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ON COMPLETENESS AND SEMICOMPLETENESS
OF FIRST COUNTABLE SPACES

JOYLYN REED

In this paper, well known completeness conditions in
Moore spaces are generalized to arbitrary first countable
spaces. Relationships are established between these con-
ditions and various other completeness concepts including

Cech completeness, countable completeness, and countable
subcompactness. Finally, conditions are given for embedding
a given first countable space in a ‘first countable complete ”’
space. As one application of the theory developed, a neces-
sary and sufficient condition is obtained for the embedding
of a Moore space in a semicomplete or ‘ Rudin’’ complete
Moore space.

There has been considerable work done concerning complete Moore
spaces, i.e., spaces satisfying R. L. Moore’s Axiom 1, and completable
Moore spaces, i.e., spaces which are dense subspaces of complete Moore
spaces. There has also been much interest in M. E. Estill Rudin’s
concept of semicomplete Moore spaces, i.e., spaces satisfying Axiom
1”. In this paper the author applies the concepts of completeness
and semicompleteness to more general first countable spaces and estab-
lishes some theorems involving these concepts. Embedding theorems
are also given. The last theorem of the paper answers a question
discussed by Steve Armentrout at the Arizona State Topology Conference
in 1967 by supplying a necessary and sufficient condition for a Moore
space to be a dense subspace of a semicomplete Moore space.

The lower case letters m, n, 1, j, and k will denote positive integers
unless otherwise stated.

DEFINITION 1. The statement that the sequence G, G, G - -
is an f.c. development for the space X means that for each n, G, =
{9.(x) | i = n, x e X}, where for each z¢ X, g,(x), g,(x), g;(x), - -+ is a
sequence of open sets forming a local base at x.

DEFINITION 2. The f.c. development is complete (semicomplete)
provided that if M, M, M, --- is a sequence of sets such that for
each n, M, is a closed set contained in some element g, of G, and
contains M,., (M, is an element of G, and contains JM,.,) then

o M; = ©. The first countable space is complete (semicomplete)
if and only if it has an f.c. complete (semicomplete) development.

THEOREM 1. A T, regular first countable semicomplete space X
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satisfies Baire’s theorem (the intersection of countably many dense
open sets is a dense subset of the space).

Proof. For each z ¢ X, let g,(x), g,(x), -+ denote a local base for
2 such that the corresponding f.c. development G, G,, --- is semi-
complete. Let D = d,, d,, --- denote a countable collection of open sets,
each dense in X, and let -R be an open set. R contains a point p,
of d,. Let g,(p)e€G, such that p, eg,(p) and g, (») S ENd,. For
1 >1, let p;eg,, (p,_) Nd; and let g,(p;) € G; such that p;€ g, ()
and ¢,,(p,) S g.,_(p:-,) N d;. Notice that for each 4, g,(»)Sd:N R
and 9,,(9:) & ga,_,(P:-)). Thus N, 9.,(p) # @. Since N 0.,(2) S
(N d,) N R, the intersection of D is a dense subset of the space.

The reader should compare the following two theorems with those
analogous theorems of Creede in [4].

THEOREM 2. A completely regular f.c. complete space X with a
G; diagonal is Cech complete.

Proof. Let Y be a T, compact space such that X is a dense sub-
space of Y. For each z¢ X, let g,(x), g.(%), - -+ be a sequence of open
sets of X forming a local base at x such that the corresponding f.c.
development is complete, and {x, ¥} & N, 9.(¢;) implies z = y. For
each x e X and positive integer ¢, let G,(x) be an open set of Y such
that Gy(x) N X = g.(x), and let H,(x) be an open set of Y containing
x such that H,(r) S Gi(z) (in Y). Notice Hi(x) N XN X & Gy(x) N X.
For each positive integer ¢, let H, = |J {H(x) |z <€ X}. Thus H, H,
H, ... is a sequence of open sets in Y such that X & N, H..

Assume pe N2, H;. For each i, let Hy(x;) contain p. Let A4, =
Hfx)N XN X. Since X is dense in Y, A, 4,, 4,, --- is a sequence
of nonempty closed sets of X with the finite intersection property such
that for each 4, A, S g,(x;). Thus there is a point x of X such that
xe N2, A,. Assume z = p. For each 7, let R, be an open set of Y
containing p such that R, (in Y) does not contain x and B, & H(x,).
Let B,= R, N XNX. As before, N, B; contains some point & of X.
But {x, &} S N2 9:x:), so x = k. However, « = k since x¢ B, and
ke B,< R,. Thusit mustbethat z=pand pc X. Hence N= H, = X.

THEOREM 3. A Cech complete first countable space X is f.c.
complete.

Proof. Let Y be a T, compact space such that X is a G, set
in Y. Let P, P, --- be a sequence of open sets of Y such that
X =Nz Pi. For each xe X, let g,(x), 9:(x), --- be a sequence of
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open sets of X forming a local base at x, such that for each 47,
9::(2) S g:(x). For each x e X and positive integer ¢, let G,(x) be an
open set in Y such that g,(x) = G,(x) N X, and let H,(x) be an open
set of Y containing x such that H,(x) S G.(x) N P, and H,_,(x) S H,(x).
Thus %,(x), hy(x), --- is a local base at x in X where for each ¢, k,(x) =
H(x) N X. For each positive integer %, let H, = {h,(x) |n = i, x € X}.
Thus H,, H,, H, --- is an f.c. development for X.

Let 4, A,, A, --- be a monotonically decreasing sequence of closed
sets of X such that for each 4, 4, Sk, (x;) € H;. The sequence Cl Y 4,,
ClYA,ClY A, ---, where Cl Y A, denotes the closure in Y of A4,,
is a sequence of closed sets in Y with the finite intersection property;
hence, there is a point ¥ of Y such that ye N2, Cl Y A,. For each
1, ClYA, & ClY(H,(x;) N X) S P,. Thus y €Nz, P; and hence y € X.
Thus H,, H,, H,, --- is a complete development for X.

In first countable spaces, the concepts of f.c. completeness and
f.c. semicompleteness are related to Frolic’s concept of countable
completeness [6] and de Groot’s concept of countable subcompactness
[7]. To avoid confusion the term “countable éech—completeness”,
coined by Lutzer and Aarts [1] will be used for the term “countable
completeness”.

The phrase “C is a centered system on X means “C is a collection
of subsets of X such that for any finite C, = C, N C,= @”. A collec-
tion F' of nonempty subsets of X is called a regular filterbase [7] if
whenever F,, F,c F, some F,c F has F, = F,N F,. A regular space
X is countably C‘ech-complete [6] if there is a sequence {E,} of open
bases for X such that if n, <n, <n, < ... and if the sequence {B,,},
where B,, € B,, forms a centered system, then ({B,,}= @. A regular
space is countably subcompact [7] with respect to a base B of open
sets provided that any countable regular filterbase F < B has
NF+g.

THEOREM 4. In regular first countable spaces, the following
implications hold:

(1) f.c. completeness == (2) countadle Cech-completeness
== (3) f.c. semicompleteness .

None of the above implications are reversible. In Moore spaces,
countable éech-completeness <= More completeness < f.c. completeness
[1], and Rudin completeness < f.c. semicompleteness. M. E. Rudin’s
example [5] of a Rudin complete space that is not Moore complete
shows (3) == (2). The following example shows (2)=(1).

ExamMPLE A. The Sorgenfrey line is the topological space S of
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real numbers topologized by taking sets of the form [a, b) to be basic
open sets. Let D, D, D, --- be a monotonic sequence of open sets
on the line such that Nz, D, = I, where I is the set of irrationals.
Let 7, 7, 7, --+ denote the rationals. For each x€l, let {[z, ,)} be
a sequence of open sets closing on 2« such that for each 7, z, is a
rational not in {r, 7, ---, 7;}. For each rational z, let {[x, )} be a
sequence of open sets closing on « such that for each ¢, x, is a rational,
a'nd [xr xz) N ({/rly Toy =0y 7/'z} - {x}) = ®'

For each positive integer n, let B, = {[z, x,)/x € S, ©+ = n}. Notice
that if » is a rational there exists an » such that for ¢ = n, rege B,
implies g = [r, #;,) for some x,. Let {[p; ¢.)} be a centered sequence
such that for each <, [p,, ¢.) € B;. Let xe N {[p;, ¢.]}- Due to the con-
struction of {B,}, x € N{[»;, ¢;)}- Thus S is a first countable, countably
éech-complete space.

Now let G,, G,, G, --- represent any f.c. development for S. There
must exist a monotonically decreasing sequence having the following
properties. (1) the nth term of S belongs to G, and contains its left
endpoint, p,, and (2) p,, D, Ps, ++- is an increasing sequence converging
to a number x on the line. The sequence {[p;, )} is a monotonically
decreasing sequence of closed sets such that the nth term is a subset
of some g € G,,, but has no common part. Thus S is not f.c. complete.

The following theorems follow readily.

THEOREM 5. Any open subspace of an f.c. complete (f.c. semi-
complete) s f.c. complete (f.c. semicomplete).

THEOREM 6. A G, subspace of a regular f.c. complete space s
f.c. complete.

In Moore spaces, Rudin completeness < countable subcompactness.
In regular first countable spaces, countable subcompactness implies
f-c. semicompleteness. In [1], Lutzer and Aarts use the term “com-
pleteness property” for any property implying the Baire property.
Of the several completeness properties they examine, all but countable
subcompactness and subcompactness are such that a space may have
the property locally but fail to have it globally. The proof they give
showing that if a regular space is locally countably subcompact then
it is countably subcompact may be slightly altered to yield this
theorem.

THEOREM 7. If a regular first countabdle space is locally f.c.
complete, then it is f.c. semicomplete.

It would be interesting to know if in first countable spaces, f.c.
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semicompleteness implies countable subcompactness.
Some technical definitions are needed for the following theorems.

DerFiNITIONS. (2) If G = G, G,, G, --- is a sequence of open sets,
the sequence g, g,, -+ is a nested sequence (g-sequence) wrt G if and
only if for each 4, g;€ G, and contains g..,(g; € G; and contains ¢,.,).
(b) The set sequence g, ¢,, --- is adjacent to the set M if and only
if for each 7,9,N M= @. (c¢) The set sequences ¢,, g,, 9s +++ and
ky, ks, ks, - -+ are mutually separated if and only if for some 7, g, N
k,= . (d) The open set D covers the set sequence g, ¢,, @5, -+ if
and only if for some 7, g, & D.

THEOREM 8. FEach T, first countable space is a dense subspace
of an f.c. complete space.

Proof. Let X be a first countable space. For each ze X, let
g.(%), g,(x), --- be a monotonically decreasing sequence of open sets
forming a local base at z, and let G = G,, G,, G;, --- be the corre-
sponding f.c. development. The statement that ¢, g, --- is an
f-sequence means for each n, g, = [, ¢} for some sequence ¢!, g3, 95,

- where for each 1, g;eG,. If each of g = ¢, ¢, 05 --- and k=
ki, k,, ks, --- is an f-sequence then we will say ¢g ~ %k if and only if
for each positive integer n there exist positive integers ¢ and j such
that &, S g9, and g; S k,. If g is an f-sequence, let g’ denote {k|g ~ k}.
Let X' ={¢"|g is an f-sequence such that each term of g is non-
empty}. For each open set D, let D' ={¢'| D covers g}. Let 0={D'|D
is open in X} be a basis for a topology o on X.

The ordered pair (X', Q) is a topological space. X is a dense
subspace of X' because X is homeomorphic to the subspace {I(z) |z ¢
X, I(x) = g.(x), g-(x), ---}. X' is first countable. For each I'e X',
where I = ¢, g,, ---, and for each positive integer », let D,(I') = ¢,.
Thus D.(I'Y, D(I'Y, D(I'Y, --- forms a local base at I’ in X'.

X' is f.c. complete. For each positive integer ¢, let G =
DY |m=11eX'}. Let M, M, M, --- be a monotonically de-
creasing sequence of closed sets of X’ such that for each 7, M, &
D,(yi) for some D, (y:)eGi. Since N, D, (v:) = @ for each m,
then N, D, (¥} # @. Now for each ¢, D, (¥}) = M. gu(y,) for some
sequence ¢.(v.), 9:(¥.), 9:(¥:), - - - where g,(y,) € G,. Thus D, (i) S 9:y.)
since m; = 4. Since N, D, (y,) # @ for each m, then N, 9:(y.) # D.
Observe that g.(y;) € Gi, so Ni= 9:(¥), N 9.(¥2), MNizi9:(y.), --- is an
f-sequence. Let J denote this f-sequence and examine any open set
D' of X’ containing J’. D contains M., g.(y;) for some k. So D
contains N, D, (¥}, and thus D’ contains N, D, (¥} and M, J'
is thus a point or limit point of M, for each =, and hence J' e (= M.
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Thus, G1, G, Gj, --- is an f.c. development for X'.

THEOREM 9. Fach regular T, space X is a dense subspace of a
T, f.c. semicomplete space.

Proof. TFor each zc X, let I(x) = g,(x), g,(x), -+- be a nested
sequence of open sets forming a local base at z. Let G =G, G,, G,
-+« be the corresponding f.c. development for X.

If Iis a nested sequence wrt G, let I’ = {K | K is a nested sequence
wrt G and K ~ I} (refer to the technical definitions and the proof of
Theorem 8). Notice that xz = y implies I(z) and I(y) are mutually
separated.

Let K denote a maximal collection of mutually separated nested
sequences wrt G such that for each z, I(x)e K. *Let K' = {k' | ke K}.
If D is an open set, let D' = {k' | D covers k and ke K}. Let B=
{D’| D is open in X} be a basis for a topology 2 on K'. X is a
dense subspace of the T, space (K’, Q).

K' is first countable. For each I'¢ K', where I = g¢,, ¢, 95, -+ *,
and each positive integer n, let D, (I') = g,. Thus D('), D), ---
forms a local base at I’ in K'.

K’ is f.c. semicomplete. Examine the f.c. development for K',
G' =G, G, -+, where for each ¢, Gi = {D,(I') |n =1 I"e K'}. Let
M = D,(I}), D,(I), --- be a nested sequence wrt G, i.e., for each ¢,
D, (Ii.) < C,(I)) and D, (I)’ € Gi. Now for each 1, D, (L)) = gn(x)
for some g,,,(x;) € G,. Sinceg,,, () S g (@) in K', then g, (@) S
Gux) in X. Hence, ¢,,(%,), 9.,(%), 9n,(®s), - -+ is a nested sequence
wrt G in X. Since K is maximal, there is an element I = g,, g,, g3,

- of K such that for each %, g,,(x,) N g, @. Let D' be an open
set of K’ containing I'. D contains ¢, for some %, and in fact D
contains g, for k= ¢. Thus forall k, DN g,,(x,) # @ and D' N g, (1) =
D'ND,I'Y s @. So I'eD,[(I) for each positive integer k. Thus
I'e M. D, (I!)'. Hence, G' is an f.c. semicomplete development for
K'.

DEFINITION 3. Property R. A T, regular first countable space
has property R provided that there exists an f.c. development G =
G, G,, G, --- and a collection K of mutually separated nested sequences
wrt G such that: (1) for each x € X, some element of K forms a local
base at @, (2) if g is a nested sequence wrt G, there is an element %
of K such that ¢ and % are not mutually separated, and (3) if the
open set D covers the sequence g,, ¢, ¢s, - -+ of K, there is an integer
n such that D covers any element &k of K adjacent to ¢,.

THEOREM 10. A T, regular first countable space X with property
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R is a dense subspace of a T, regular f.c. semicomplete space.

Proof. Let G and K respectively be the f.c. development and
collection as assured by property B. That X is a dense subspace of
a T, f.c. semicomplete space can be seen by applying the part of the
proof of Theorem 9 following *, using K as defined here.

We will now see that the space K’ is regular. Let D’ be an
open set containing I’ of K’, where I = g,, 9, g5, --+. Thus D covers
I, and there is an integer » such that if &k = k,, k., -+ of K is adjacent
to g., then D covers k. Let &’ be a limit point of D,(I') = ¢g,. Thus
D(E'), Dy(E"), +-- is adjacent to D,(I')’ and so k., k., ks, --- is adjacent
to g,- Thus D covers k, and K'e D’. So D,I’)y = D'

THEOREM 11. FEach T, regular f.c. semicomplete space X has
property R.

Proof. Let G =G, G, --- be an f.c. semicomplete development
for X. For each ze X, let I(x) = g.(x), g.(x), - -+ where for each <,
g.(x)e G, and I(x) forms a local base at x. Let K = {I(x) |z X}.

Let g =9, 9, --- be a nested sequence wrt G. Thus for some
2, €N 9;» So I(xr)e K and g and I(x) are not mutually separated.

Let D be an open set covering I(x) of K. Let n be an integer
such that g,(x) & D. Thus if I(y) is adjacent to g.(x), ¥ € g.(x) and
thus, y€ D. Thus D covers I(y). This completes the proof that X
satisfies property R.

DEFINITION. If X is a topological space, the statement that G
is a nested development for X means that (1) for each positive integer
n, G, is an open cover of X containing G,., as a subcover and (2) if
U is an open set and p is any point of U there is an integer » such
that pege G, implies g & U.

DErFINITION. The topological space X is a Moore space if and
only if it is a regular T, space with a nested development.

DEFINITION. A complete (semicomplete) Moore space is a Moore
space with a nested development G having the property that if
M, M,, M,, --- is a sequence of sets such that for each =, M, is a
closed set containing M,., and M, is a subset of some element g, of
G, (M, is an element of G, and contains M,.,), then Nz, M, + @.
Such a development is called a complete (semicomplete) nested de-
velopment.

Every complete Moore space is semicomplete, but the converse
is not true [5]. Not every Moore space is a dense subspace of a
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complete Moore space [5]. In [9], Whipple provides a necessary and
sufficient condition for a Moore space to be completable. Not every
Moore space is a dense subspace of a semicomplete Moore space [5].
In his thesis for the University of Iowa, Alzoobaee provides a sufficient
condition but it is not known if this condition is necessary for a
Moore space to be semicompletable. The following definition and
theorem provide a necessary and sufficient condition.

DEFINITION 4. The Moore space X satisfies Axiom K provided
that there exists a nested development @ and a collection K of mutually
separated g-sequences wrt @ such that: (1) for each xe X, zecnyg
for some g of K, (2) if d is a nested sequence wrt @, there is an
element g of K such that d and ¢ are not mutually separated, and
(3) if the open set D covers the sequence d of K, there is an integer
# such that if g¢,, g, ¢; --- is an element of K and g, covers d, then
D covers any element %k of K adjacent to g,. (The reader should
refer to definitions a, b, and ¢ for explanation of above terms.)

THEOREM 12. A Moore space X satisfying Axiom K is a dense
subspace of a semicomplete Moore space.

Proof. Let X be a Moore space with @ = @, Q,, @, +++ and K
defined as in Definition 4. Form the topological space (K’, 2) as in
the paragraph following * in the proof of Theorem 5, using @
for G.

For each k¥ e K’, where k =1k, ky, ks -+, let g, (k) =k, As
before, g.(%'), g(k'), --- forms a local base at %’ in K'. For each
positive integer n, let Q, = {g.(k") |1 =n, ke K'}. Q@ =@Q| @), Q, ---
is a nested development for K’. Let D’ be an open set containing
k" of K'. Thus D covers &, k,, ks, -+- of K. There is an integer n
such that if g, g, ¢;, --- is an element of K and g, covers k, k, k,,
.-+, then D covers any element m,, m, m, -+-+- of K adjacent to g,.
Let d’ be an element of @/, containing %¥'. Now d = ¢,(j") for some
positive integer ¢ = n and je K. Also g.(j") = j, for some 7y, Js, Js, ***

K. Thus j, covers k. Assume &/, where h = hy, hy, hs, -+, 18 a point
of limit point of &/, i.e., of ji.. Thus g,(%), g.(’), gAY, -+ is adjacent
to ji, and hence h,, hy, h, --- is adjacent j,. Thus D must cover

Ry Ry By ++- and B’ e D'. This shows that K’ is regular.

From techniques used in the proof of Theorem 5, we see that K’
is T,, contains X as a dense subspace, and the development @ is a
semicomplete nested development for K’. This completes the proof.

THEOREM 13. A dense subspace of a semicomplete Moore space
S satisfies Axiom K.
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Proof. In Theorem 2 of [5], M. E. Rudin proves the following
result. If S is a Moore space with nested development G, S’ is a
subspace of S and G’ is a nested development for S’, there are
sequences T, T,, Ty, -+ and Q,, Q,, Q,, - -- such that (1) 7, and Q, are
subcollections of G, and G, containing 7T,., and @Q,,, respectively
covering S’, (2) if q,, @, q;, -+ is a sequence such that for each ¢,
;€ Q; and contains ¢,.,, then there are sequences w, w, --- of in-
creasing integers and g, ¢,, ¢; - -+ of regions such that for each 1,
9:€T; and contains ¢,,, and ¢,, (in S), and (3) if @, @, @, --- is 2
sequence such that for each 4, x,¢ T, and contains =z,.,, there are
sequences =z, %, 2;, +++ of increasing integers and Py, hy, s -+ of
regions such that for each 4, k,€@Q, and contains %,., and 90—,z ns’.

Let S’ be a dense subspace of a semicomplete Moore space S.
Let M be a semicomplete nested development for S. Let G, = M.
For each positive integer n = 2, let G, = {g| g€ M, and ¢ is a subset
of some element of G,_}. Thus G =G, G, G, --- is also a semi-
complete nested development for S. Let G' be the corresponding
development for S’. Applying the preceding theorem to S, G, S’, and
G', we get the sequences T =T, T, T, -+ and Q@ = Q, Q,, Qs ---.
Notice that @ is a nested development for S’.

For each element z of S such that xe 2. ClSq, for some
sequence ¢, ¢, ¢, +-- Where ¢, €Q; and ¢,,, S q;, let d, denote one
such sequence, q,, @, @3, +++. Let w,, w, w, -+ and ¢,(x), g,(x), + -+ be
sequence such that g,(x)e T, and ¢,(x) contains ¢, (r) and g¢,, in S.
Notice € N2, 9.(x). Now, let z, 2, 25, -+ and h{x) = h(x), hy(x), + -+
be sequences such that &,(x) <€ @,, contains 7%, .(x) and g_liﬂ S’.  For
each n, « is a point or limit point of 7,(z) in S, since for each &t = =,
g..(x) contains « and intersects h.,(x).

If ©+ y and &, and h, exist, then h(x) and h(y) are mutually
separated. Let D, and D, be mutually separated open sets in S
containing 2 and y respectively. Let n be a positive integer such
that any element of G, containing x is a subset of D, and any element
of G, containing y is a subset of D,. Let m >n + 1. Now z¢h,(x)
and h,(x)e G, yeh,(y) and h,(y)eGl,. In S, %,(z) is a subset of
some element of G,_, containing x and 7,(y) is a subset of some
element of G,_, containing y. Thus A,(x) = D, and h,(y) S D,. So
ho(x) N h,(y) = @.

Let K = {h(x)| xS, h(z) exists}. Thus K is a collection of
mutually separated g-sequences wrt @, where Q is a nested develop-
ment for S’.

To examine £3 of Axiom K, let D be an open set of S’ covering
) = hi(x), hoz), ho(x), -++ of K. Let m be the maximal open set in
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S such that m NS’ = D. D contains k,(x) for some n. Thus D con-
tains g, (x) N S’, and m contains g, (x). Thus m contains x. Let k
be a positive integer such that xcge G, impliesg &S m. Letj>Fk + 1.
Let h(y), ho(y), hy(y), --- be an element of K such that &;(y) covers
h(z). Since xeh,(x) in S, for each 4, x € h,(y) in S. Since h;(y) in S
is a subset of some element g of G,_,, then xc€g and g & m. Thus
hiy)Smin S, and y e m. Now let hy(p), hoD), hs(D), - -+ be an element
of K adjacent to h;(y). The point p is an element of h,(p) in S for
each 4. Let m, m, m, --- be a sequence such that for each 7, m,e G,
and contains 4,.(p) in S. Thus for each 7, m, N h;(y) + @, since
hio() N hi(y) = @. So peh,(y) in S. Since 7;(y) S m, p€m. Thus
for some 4, m contains h,(p). Hence D contains k,(p) and covers
(D).

To examine #2 of Axiom K, let g, q, g, --- be a nested sequence
wrt Q in §’. Thus for each #, ¢,cQ, and contains ¢,,,. Let w,, w,,
ws +++ and gy, g g5, -+ be such that g,e T, and g, 2 ¢, and q,,
in S. Since G is a semicomplete development for S, there is an x such
that € N, g.. Thus for each 4, x € ¢, in S since for j = 7 g; contains
x and intersects ¢;,. Thus € 2. ¢, in S, where ¢; € @, and g, contains
¢;..- Examine h(x). Let q(x), q.(2)’, ¢;(z)’, - - - be the defining sequence
for h(x), i.e., x € N2 ¢,(x)' in S and ¢,(x)' € @, and ¢,.,(z)' & ¢.(x)’. The
sequence w,, W, W -+ and ¢,(x), g.(x), gs(x), - -+ were chosen such that
9.(2)2¢,..(x) and ¢, (x)" in S. Since for each n, z € g,(z) and x € ¢,(x)
in S, then g,(«) N ¢.(x) # @. Since k,(z) contains ¢, (r) N S’, we have
h.(x) Ngq. (x) # @, and hence, h,(x) N gq.(x)+= @ for each n. Thus
there is an element i(x) of K such that i(z) and g, ¢., q;, -+ - are not
mutually separated.

This completes the proof that a Moore space is semicompletable
if and only if it satisfies Axiom K.
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