =
2;my;m + 1;3; 4 and dim V= m; m; m; 4; 2 where V is the space of
y-invariant points.

(1.2) Let @7 be the 7-invariant subsystem of @ of type D, .; As-is
A,.; Fe; D, generated by fundamental roots. See (0.3). Then the
restriction % | @;* is the usual twisting isometry, and so Pr(®™) is
a root system of type B,; C,; BC,; F,; G, which clearly spans V.

Let @5 be another w-invariant subsystem of @ of the same type
as &7 spannad by roots in the extended diagrams (0.3) if 7 = \; /v,
by vy, M+ 1y, vs, 7y, 7, s + 17 if =@ and by r, + M, v, + 75, vy, 75+ 7
if n = .

Now Pr{@:*"} and Pr(®;"") are root systems of the same type, each
of them spanning V. We will show that they coincide:

To any root »e Pri®i"") U Pr(®5"") the usual twisting procedure
assigns an element w, ¢ W(®), the reflection group defined b @, such
that 4w, (V) =V and w, 1 V is t‘Qﬂ reflection along ». Consider the

= {w,; re Pri®7™") U Pr(®")) .

Since W' < W{(®), W' and W’ |V are finite. Since W’ V is a finite
reflection group, Pr(®:**) U Pr(®;™) generate a root system @' in V.

If Pp(@5°) = Pr(@5™), there is a proper inclusion Pr{d™)c @'.
But the only inclusions between indecomposable root systems we have
to consider are B, < BC,, C, < BC,, B,C F, C,C F,. The first two
possibilities are excluded by the fact that Pr(@3™) and Pr(®:"") consist
of the same types of roots. The two last possibilities (n = \; 1, m = 4)
may then be excluded by regarding n = \; /¢t as a restriction to an
y-invariant Dy De-subsystem of @ = D,..,; D,, with m > 4. Ience
Pr(@3™) = Pr(@i™).

All fundamental roots of @ are contained in @5*", @7*" or &= + @5*".
Therefore @' = Pr(®) — {0}, and so @7 = Pr(@;"), v=1,2. This
establishes (0.6) for 7 = 1, 2, and that @”" is of type B,; C,; BC,; F; G,
in the cases 7 = \; £, v; @; ¥ respectively.

The classification of the systems @** = ¢ N Pr~*(0) may now be
done by the following counting argument:

®5* contains »-orbits of lengths 2 and 3 of the same types as



AN APPLICATION OF STEINBERG’S CONSTRUCTION 599

O@5* contains, that are not contained in @5°®. This is obvious when
there is only one such type to consider, and for » = v (M, r,,.,) and
MA 7o+ oo + Py Piupr + *++ + Poey + Tompn) are examples, with
reference to (0.3). Thus one, hence (by application of elements of
W) all short roots and halves of long roots in @*" are projections of
more than one 7-orbit of roots in @.

@ contains 2m? + 6m + 4; 8m? — 4m; 8m* + 4m; 126; 72 roots. OF"
contains 2m; 2m®—2m; 2m?—2m; 24; 6 short and 2m?—2m; 2m; 2m; 24; 6
long or mixed roots. So far then, Pr'(®#*") accounts for 2m-4 +
@m* — 2m)-1; Cm* — 2m)-4 + 2m-1; 2m* — 2m)-4 + 2m-5; 24-4 + 24.1;
6-6 + 6-1 roots of @, and 4; 2m; 2m; 6; 30 remain to be placed.

But for 7 = 4, all 30 roots cannot be in Pr'(0), since no root
system of dimension = 4 has 30 roots. So in this case 3 7-orbits of
length 3 have the same projection. Now the remaining 4; 2m; 2m; 6; 12
roots are so few that none of them can be in Pr~'(®*"). Hence they
form a root system @** < Pr(0).

W(@*°*) permutes the roots inside each Pr7'(r), rc @’ . Since
@ N Pr(®*") generates @ (it contains @i"° U @5*°), W(P**) has a
faithful permutation representation on @ N Pr~*(®*"). For

N F A, 7| Pr(0)= -1,

so 7) centralizes W(®*°") and W(®**") permutes the %-orbits inside each
Pri(r)N @, re ®*". Hence the elements of W(®*°*) have orders 1, 2
or (conceivably) 4 if » = +. For » = « we remark that the only one-
rootlength systems with 12 roots and dimension <4 are A4, X 4, and
A;. But if @%* = A,, the restriction of + to the subspace spanned
by @** must have an eigenvalue equal to 1. Hence 9% = A4, X A,.
Consequently the only possibilities are @** = A} Al"; A" A% AL in the
five cases 7 = \; y, v; @; 4 respectively.
This establishes (1.1).

1.3) In the sequel, 2 will denote an arbitrary component of @*°*.
By (1.1) 2 is of type A, if 7 = 4 and of type A, if = .

The discussion above shows that any root in @ belongs to one of
five classes: K, L, 4,5, 9 defined as follows:

K: a root in @*°.

L: an 7-invariant root, i.e., a long root in @".

4: a root in an n-orbit of two orthogonal roots, i.e., belonging
to a set Pr'(r) N @ of 4 roots, r € @7 a short root, p=#.

5: aroot in an 7-orbit of two roots making a 120°-angle, i.e.,
in a set Pr'({s, 2s}) N @ of 5 roots, s € ®*" a half-root, 7=y.

9: a root in an 7-orbit of three orthogonal roots, i.e., in a set
Pr(ryN @ of 9 roots, r € @ a short root, 7 = .
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Let = + and let r, se @, r a short root, s a half-root. Then
Pr({r, —r}) N @ and Pr'({2s, s, —s, —2s}) N @ generate root systems
X and Y of dimensions <3 with =8 and = 10 roots respectively.
Hence Y is an A,system. X must be an 4, X A- or an A;-system,
but the first is impossible, since the 8 roots would have to form 4
7-orbits of orthogonal roots. X contains four K-roots and Y contains
two. It is useful to show 7|X and 7|Y in two figures. Only a
positive subsystem is shown.

K K ;}9\5 5
(15). /4 \\I
. = L1 '
i s
5 L7 1

We now introduce a new ordering of the roots in @, with the
property that if Pr(r) = Pr(s) #0, r,se® and r is positive in the
new ordering, then also s is positive. This is done by selecting
positive systems OF™ in OF and O+ in @ (i.e., in each component
2 of ), and defining

(1.6) O+ = (PrY(@7*) N 0) U &5+ .

@* spans a convex cone containing one half of @, hence @ is a
positive system in @, different from the one defining the original
fundamental roots in (0.3).

The fundamental roots in @* span the extremelines of the cone.
Therefore the numbers of fundamental roots of types K, L, 4,5, 9
may be read off from (1.1). They are listed in Table (1.7):

/i K L 4 5 9
Y 2 m—1 1 0 0
(1.7) Y2 mn 1 m—1 0 0
Y m 0 m—1 2 0
P 3 2 4 0 0
afr 4 1 0 0 1

From (1.5) we see that in the Dynkin diagram with the funda-
mental roots of @+ as nodes, a 4-root or a 5-root always occur in a

% %’ or <5>— {,KL g . The K-roots

subdiagram Ié—

and any L-root form a subdiagram of type 0% x A,.
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These remarks together with (1.7) suffice to determine the mew
Dynkin diagrams by simple conbinatorial arguments. They are:

L L 4 K 4

o- -0 —0 O0——0—0
Le

K K 9 K K

[& O o e}
L

Now we make the following observations:
(1.9) If n # +, a reflection along a K-root in (1.5) interchanges the
two »-orbits with the same projection.
(1.10) If » =+, (1.8) shows that the 18 roots in Pr '({r, —7r}) N O,
rec @F" a short root, generate an +r-invariant A,-system
K K 9 K K

O —O O O O

o rotates the two A,-components of @*°* 120 degrees. The centralizer
of + in W{(®@***) is isomorphic to Z, X Z,, and it is easily checked that
a subgroup permutes the three +r-orbits in Pr='(r) N @ cyclically.

Any subsystem @5'*C @ which satisfies (0.6) is specified by the
selection of one 7-orbit inside each Pr~i(r) N @ where re®™" is a
fundamental short root or half-root. The distribution of K-roots in
(1.8) together with (1.9) and (1.10) now show that there are exactly
N such subsystems, with

(1.11) N =2;2™% 2™ 4; 3 for 1 = \; t; v; @; 4 respectively.

In the sequel 7-invariant subsystems of the types shown in (1.5)

and described in (1.10) play an important role. We therefore introduce
the following notation:
(1.12) The n-invariant As-system with four K-roots and eight 4-roots,
N # ¥, will be called a KAK-system. The n-invariant Ags-system with
two K-roots, two L-roots, and eight 5-roots, n = v, will be called a
5Kb-system. The n-invariant As-system of (1.10) with twelve K-roots
and eighteen 9-roots, 1 = +, will be called a KK9IKK-system.

Clearly there are one-to-one correspondences between K4K-systems
and pairs {r, —r}, r short, » ## ¢, between 5K5-systems and pairs
{s, —s}, s a half-root, 7» = v, between KK9KK-systems and pairs
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{r, —7}, r short, » = 4. See (1.5) and (1.10).

2. The Lie algebras and the Chevalley groups. In the complex
simple Lie algebra .<#(®) defined by the root system @, let

2.1) {X,; re®}U{H,; r, fundamental in @}
be a Chevalley basis, r, 7, --- being the original fundamental roots
of (0.3).

From the theory of Lie algebras we recall a few facts:
(2.2) The selection of a Cartan algebra in £ (®) determines the
rootspaces, and inside these the selection of

{X,; 7 fundamental in @}

1s arbitrary and determines the Chevalley basis (2.1) except for signs.
For every re®, X, determines X_, through the equation

[x, x_,1, X.] =2X, .
We introduce some subalgebras of <~(9):

L@ = X,5redit), 1<t <N
g(@ker) — <Xr; re @ker>
2.3) ~(Q), L(KAK), #(6K5), (KKIKK) denote four types of
subalgebras generated by the X,-elements with » in an 2-,
K4K-, 5K5- or KK9KK-system. See (1.3) and (1.12).

(2.4) LEMMA. For any i, 1 <1 < N, (L(05*), L (@) = L (D).

Proof. Observe that for any ¢, 1 <1 < N, and any given K4K-,
5K5- or KK9KK-system and with @* as in (1.6),

ot N ;" N K4K consists of one n-orbit of two orthogonal roots,

ot N O** N 5K5 consists of three roots, r, n(r), r + 7(r),
Ot N @;** N KKIKK consists of one n-orbit of three orthogonal
roots.

This follows from (0.6) and the Definition (1.12). Taking Lie-products
inside each #(K4K), &~ (5K5), and ¥ (KK9KK) one obtains =X, for
all r¢ o= | o3>,

(2.5) DEFINITION. Let n(=X\; tt; v; @; ¥) denote an & (9)-automorphism
such that

n: X'r,' — X’](T.,;) ’ X—r.,; I X—ﬂ(r.;)
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where 7, 7, -++ are the original fundamental roots from (0.3).

This defines an &°(®)-automorphism by the isomorphism theorem
for Lie algebras, but because of the facts (2.2) it is necessary to make

the following remark:
(2.6) The Definition (2.5) is ambiguous, given the elements X,, X,,,

«+-, pending the choice between two possibilities for X, in the
Chevalley basis, M being as in (0.3).

(2.7) LEMMA. All the subalgebras of (2.3) are M-invariant.

Proof. This follows from (2.5) and the fact that all the root
subsystems 05**(1 <4< N), 0, Qc 0*, KAK, 5K5, KK9KK of @ are
y-invariant (for the isometry 7).

(2.8) LEMMA. 7 1is expressed by an integral matrix with respect to
the Chevalley basis (2.1).

Proof. The 7n-images of the Chevallay basis elements different
from H,_, ,, of (2.1) are clearly in the Z-span of that basis. But also
N(Hy10n) = Y[ X100, Xog-1an] = [Xu, X_y] belongs to this Z-span, by
a fundamental property of a Chevalley basis.

Clearly, for every re @ either 7(X,) or —n(X,) belongs to the
Chevalley basis. Hence the .&2(®)-automorphism 7 has order |7| =
2;2;2;2;3 if and only if 9(X,) = X,un. The lemmas (2.10)-(2.13)
show that this is actually so, and also settles the question of how
the choice of X, affects the <~ (@)-automorphism 7. See (2.6).

(2.9) Two &(®)-automorphisms « and g will be called equivalent if
there exists an &~(@)-automorphism v such that

Y(X,) = X, for all re® and a = v-5-7*.

(2.10) LEMMA. In case 1) = 4, the two choices of X, give two equi-
valent F(Ey)-automorphisms.

Proof. Call the two < (H,)-automorphisms +, and «,, so that

vi(X,) = =X, - See (0.4) .
Define v by

X,)=—-X,, 7"(X,)=X,, fori+#4.
The highest root in E; with respect to the ordering of (0.3) is
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—M= kv, =2r,+ 1,4+ 2r; + 3r,+ 2r; + 15,

S0, in particular, %, is odd. Expressing X _, as a repeated Lie-product
of the X, -elements we see that

HX_y) = —X_», hence by (2.2) ¥(Xy) = —Xu -

It is now easily checked that v-4r,-7™' = 4,

Because of (2.10) it is not necessary to distinguish between the
two cases, and + will mean any of the two <~ (F,)-automorphisms
of (2.5).

(2.11) LeEMMA. +*= 1 as an L (Ey)-automorphism.

Proof. As remarked above it suffices to show that ¥(X,) = X,..
Suppose contrariwise y(X,) = —X,,. Then v*X,)= X,, for ¢ =1,
3,5,4 and v*(X,,) = —X,, for 4= 2,6 and ¥%(X,) = —X,. Express
X_, as in the preceding proof. Since k, + k; is even,

P X _y) = U(X_y) = X_y, hence by (2.2) ¥(Xy) = Xy,
which is a contradiction. Consequently +* = 1.

(2.12) LEMMA. For 0+ 4, 0*=1 as an &£ (D)-automorphism, for
both choices of X,.

Proof. Let @*® be as in (1.2). Clearly 7*| &(@:*") = 1, and so
by (2.4) it suffices to prove that 7*| (@) = 1.

For a given K-root re®, there exist @, b= =1 such that
NX,) =aX_, and 7(X_,) = bX,. The equation in (2.2) becomes
[[eX_,, 8X.], aX_,] = 2aX_,, which shows that ab =1, a = b and con-
sequently 7(X,) = X,.

(2.13) LEMMA. For 7 +# 4, the two choices of X, give two inequi-
valent 2 (0)-automorphisms 7+ and 7~ (see (2.9)) where

(X)) = X_, and 7 (X,) = —X_, for all K-roots rc® .

Proof. Let @5** be as in (1.2). Since 7| (@) is independent
of the choice of X,, the two choices must give different restrictions
7| Z(@*°") because of (2.4).

Let 7, s, t be fundamental roots of a K4K-system, r and ¢ being
K-roots and s a 4-root. See (1.4), (1.5), (1.12). In the standard model
for £ (K4AK) of 4 x 4-matrices, let E,, E,, E, represent X,, X,, X,
respectively. Identifying < (K4K) with this matrix algebra we have
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n. Em, Eu, Ew, Eal, Eu, E,— aEm, bEB, CEu, CE42, dEza, dE;,
for certain a, b, ¢, d = 1. By (2.12), 7* = 1 and so

CE24 = 7](E13) = 77([E12, Ezs]) = [a'Em, dEu] = adEz4
dE, = 7](E32) = 77([E34, E42]) = [bE4s, cEy] = bekE, .

Hence cd = abed, ab =1, @ = b and so 7(X,) = aX_,, P(X)) = a X_..
Applying this result to all K4K-subsystems defined by the Dynkin
diagrams of (1.8), we find that 7(X,) = aX_, for all K-roots rc®
with @ = #1 independent of 7.

The next result shows that the restrictions 7| Z(@95*), 1 <7 =< N,
are related to each other in a sense similar to (2.9):

(2.14) LEMMA. For every patir (i, 7) such that 1 £t < j < N, there
s an isometry B,; of ® which maps OF°° onto O™ and a corresponding
1somorphism (also denoted B,;) of £ (D5*°) onto L (D5, i.e., Bi(X,) =
iXﬂijm for every re @3*°, with the additional property:

Bi 1 | L(@5)- 3 = 7| L (07) .

Proof. The subsystems @5**, 1 <1 < N are conjugates under
W(@**") (see the remarks in connection with (1.11)). Let ve W(®**)
be such that 7(@:"*) = @5**. Let 7 also denote a corresponding .&2(9)-
automorphism, such that v(X,) = =X, for all »e®. Then

(2.15) Y| L(OP) -y = 1| (D)8

where B is an (05"")-automorphism such that B(X,) = =X, for
r e O3*°, since Y)Y™' = 7 as isometries.

Now, if n(r) = », i.e., if » is an L-root, then r¢ @3> N @5 and
7(r) = r. Hence by (2.15) 9(X,) = 7-7-7"(X,) = 7-8(X,) which implies

(2.16) B(X,) =X, if r is an L-root.

All mappings a: X, — + X, where r belongs to the fundamental
system in @* N @5 extend to .(®5*°)-automorphisms. Hence for a
suitable &(95")-automorphism «, because of (2.16),

a-()| £(2™)-B)-a™ = 1| L(D5) .

Now B,; = @Y meets the requirement of (2.14).

(2.17) Let GF(qg) be the finite field with ¢ elements, and let 6 be the
automorphism ¢t —¢? of GF(g"') over GF(q).

(2.18) Let <£(, q) be the Lie algebra £(0); ® GF(q) over the field
GF(q), £ (D), being the Z-span of the Chevalley basis (2.1). X, Q1
18 for short denoted X,, re®. Let ®(q) be the Chevalley group with
generators
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z,.(t) = exp (t-0(X,), teGF(q), re?,
o being a representation of (@, q).

We introduce some subgroups of ®@(q). 2, is the rootgroup
defined by re @, and:

C(g) = (F s rediy, 1<i<N

D r(q) = (27 r e OF7).

2(q), K4K(q), 5K5(q), KK9KK(q) denote four types of subgroups
generated by the rootgroups .25 with » in an 2-, KAK- 5K5-
or KK9KK-system. See (1.3) and (1.12).

7, = (2 se Pri(r) N @), re @

(2.19)

The structure of %/, depends on » as follows:

r a long root: »r=3s, %, = 2%, s an L-root in @.

» a short root: 7/, is a direct product of |7 |* rootgroups 23
defined by |7 |*>roots se Pr~'(r) N @.

» a half-root: Here » = v and %/, is a nondirect product of
4 rootgroups Z, defined by 5-roots se Pr-'(r) N @ and 23,
2re @ N @F" being an L-root.

(2.20)

(2.21) LEMMA. The subgroup {%/,, Z/_,», r € @, is of the type A,(q);
KA4K(q); 5K5(q); KK9KK(q) for v long; v short and 1 # +; v a half-
root and 1) = y; r short and 1 = y respectively.

Proof. With Chevalley’s commutator formulas one easily obtains
a set of generators for these groups.

Because of (2.8) 7» may be regarded as an (9, g)-automorphism
and we proceed to define a corresponding @(¢"”')-automorphism:

(2.22) DEFINITION. % will also denote the @(¢'7)-automorphism given
by

7: 2,(t) — exp (0(t) - 0(17(X.))) = exp (- 0(£ X)) = Zyn(£2L7)

The special cases are denoted 7 = \; ; v; @; 4, occasionally subdi-
vided into 7% 7™ = A AT ph e v v o @7 See (2.13).

(2.23) LeMMA. All the subgroups of (2.19) are N-imvariant.

Proof. This is so because the sets of roots which support these
groups are »-invariant.
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(2.24) LEMMA. The @(q'")-automorphism 1) has order || =2;2;2;2;3
in the cases 1) = \; tt; V; @;  respectively, independently of whether
n=7n"or n=1".

Proof. By (2.5) the sign + in (2.22) is a + if = or —r is one
of the original fundamental roots r, 7, --- in (0.3). Also

N(xx(t)) = exp (6(t)- 0(N( X)) = exp (t*- 0(Xyun)) = Tyan(t?)
because of (2.11) and (2.12). Similarly (@_,()) = z_,un(¢°) . This
implies (2.24).

(2.25) LEMMA. In @3°°(q'") there is a subgroup, demoted "@5*(¢'"),
of n-invariant elements which is isomorphic to the groups in (0.7)
Jor m = N\; 5 v; @; 4 respectively, independently of 1, 1 <1 =< N, and
of whether 7= 7" or p = 7.

Proof. Because of (2.14), the fixpointgroups of the N restrictions
N 05"(¢'""), 1 =1 = N, are all isomorphic. Hence it suffices to con-
sider 7 | @5°*(¢'""), @5°® being as in (1.2). But this restriction is just the
automorphism which is the basis for Steinberg’s twisting procedure.

3. The restriction 7 | 2(¢'"), 2 C @**. Let M(n, q) be the algebra
of n X n-matrices over GF'(q). Let

Rt*c M2, ¢); R CcMQZq¢); ScM@B, )
respectively consist of the matrices
2% b ay”

q q q Y
3.1) (Q) u) ; (v u) ; cy? z° az’
%
x Y P

v u v

where u, ve GF(¢%), z, ¥, 2€ GF(¢®) and @, b, ¢c = =1 are constants such
that abc = 1.

(3.2) LEMMA. There exist similarity transformations a*; a™; B of
M2, ¢»; M(2, q%); M(3, ¢°) respectively such that

a* (M2, q) = R*; a (M@ q)=R"; BMS3q)=S.

Proof. Let K = GF(¢%); GF(¢%); GF(¢®) and let U be the K-vector-
space GF(¢%)% GF(¢®)? GF(q%)® in the three respective cases. Let V be
the GF(qg)-subspace of U consisting of the vectors

@, v); (20, v); (cw”, dbw’, w)
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where v € GF(¢%), w e GF(¢°), b, ¢ are as in (3.1) and Ze GF(¢*) — GF(q)
is such that Z° = —Z='. This means that

Z = ktrmu-n for ¢ odd and Z = kMY for ¢ even,

¢ being an integer and (k) = GF(¢*) — {0}.

The K-span of Vis U since the vander Monde determinant | k"% |0,
1,7=0,1;0,1; 0,1, 2, in the three cases and <{k) = K — {0}.

Clearly R*; R™; S have the same number of elements as M(2, q);
M2, q); M(3, q) and it is easily checked that R*; R™; S act GF(g)-
linearly on V by right multiplication.

Now replace the standard K-basis of U with a GF(g)-basis of V.
This basis-change defines a*; a~; g.

Since @**(¢"") is a direct product of groups 2(¢"') (see (1.3)) and
since each 2(¢'") is »-invariant (see (2.23)), the study of 7| @**(¢")
reduces to the study of 7| Q2(¢'""). Two cases must be distinguished:
N # o with 2 of type A, and » = « with 2 of type 4..

B.3) n#*Eq, 2= {r, —r}, » a K-root in Q.
Let v: SL{(2, ¢®) — 2(¢%) be a homomorphism such that

(1 t) ® 7(1 0 ®
Y = z,() , =2_.() .
01 ¢ 1) ¢
Then, by (2.22)
(1 A 7(1 0 7(1 0 (1 abt")
v ey s —
o 1) abt? 1 ¢ 1 Mo 1
with a, b = %1, i.e., in general
=l ol e o) )
0y 0 =7 .
U ) b 0/\u" 27/\b O aby’ o' )

Hence we get a set of fixpoints of 7| 2(¢%) (all the fixpoints if 7 is
an isomorphism):

Il

v abu?
Y
u v

) ,  u,veGF(gY) .

By (3.2) there exists an a e Aut SL(2, ¢*) such that
(3.4) vaSL(2, q) is contained in the fixpointgroup of 1| 2(¢? .
Note that ab =1 for » = %" and eb = —1 for n=7".

(35) 7=, Q= {r, (), 7 + (), =1, —4(r), —7 — ¥()}, 7 & K-root
in @.
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Let 7: SL(3, ¢*) — 2(¢®) be a homomorphism such that

100 1¢0 10¢
Mo1t)=a, 7(0 10)=2p0@®, 010)=2vm@
001 001 001

100 100 100
7[0 1 O)z 2 @), YNt 10]=2a_pnE), 7(0 1 0):x_,_¢(,)(t) .
0¢1 001 t 01

Then, by (2.22)

10 0 1 abt® 0 100
[ ’/

yMo 1 t)Lv<o 1 o)—y—w<o 10

00 1 0 0 1 bet”0 1

and similarly for the transposed matrices, with a, b, ¢ = *1, i.e., in

general
f g h 0 a ON/f"g” B*\/0 0 ¢
vl v ow ~’7<O 0 b <u" ?? wq\)(a 0 O)
x Y z ¢c 0 0/\2" y* 22 "\0 b O

! abw? acu’

q q

=7 aby’ = bex
acg’ beh?' [
Hence we get a set of fixpoints of | 2(¢°) (all the fixpoints if 7 is an
isomorphism):
2 acx” bey”
(3.6) 7| aby’ 2" bex' |, =, 9,2€GF().
x Y z

By (3.2) there exists a 8¢ Aut SL(3, ¢°) such that
(3.7 vYBSL(3, q) is contained in the fixpointgroup of +r | 2(q°).
(3.8) Clearly, the restrictions of 7 = 4 to subgroups of types K4K(q®),

5K5(¢®) and of v to subgroups of type KK9KK(¢°) can be treated the
same way by means of homomorphisms

SL(4, ¢*) — K4K(¢*) , SL(4, ¢®) — 5K5(¢%) ,
SL(6, ¢*) — KK9KK(q®) .

The matrices are conveniently subdivided into 2 x 2-blocks or 3 X 3-
blocks. Thus the fixpointgroup of 7| K4K(¢®) contains the image



610 EIVIND STENSHOLT

of the matrices (equals in the case of isomorphism):
9 abft bt* aht
f g h t with determinant 1,
v au’ y'  abx'| f, 9,k t,u, v, yeGF(Q).
" v x Y

Similarly 6 x 6-matrices with blocks like (3.6) give fixpoints of
| KKOKK(q°).

(8.9) LEMMA. Let rec @ be a short root. Then the fixpointgroup
of 0| %, has order q"".

Proof. There are [7]| n-orbits of roots in Pr~'(r) N @. With one
such orbit we associate as in the usual twisting procedure ¢'”' fixpoints
T ()2 (£87) i 9 5= o and €, ()@ (FE) @m0 (£E7) if 7 = 9.

For later reference we need a result which is derived by means
of a matrix model for the 5K5(¢?)-groups. We consider the following
situation:

(3.10) 7=y, re @ a half-root, {2z, Z_,) a 5K5(¢°)-group.
Let v:SL(4, ¢) — <%, Z_.) be a homomorphism such that
Y[ + E,it) = x(t) where

s is a K-root in @* if (7, 7) = (2, 3) ,
an L-root in @% if (7, ) = (1, 4),
a 5-root in @ if (5, 7) = (1, 2), (1, 3), (2, 4), (3, 4) .
Then
VI + Eut) — (I + E,at?)
Y + But) —— v(I + Ebt?)
VI + Eut) —— v(I + Eaat?)
YI + Eut) —— (I + Eybt?) , a, b= +1.

This determines 7 in the 5K5(g%)-group. One may easily verify that
for Ae SL4, ¢¥,

vY(4) = Y(X-0(AT) " X

where
0 0 0 1
0 — 0o o0
X = ¢ ,
0 0 —b 0
1 0 0 0
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6(A) is obtained by applying the field automorphism of (2.17) on each
entry of A, and T denotes transposing. Hence we have:

(3.11) The fixpointgroup of 0 |{%/,, Z/_,y contains a homomorphic
image of SU4, ¢*).
Here ab =1 for y=v~ and ab = —1 for v = v".

(3.12) LEMMA. Letre® be a half-root, n =v. Then the fixpoint-
group of 1|z, has order q°.

Proof. Clearly 7| 2/, is a one-to-one mapping. It then suffices
and is easy to verify that the fixpoints of 7| 2/. are the elements

1 2z by’ =z

.y 0 1 ax’| with z, ¥, ze GF(¢%) and
0 0 1 y 2z + 27 = axx’ + byy’.
0 0 1

4. The proof of Theorem (0.8).

(4.1) LEMMA. Let o:t—2x-t* be an additive automorphism of GF(q"),
x# 0 and let (k) = GF(q™) — {0}. Then o has fixzpoints different from
0 if and only if wc k™. The set of fixpoints is then t,-GF(q),
t, = 0 betng an arbitrary fixpoint.

Proof. Let x=k* t=Fk". Then t= o(t) is equivalent to the
congruence (¢ — 1)b + a = 0 (mod (¢ — 1)), which implies ¢ = (¢ — 1)¢
for some ¢ and b + ¢ = 0 (mod (¢ — 1)/(g — 1)). Hence

t — k_c+d(qn-1)/(q—1) , d = O, 1, cy, q - 2
where (k010D = GF(q) — {0}.

(4.2) LEMMA. Let v be a homomorphism of SL(m, q*) onto a group
H, and let Z5;(q°) = Y{I+ E#;tcGF(@%)}, 1+ J and a =1 or a = n.
Suppose a e Aut H has the property az;(q) = Z,;(q) for all (3, 7).
Then also a27,(q") = Z5:(q™) for all (3, 7).

Proof. Let K,; = {(a, b); & # b and [27,(q"), &Z£(Q)] = 1}. Then
it is easily verified that 27,(¢") is the only p-Sylowgroup (p = char
GF(qg)) in the centralizer of {(25,(q); (a, b)e K;;>. This proves the
lemma.

In (4.3)-(4.5) we list some facts about automorphisms of Chevalley
groups over the field GF(q).
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(4.3) A Chevalley group acts by conjugation transitively on the set
of ordered pairs of disjoint p-Sylowgroups, p = char GF(q).

4.4) An automorphism which normalizes U and V (the products of
the rootgroups 2, for r > 0, resp. r < 0) permutes the rootgroups and
can be expressed by diagonal, field and graph automorphisms.

4.5) Any set {d.e GF(q); d, # 0 and r is a fundamental root} deter-
mines o diagonal automorphism d where

d: xr(t) B x’r(drt) ’ x——r(t) —— x—r(d—r—lt) .

See Steinberg [4, p. 158].
(4.6) LEMMA. @*(q"') normalizes %/, for all rec @

Proof. This is an immediate consequence of Chevalley’s commu-
tator formulas (one-rootlength case) since se @** and te Proi(r)N @
implies t + se Pr7'(»).

Proof of (0.8). Consider first a component 2 of 9**. By (3.4)
and (3.7) there exists a homomorphism
Vot SL(| 7|, ¢"") — £2(¢'")

such that v,SL(|7|, q) is contained in the fixpointgroup of 7| 2(¢'"").

An application of (4.3) and (4.4) to each component 2 of @**
shows that there exists an inner automorphism w: z — gxg™ of @(¢'"')
defined by an element g e @***(¢'"") such that

Y{I + Eit; te GF(q'")}

is a rootgroup in #**(¢"") for all rootgroups {I + E;t} of SL( 7|, ¢').
Then, for te GF(q),

4.7 oY (I + Eiit) = o7l + E;it)
and so, because of Lemma (4.2)
oNw™ 07 {I + E,it; t € GF(¢'")} = oV {I + Et;te GF(q')}
i.e.,
(4.8) onw—'z, = &2, for all K-roots rc®.
By (4.6) and (2.23)
4.9) w7/, = 2, for all red”™ .

In particular, when » is a long root, this by (2.20) becomes
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(4.10) wyw= 2, = 2, for all L-roots re®.

From (4.8) and (4.9) it follows that @y normalizes the subgroups
U and V where

U= 11 27 11 2,

(4.11) reoker+ rePr+
= H % ° H Z, .
—reopkert —reoPr+

Hence, by (4.4), wnw™ either normalizes all rootgroups 27, r€®,
or permutes them according to a graph automorphism. By (1.1) the
K-roots and L-roots span the space of @ if and only if 7 #v. Thus
we have, by (4.8) and (4.10),

(4.12) wnw'Z, =2, forall re@ if n+v.
4.13) wnw'Z, = Zy forallre@ if n=v,a=00ra=1

where « is the graph automorphism of @ = D,,.,, a to be determined
later. By (4.7) it is clear that a field automorphism is needed to
express wn®w™ as in (4.4). Hence by (4.12) and (4.13)

(4.14) wnw~'x,(t) = x,(b,-t") for all re@

with b,e GF(q'"), s = r for n #vy, s = a*(r) if 7 = .

Now design a diagonal automorphism d of @(¢'"!) such that

(i) If re®* is fundamental and wyw 2, = 27, then {d(z,(t));
te GF(q)} are the wnw '-invariant elements in 27. This is possible
by (4.1) and (4.5).

(ii) If re@* is fundamental and wyw™'Z, = Z; # 2, then
d(x,(t") = wnw~d(x,.(t)). sis fundamental in @+ because the rootgroups
are permuted according to a graph automorphism, so this may be
achieved by adjusting d, in (4.5).

Now it is easily verified that (4.14) is changed into

(4.15) d7'onewT'd(z,(t)) = x(t"), for r or —r fundamental.

It remains to determine whether ¢ = 0 or a =1 in (4.13). If-
a = 0 however, the fixpointgroup of v, hence of wyv®™, in an arbitrary
5K5(¢%)-group would contain an image of SL(4, ¢), contradicting (3.11).
Hence a = 1. This proves (0.8).

We remark that similar twists may be performed on the Chevalley
groups Fy(¢®) and F,(¢°). The long roots in F, form a D,system
supporting a subgroup of type D,(¢’) or D,(¢°). Defining 7 as the
isometry used for one of the twists of D,, the short roots of F, form
n-orbits of roots making 60°-angles and a kernel system of type A,
or A,. One may check that corresponding & (F)-automorphisms of
order 2 and 3 exist and proceed as above. The group automorphism
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7 is conjugate in Aut F(¢'"') to a field automorphism, and so one
obtains embeddings 2D,(¢*) < F(g9) and °D,(¢*) < F(q).

5. A property of the embeddings (0.10). Let G be the subgroup
of the fixpointgroup of » in @(¢'”'), of the type (0.9). G contains the
groups '7'@5**(¢'"") given in (0.7), because of (2.25).

G may be described in two ways:

First description. We first remark that
(5.1) the @(¢'")-automorphism w™'d of (4.15) normalizes 2/, for all
re @Fr,

This follows from (4.6) and the definitions of ® and d.

We now introduce new rootgroups 2}; of @(¢") with elements
Z,@), te GF(¢"') by defining

~

(5.2) 25 = w0d2;, It = o7dw.l(t) .
Then, by (4.15)
(5.3) 0%,@t) = %,@") for r or —r fundamental in 07,

s=17r if p# v and s = a(r) if » = v, @ being the graph symmetry of
@ = D2m+1'

This yields a description of G as a group with a BN-pair with
root system @*°" where

0" = Dyyo5 Dons Bows Er; E, and
G = Dpio(®) 5 Don(@) 5 "Doms@) 5 Ena) 5 Eilq)
in the cases 1 = \; &; v; @; ¥ respectively.
Thus only the third Dynkin diagram of (1.5) must be changed
when we move our attention from @(¢'"') to G. We repeat the other

four diagrams however, indicating by A, B, C some fundamental roots
for later reference:

(5.4)

K K 4 4 K 4
O——O0—O0——0— --rm-=--n--
A=BRB (o} L
K 4 K 4 4 K 4 K
O O O O - mmam—— - —0 O —O O—s—0
A=B C
(5.5) L L 4 K 4 K
O O) O O ) O
A=B 1 c
K
K K 9 K K
O ) e ) O
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The rootgroups of G will be called 27°°, r ¢ @*°%, with elements
x2°¥(t). If p=#£v or » =y and r is a long root in @ (i.e., r € & N P**7),

then 22" = 2 N G and x2*"(t) = &,(t), t € GF(g). If 7= v and r is

a short root in @°¢v, then 27" = %-2};}(3, NG withse®, r=1/2(s +
a(s)) and z2°V(t) = Z,(t) - ZFui(t?), t € GF(¢?). See (5.3) and (5.4).

Second description. G is described in terms of

(i) the subgroups 2(¢")N G, 2 being a component of @*.
These groups are homomorphic images of SL(|7 |, g). See (3.4), (3.7).

(ii) the rootgroups of the twisted subgroups '7'95**(¢'""), i.e., the
groups

=72, N0™E"YNG, red™, 1<i<N

with elements «"?(t) or x:°P(¢, u). The parametrization is as follows.

r a long root: re®@ N @, x°P(t) = x.(t), t =1t if v and t =
—t? if 7 = v. (See the proof of (3.12).)

r a short root, 7 = i @°2(t) = 2,(t) - 20 (Ht7) With s, 7(s) € 23*° N
Pr=(r).

r a half-root, 7 =v: a2, u) = ,(t)- 2, (£t 2., (s)(w) With u +
u' = *it'. (See the proof of (3.12).)

r a short root, 7 = i &P(@t) = 2.() Ty(e)(ELY) Ty (£t) with
8, ¥(s), ¥°(s) € O3*° N Pr=(r).

If » is a long root in @*7, the groups Z7°!® coincide for ¢ =1,
-+, N. If not, there are |7| different groups for ¢+ =1, ..., N.

Between the elements of 27%® and 255", 7, se @F", there are
commutator relations as described in Steinberg [4, p. 181]. In the
case 7 = 4 there is another nontrivial commutator relation of the
type [Z75°, 2250 & 2755 where 7,8, r + s are short roots in
O =G,and v+ j # k +~ 1.

(5.6) LEMMA. Let 2 be a component of @**. The elements in
2(¢") N G which for every r e O permute the rootgroups Z5°, i =1,
<+, N are, with notation from (3.3) and (3.5):

{7(:; 2)} N {7(2 ug)} if 7%+ and

22 0 0 0 acx” 0 0 0 bey”
70 2* 0) U470 0 bexjr U {7 adby® 0 O) ifn=.
0 0 =z x 0 0 0 y 0

Proof. This is checked by means of matrix models of the K4K(q%-
groups and KK9KK(¢®)-groups as indicated in (3.8) or the model of
the 5K5(¢%)-groups in (3.10). Note that these elements are 7-invariant
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elements of the monomial group of @(q¢'"").

(6.7 Let U™ 1 <14 < N, be the p-Sylowgroup (» = char GF(q)) of
the twisted group "7'9{**(q"") defined by U:*® = U N @{**(¢'") N G with
U as in (4.11), i.e.,

o= I 2730

reoPr+

(5.8) Let Ut = (U 1=t =N>= II (z.NG).
reoPr+
Expressing 2/, N G in each of the two descriptions of G we get
because of (5.1)

(5.9) UPT—} — l'I %f;}b — H é‘%new .
reofr+,1<i<N re®leW+ » a non-A-root

(5.10) LEMMA. Let H be the highest root in ®7"*. Then He ®*" N DN
Qrev a/nd E - N G — (};zpunew — Z( UPT+) — = /Els’uib — Z( Usub)’ 1 é /L' g N.

Proof. The highest root in @7"* is long, hence H is an L-root
ind,and He®@”" N @ N @*. The restis easily checked with commu-
tator formulas in G using the first description above and in the
twisted subgroups using the second description.

(5.11) Let R be the set of fundamental roots in (5.5). Let JcC R.
We recall that the parabolic subgroup P, defined by J has a normal
series

P, > Py > Oy(P,), p= charGF(q)

where Pj is generated by O,(P;) and the rootgroups 27" with »
or —7 expressible by the roots in .. P, is generated by P; and the
diagonal subgroup of G, so the index [P;: P¥] is prime to p. P;/0,(P;)
is isomorphic to the direct product of the Chevalley groups (twisted
or not) defined by the connected components of J (regarded as a
subset of the Dynkin diagram).

(5.12) The maximal parabolic subgroup P,_,,, will be denoted simpler
by P, and the parabolic subgroup defined by all K-roots in (5.5) will
be denoted Pg.

The main result of this section is

(56.13) THEOREM. NAUM™ Py, 1=1<N.

Proof. Let B be as in (5.5) and H as in (5.10). Then (B, H) >0
and (r, H) = 0 for » # B, r fundamental in (5.5). Hence, using (5.10),
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Ny(Ui™) & NoZ(Us™)) = No(27°") = Pr-s -

We want to show that N U:*) & P,_, with A as in (5.5). This
is clear if 7 % \, because then 4 = B.

(5.14) If » =\, we argue as follows: Suppose y e Ny (U:*"), and
y = w'hn,u in the Bruhat decomposition of G associated with the
first description above. Since y e Pyp_p w = w%-w’ where w, is the
reflection along A and w’ is expressible by reflections along funda-
mental roots difierent from A and B. Clearly a =0 or ¢ = 1, and
we will show that ¢ = 0. Sinece A4 is an L-root, 2 NG = 25 =
v Ut c UP™. Let 1+ 25°"(¢). Then, using commutator formu-
las, w-23™(@t)-u™" = 25°(t) - [Lo>a22°"(t,) for certain ¢,. Hence if a = 1,
NU-25V(@) un, ¢ UP™ and consequently y-xz3V(t)-y~*¢ UP"+. This
implies ¥ € Ng(U?:*"). Hence a = 0 and y € Py_,.

It is now enough to compute modulo O,(P;_,). The non-K funda-
mental roots in (5.5) are removed one by one. The detached K’s
define direct factors as described in (5.11), so the situation repeats
itself.

If » =+, the 9-root in (5.5) can be removed by an easy calcu-
lation with 6 x 6-matrices. If 7 = 4, the non-K fundamental roots
are removed by repeating the argument, starting with C. If sy,
the last two steps are removal of a 4-root and an L-root as in the
argument (5.14). If 7 = v, the last step is removal of the short root
in the subsystem K o—=—oc, an easy verification.

(5.15) COROLLARY. Let ye Ny(Us*). Then

y="h-( II yo)-y"
Qcoker
with h in the diagonal group of @, y,e2(q@'")N G, y*e U and y,
as in Lemma (5.6).

Proof. The decomposition of y follows from Theorem (5.13) and
the description (5.11) of parabolic groups. Note that O,(Pgx) = U™".
Because of (4.6) y, normalizes 2/, N G for all re @*". It is checked
with the models of (3.8) and (3.10) that y, is as in (5.6).

(5.16) Let E be a finite group, D a subgroup and p a prime. We
will say that D is p-maximal in E if for a subgroup F with greater
p-part than D, DC F & E implies F = E.

(5.17) COROLLARY. If n =+ and p # 2 or if )=y, then "0;*"(q'"")
18 p-maximal in G, p = char GF(q).
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Proof in outline. If not, we may suppose that y € Ngy(Us®®) — Us*®
is a p-element. By (5.15) and the argument of (1.11), y € U?"*. Then
we may assume that

l#y= 1;1 +xi‘}}’(,,(tr) with 272, ¢ U™ .
re@fr

Taking commutators between y and elements from U:"® we may
reduce to the case with just one term in the product. Conjugation
by elements from the monomial group of ""'@$"(¢'”') then yields
sufficiently many elements to show that (y, ""'@{**(¢'"")> = G.

In particular this shows that if » # 2 the embedding 2D,,.,(¢*) <
D,,..(q) obtained for » = \, cannot be refined to the sequence

*Dpn11(0*) € Byuii(Q) € Diso(q)

which may be obtained in orthogonal geometry by choosing appropri-
ate nonisotropic vectors and their orthogonal complements. See e.g.
Artin [1, p. 147].
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