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THE BACK-AND-FORTH ISOMORPHISM
CONSTRUCTION

D A L E MYERS

Frequently in model theory and occasionally elsewhere,
a back-and-forth construction is used to show that any two
countable structures satisfying a given relation are isomor-
phic. Such a construction is used to show that any two count-
able dense linear orders without end points are isomorphic
(Cantor), that any two countable reduced p-primary abelian
groups with the same Ulm invariants are isomorphic (see Kap-
lansky, Infinite Abelian Groups), and that any two countable
elementarily equivalent saturated structures are isomorphic
(Morley and Vaught). The back-and-forth arguments using
these constructions can often be reduced to an application
of the following result: If R is a symmetric relation between
countable structures such that (1) %WS implies % and 33 satisfy
the same atomic sentences and (2) %R"S and ae% implies there
is a be%> such that (31, a)R(18, b), then %R% implies 21^23.

Loosely, the second condition requires that related struc-
tures have enough related expansions by constants. We prove a
similar result in which the second condition requires, loosely,
that related structures have enough similar decompositions
into related components. The prototype of our result is a
theorem of Vaught's on Boolean algebras mentioned in the
last section. In order to suitably formalize "decomposition"
we use category theory.

In a subsequent paper, our two theorems will be used to solve

the problem of determining when two free locally-finite cylindric

algebras are isomorphic. In particular, the answer to both questions

in problem 2.8 of [4, p. 463] is no. The answer to the first is yes

if I Δξ I = K and | Δ'ξ | = ic are replaced by \Δζ\^ιc and \Δ'ζ\^ιc

respectively.

Constructors and decomposable relations. We shall use [7] as our

notational reference. A directed category is a small category generated

by a preorder for which every pair of elements has an upper bound.

Let C be a category whose arrows are monies. Let C* be the cate-

gory whose objects are functors from directed categories to C_ and

for which an arrow from an object A: α - ^ C to an object B: β-+C

is an ordered pair </, τ> such that / : a —* β is a functor and τ: A —•

/ o ΰ is a natural transformation. The components of (f, τ): A—>B

are those of r, i.e., the maps Tt for i in the domain of A. If </,
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τ ) : A—+B and (g, σ}: A—+D and i is in the domain of A, then τt

and at are corresponding components. By identifying an object a of
C with the functor 1—»C whose unique object value is α, we can
consider C to be a subcategory of C*. For an object 4 of C*, an
object U A of C is a colimit of A iff there is an arrow A-+\J A
which is universal from A to C. Such an arrow is called a universal
cone. An object c in C is compact iff for every universal cone A —>
U A, every c -* U A factors through A -* U A; an arrow is compact
iff its domain is. (See the last section for examples.) A category is
compactly generated iff for any two arrows a —-̂  b and a —»2b, a—+ιb Φ
a —*2 b implies c~+a —^ 6 =£ c —* α —>2 b for some compact arrow c —> α.
An object in C is countable iff it is a colimit \J C oΐ some C in C*
with countable domain and compact values.

A partial isomorphism between objects a and b of C is a pair
of arrows a+—d~+b in C (recall that arrows of C are monies). Two
objects a and b are partially isomorphic, written a^pb, iff there
is a nonempty set I of partial isomorphisms between a and 6 such
that for every a <— d —* & in /, every compact arrow to a or δ factors
through an extension in I of a+-d—>δ, i.e.,

d1 -^ b

I
I

"d

is completable with a *— df —* 6 in I. If I is as above, we write I: a =pb.
This definition is due to Karp [6]; see [1] for details. Two objects
are partially isomorphic iff player II has a winning strategy in an
appropriate Ehrenfeucht-Fraϊsse game.

For any functor φ: C x x C-+C and arrows a1-*bl9 , α% —*
bn, let φ(al9 , an) —* φ(blf , bn) be the arrow φ(at —» δi, , an —> bn).
A functor φ: C x - — x C—+C is a constructor iff for any objects αx,
•••, a%eC, every compact arrow c—>φ(al9 •• ,α ί l) factors through
^(Ci, •••,£«)"--*• ^(^i, , α j for some compact arrows c1 —• α^ , cw —>
αn. Zero-ary functors 1—>C are also regarded as constructors. Evi-
dently the identity functor on C is a constructor and a composition
of constructors is a constructor. For any set Φ of constructors let
Φ be the smallest set including Φ and the identity functor on C and
closed under composition.

It is not hard to verify that if every object of C is a directed
colimit of compacts, then φ is a constructor iff φ preserves directed
colimits.
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Suppose each component of C has an initial object. Let Φ be a
set of constructors on C. For any φeΦ, any objects al9 — *,aneC
whose components have initial objects pl9 - —, pn respectively, let φ(p19

•• ,P»)-*9>(αi, ••-,»•) be φ(pι-^au •• , p Λ — α Λ ) where p,~>α, is the
unique arrow from p, to α^. A symmetric binary relation R on the
objects of C is Φ-decomposable iff for any objects a and δ in C (1)
αi?6 implies a and & are in the same component of C and (2) αiϋδ
and c —+ α compact implies there is a <£> in Φ, au , αn, δi, , bn in
C, and isomorphisms α = <p(al9 •• , α n ) and 9>(δlf , δ J = δ such t h a t
α ^ δ i , ---,anRb%, and c—>α factors through ^(Pi, Ί ?>»)—*0>(αi> # # #>
αΛ) = α where p , is an initial object of the common component of at

and δ<. (See the last section for examples.)

The back-and-forth theorems. The following lemma is related to
the final functor theorem [7, p . 213].

LEMMA 1. For any compactly generated category _C of monies,
any A in C* with universal cone A —>\J A, and any B—>\JA in
C*, if every component of A—> JJ A factors through a component of
B—> U Ay then \J A is a colimit of B.

Proof. Suppose C, A—> U A, and B—> U A are as hypothesized.
We claim that B—> \J A is a universal cone. Given B—+d, let A—>d
be the unique arrow such that for any A —> \J A component a-+\J A,
the corresponding A~+ d component is a—>d = a-+b-+d where (*)
b—>ίί is a ΰ - + d component and a—>b is an arrow such that a-+b-^>
U A = a —* U A where b —> U A is the B —• U A component corre-
sponding to b—*d. To show that a —>d is independent of the choice
of by let a—>b1—^d and α —*b2 —>d satisfy (*). Thus, in the diagram
below with c—>α, c-~^blf and U ^ . — * ^ omitted, the triangles ϋΓcom-
mute by hypothesis. Since B has a directed domain, there are arrows
δi~-*&3*— b2 and components b3—> (J A and bs—*d such that the triangles
iSΓ commute by naturality.

Hence a-^b1—>δ3—>U^ = α—>δ2—>δ3—>(J^ a n d , since δ3 —> U A
is monic, α —> δ : —»• δ3 = a —• δ2 —> δ3. Hence α —•* δx —> ώ = a —> δ2 —> d.
Finally, these components "add up" to an arrow (cone) A—>d since
if A assigns a—+a' to an arrow of its domain, if α—> \J A and α'—>
U A are the associated 4 - > | J ^ components and if α —>d — α —> δ —->d
and a' ~>d = af —* δ' —• α! are the corresponding arrows satisfying (*);
then, letting α —* δ' = α —> α' —> δ' and noting that α —•> 6' —> d satisfies
(*), we have a—+a'—+d = α - ^ α ' —• 6f —>d = a—^bf—>d — a—>d, the
last equality due to the independence of α —* d from the choice of δ.

By universality of A-+\J A, there is a U ^ - * ^ s u c h that A—•
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\JA->d= A-»d. We show that B-> \J A -> d = B-*d. Since C is
compactly generated, it suffices to show that c —*δ —>\JA~+d — c—>
b—+d for every pair δ —• U A and 6 —•*d of corresponding components
of i? —̂  U ^ and B~+d and every compact arrow c~+b. Suppose
61 —+ U A and b1—>d are corresponding components of B —> U A and
B-+d and c — ^ is compact. By compactness c—>δx — » \ J A = c - +
a —± U A for some A —+ U A component a—+\J A. Let α —>d be the
A —> d component corresponding to a —> \J A. Then by definition of
A—+d, a—>d = a—>b2—+d for some B—+d component b2—+d and some
α—>62 such that a~+b2-+\J A = a-+\J A. Thus in the diagram
above, this time with a—>b1 omitted, the triangle H commutes by hypo-
thesis and the triangle C by choice of JJ A —+ d. Since B has a directed
domain, there are arrows b1—>bi<—b2 and components &*—>\JA and
bi—+d such that the triangles N commute by naturality. Now c —*
h^bs^lj A = c^b±^\J A = c^a^\J A = c-+a-->b2-+bt--+\JA
and δ3 —• \J A is monic so c —• δx —> 63 = c —> α —»• δ2 —> δ3 and the quin-
tilateral Q commutes. Using the commutativity of the triangles H,
N, C, and ab2d and the quadrilateral cbγ U Aα, c—>-b1—>\JA—+d= c—>
α —> U ^ ""̂  ̂  = 0—>α—>ώ = c —> α —̂  δ2 —> ώ = c—+a^bι~>bz—+d =
c—>br-*b3—+d = c-^δL—>ώ. Hence β—> U -4 ~* ̂  == B—+d.

To see that U A —> d is the unique such arrow, use the same
diagram, this time with c, b19 and δ3 omitted and U A—+d replaced by
\JA-+'d, to show that if B-+\JA->' d = B->d, then A->\J A-+f d =
A —> d and hence, by the universality of A —> U A, \J A —> d' = U A —• d.
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THEOREM 2. (Countable and ~p implies —.) If a and b are
countable objects in a compactly generated category of monies, then
a ~pb implies a ~ b.

Proof. Let A —» a and B —> b be universal cones from functors
with countable domains and compact values; let αL —•> α, α3--> α, α5—>
a, and b2 —> δ, b4 —•> δ, be enumerations of their (compact) com-
ponents; and let 7: a ~p δ. Let a<—do—+b be any element of I. Given
arrows a+~dk-+b in / and dk_γ —> e£k, k = 1, , i — 1, such that the
solid part of the diagram below commutes, let a<—di-^b in / b e a n
extension of a<— cίί_1 —-> 6 via some d ^ —•> c£, such that αt —• α, if i is
odd, or bt—+b, if ΐ is even, factors through a<—di—^b.

Let Z) in C* be the functor from the directed category ω for
which D(i) = dί and D(i-+ i + 1) = Ĝ  —•* d!ι+J, i.e., D = "ώ 0^* ^i —*
eZ2 "> and let D-^a be the arrow of C* whose ith component is
di —> α. By construction, every component of A —> a factors through
a component of D—>a and so, by Lemma 1, a is a colimit of 2λ
Likewise 6 is a colimit of D and hence a ~ b.

THEOREM 3. (Decomposably related implies =p.) If every com-
ponent of the category C has an initial object, if Φ is a set of
constructors on C, and if R is a Φ-decomposable relation, then aRb
implies a ^.pb.

Proof. Suppose Φ and R are as hypothesized and suppose aRb.
Let I be the set of partial isomorphisms from a to b of the form
a = φ(al9 , an) <— φ(pί9 , pn) -> φ(bu - , bn) ~ b, where φ is in Φ,

a,iRbz, pt is an initial object of the common component of at and bi9

a ~ φ(au , an) and ^(δi? - , δJ ~ b are isomorphisms, and for dύ

in the component of pt and ^ —>ώ, the unique arrows, φ(pλ, , p j - ^
^(ώi, , dn) is ^ ( ^ -> di, - , pn -> dn).

If p is an initial object of the common component of a and b,
then, since the identity is in Φ, α <— p—>b is in I and hence I is
nonempty. If a = ^(αx, , αΛ) <— ^ ( ^ , , p J -* ^(δ1 ? , 6Λ) = δ is
in I and c —> a compact, then, since ψ is a constructor, the compact
arrow c —> φ(alf , αΛ) = c —> α = ^(α^ , αΛ) factors through ^(c l y
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• , cn) —»φ(au •••, an) for some compacts ci —>αέ. Since R is Φ-
decomposable, each ct —+ at factors through <p(piί9 , Vip) —* 9>i(α<i>
• , α i Λ i ) ~ »i for some φt in Φ, some ai3- and 6* 5 with ai3'Rbi3 and some
α< = <Pt(aiU , α<n<) and ^ ( 6 ^ , , bίn.) ~ bt. Hence c —> α factors
through α ^ 9>(α,, , αw) = φ(φ1(all9 , α1 W l), , 9>Λ(αnl, , αΛ Λ | l)) <-

• , δΛ»Λ)) = 9^(δi, •••,&») = & which is in / and which extends a =
<P{a>» ~ -, <*Ί) *~ Φ(P» ' " , V n ) ^ ψ { b u •••, K ) ~ b v i a 9 > ( p l f •••, p n ) - ^
<P(<Pi(Pn, , i>JWl), , 9> (3> i, , 3>»»J). Hence J: α =p b.

Suppose for the remainder of the section that C has an initial
object p. Then condition (1) of the Φ-decomposability definition is
trivial.

DEFINITION. With respect to a given set Φ of constructors on C,
an object 6 is a factor of an object a iff a ~ φ(al9 , an9 b) for some
al9 - , an and some φ eΦ. C is Φ-decomposable iff every compact
arrow c —•> α factors through 9>(p, , >̂) —• <p(al9 , an) ~ a for some
Gi, * , α»ι> some φ e Φ , and some ^(α^ , an) = α.

NOTE. C is Φ-decomposable iff the equality relation on C is Φ-
decomposable.

DEFINITION. For any set Φ of constructors and any object α, the
Φ-factor algebra of a is the partial algebra consisting of isomorphism
types of factors of a under the operations of Φ plus a constant for
the isomorphism type of a. (See the next section for examples.)

COROLLARY 4. If Q is Φ-decomposable and objects a and b have
isomorphic factor algebras, then a ~pb.

Proof. Let R be the relation on C such that aRb iff a and b
have isomorphic Φ-f actor algebras. Suppose aRb and c—*α is a
compact arrow. Then by decomposability of C9 c —• a factors through
ψ{P, ' - , p)—•9(^1, •••,»») = <& for some <p e Φ and some φ(al9 •••,
αn) = a. Let / be an isomorphism from the Φ-f actor algebra of a
to that of bf let α, be the isomorphism type of ai9 and let bt be of
the type f(at). Then 6 ~ <p(bl9 •••, 6Λ) and α{£&<a Hence i? is Φ-
decomposable and, by Theorem 3, aRb implies a~pb.

EXAMPLES. In the following we give examples of constructors,
decomposable relations, and factor algebras in the categories of sets,
linear orders, Boolean algebras, bordered surfaces, and structures of
a first order language.
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Sets. Let Set be the category of sets and 1 — 1 functions. The
empty set is the initial object and the finite and countable sets are
the compact and countable objects respectively. Let φ: Set —> Set be
the functor such that φ{X) = I U {X} for any set X and φ{f) =
/ U {(domain /, range />} for any function / . Then φ is a cons-
tructor. If R is a relation on sets such that XRY iff Xand Γhave
the same finite cardinality or are both infinite, then R is {^-decom-
posable. The {φ}-factor algebra of the set {0, 1, , n — 1} is <{0, 1,
• , n], S, n) where S(ϊ) is ί + 1 if ί < n and undefined if i — n.
The {φ}-ίactor algebra of ω = {0, 1, •} is (isomorphic to) (ω U {°°},
S, oo) where S(a) =<x + lifaeω and oo if a — oo.

Linear orders. Let Lin be the category of linear orders and
1—1 order preserving functions. The empty order is the initial
object and the finite and countable orders are the compact and coun-
table objects respectively. Let φ: Lin x Lin —> Lin be a functor such
that φ{K, L) is an order consisting of an initial segment of type K
followed by a new point followed by a final segment of type L and
for functions / and g, φ(f, g) is, essentially, / on the first segment,
the new point goes to the new point, and g on the final segment.
Then φ is a constructor. If R is the relation such that KRL iff K
and L are both dense linear orders without end points, then R is in-
decomposable. If R is any symmetric relation on linear orders such
that (1) KRL implies K is empty iff L is and (2) KRL and aek
implies there is a b e L such that ({x e K: x <κ a), <κ)R({x e L: x<Lb),
<L) and ({xeK: x >κa}, <κ)R({x eL: x >Lb}, <L), then R is {φ}-
decomposable. The {φ}-iactor algebra of the empty order is <{1}, +,
1> where 1 + 1 is undefined. The {^-factor algebra of the rationale
with the usual order is <{°°}, +, °°> where 00 + 00 = 00,

Boolean algebras. Let Bool be the category of Boolean algebras
with two or more elements and monomorphisms. The two-element
Boolean algebra is the initial object and the finite and countable
algebras are the compact and countable objects respectively. Let
φ: Bool x Bool —• Bool be the cartesian product functor. Then φ is
a constructor. If R is the relation such that ARB iff A and B are
atomless Boolean algebras, then R is {^-decomposable. If R is any
symmetric relation on Boolean algebras such that (1) ARB implies A
is the two-element algebra iff B is and (2) ARB and aeA implies
there is a beB such t h a t A[a]RB[b] and A[ — a]RB[ — b] where A[a]

is the ideal (considered as a Boolean algebra) generated by α, then
R is {φj-decomposable. Relations of this type were first studied by
Vaught [13] who showed that any two countable Boolean algebras
related by such a relation were isomorphic. Decomposability is
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simply a categorical generalization of conditions (1) and (2). The {φ}-
factor algebras of the two-element algebra and the atomless algebra
are the partial algebras <{1}, +, 1> and <{oo}, +, oo> respectively defined
in the previous example. For primitive Boolean algebras, {φ}-ίactor
algebras are nothing more than algebraic versions of the structure
diagrams of Hanf [3] and Pierce [10] which have played an important
role in classifying such Boolean algebras and determining isomorphism
types of Lindenbaum-Tarski algebras [3, 9, 12].

Bordered surfaces. Let Sur be the category whose objects are
bordered orientable surfaces (orientable two-dimensional manifolds
whose boundary is a disjoint union of simple closed curves) each with
a designated homeomorphism from the closed unit disc onto a subspace
of the surface's interior and whose arrows are homeomorphisms from
one surface onto a subsurface of a second such that the designated
map of the first composed with the arrow is the designated map of the
second and such that a boundary curve of the first is either carried
onto a boundary curve of the second or into the interior of the second.
The closed disc with the identity map as the designated map is the
initial object, the compact bordered surfaces are the compact objects
(this is false if the boundary curve condition on arrows is dropped),
and the separable bordered surfaces are the countable objects. Let
C be a cylinder — finite length, closed, and open at both ends — with
a designated (map from the) disc in its interior. Let φ: Sur x Sur —>
Sur be a functor such that for any objects S and T, φ(S, T) is a
surface obtained by cutting out the interiors of the designated disc
of S and T and gluing their perimeters to the open ends of C (C becomes
a tube joining the two surfaces) and letting the designated disc of
C be the designated disc of the result; and such that for any arrows
/ and g, φ(f, g) is, essentially, / on the first surface, g on the second,
and the identity on C. Let σ and τ be the O-ary functors whose unique
values are the sphere and torus respectively with designated discs.
Then φ9 σ, and τ are constructors. If E is the relation between
surfaces such that SRT iff S and T have the same number of
boundary components, the same genus, and homeomorphic ideal
boundaries (see [11]), then B is {φ, σ, τ}-decomposable. The [φ, σ, τ}-
factor algebra of the surface of a solid semi-infinite rod is <{s, ί, 1}, +,
s, t, 1> where s + s = s , s + ί = ί + s = ί , s + l = l + s = l , and all
other sums are undefined. The {<p, σ, r}-factor algebra of the surface
of an infinite binary tree with solid branches of nonzero width is
( { s , t, o o } , + , s , t , o o > w h e r e s + s = s , s + t = t + s = t , s + oo = c^ + s =
oo, oo + oo = co, and all other sums are undefined.

Structures. Given a first-order language with at least one constant
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symbol, let Str be the category whose objects are finite expansions of
structures of the language via constants, i.e., structures of the form
(21, αlf « ,α n ) where 21 is a structure of the language and al9 •••,
an e 31, and whose arrows are isomorphisms from one structure to a
substructure of a second, i.e., monomorphisms which preserve quan-
tifier-free formulas. For any object S3 of Str the initial object of
its component is Prime (33), the substructure of 58 generated by its
constants. Finitely generated structures and countably generated
structures are the compact and countable objects respectively. Let
φ: Sir —* Str be the functor such that for any structure 21 of the
language φ(%) = SI and for any al9 , an e 5X, φ((3I, au , αj) = (21,
alf , αu_3). Then φ is a constructor. If R is the relation such that
2U233 iff 21 and 35 are elementarily equivalent ^-saturated structures,
then R is {^-decomposable. If R is a symmetric relation such that
(1) 2UB33 implies Prime 21 ~ Prime S3 and (2) 5L.R33 and α 6 21 implies
there is a k S such that (21, α)i2(35, 6), then i? is {^-decomposable.

REFERENCES

1. Jon Barwise, Back and forth through infinitary logic, Studies in Model Theory
(M. D. Morley, Editor), The Mathematical Association of America, 1973.
2. Georg Cantor, Beitrdge zur Begrundung der transfiniten Mengenlehre, Math. Ann.,
96 (1895), 481-512.
3. William Hanf, Primitive Boolean algebras, Proceedings of the Symposium in Honor
of Alfred Tarski, (Berkeley, 1971), Amer. Math. Soc, Providence, R. I., 25 (1974), 75-90.
4. Henkin, Monk, and Tarski, Cylindric Algebras, North-Holland Publishing Company,
Amsterdam, 1971.
5. Irving Kaplansky, Infinite Abelian Groups, Michigan Press, Ann Arbor, 1969.
6. Carol Karp, Finite Quantifier Equivalence, The Theory of Models, North-Holland
Publishing Company, Amsterdam, 1965.
7. Saunders Mac Lane, Categories for the Working Mathematician, Springer-Verlag,
New York, 1971.
8. M. Morley and R. L. Vaught, Homogeneous universal models, Math. Scand., 11
(1962), 37-57.
9. Dale Myers, The Boolean algebras of abelian groups and VJell-orders, J. Symbolic
Logic, 39 (1974), 452-458.
10. R. S. Pierce, Compact zero-dimensional metric spaces of finite type, Memoirs of
the Amer. Math Soc, no. 130 (1972).
11. Ian Richards, On the classification of noncompact surfaces. Trans. Amer. Math.
Soc, 106 (1963), 259-269.
12. Roger Simons, The Boolean algebra of sentences of the theory of a function, Ph.
D. thesis, Berkeley, 1972.
13. R. L. Vaught, Topics in the theory of arithmetical classes and Boolean algebras,
Ph. D. thesis, Berkeley, 1954.

Received June 11, 1974.

UNIVERSITY OF HAWAII






