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ON SOME GROUP ALGEBRA MODULES RELATED
TO WIENER’S ALGEBRA M,

TENG-SUN LIy, ARNOUD VAN R0O1J AND JU-KWEI WANG

Along with his study of the general Tauberian theorem
in L;, N. Wiener introduced the algebra M; which consists
of all those continuous functions f on the real line R for
which

> max 1]If(vc)l < oo,

n=—c z€[n,n+

He proved that many features of L,, including the general
Tauberian theorem, are shared by M;. In this paper to
generalize M, to an arbitrary locally compact group G. While
doing this, a host of L,(G)-modules mutually related by con-
jugation and the operation of forming multiplier modules.
A(G) is among them. In case G is abelian, -#Z{(G) is a Segal
algebra, so that it has the same ideal-theoretical structure as
Ly(G). If further G = R, #,(G) reduces to the Wiener algebra
M, with an equivalent norm.

1. Our notations are basically the same as those used in [3].
We use, however, C to denote the complex number field. Throughout
the paper, G is a locally compact group with a left Haar measure
A. Instead of Cy(G), L,(G) etec. we write Cy, L, etc. We view L, as

a subspace of M. We identify two functions that are equal almost
everywhere.

For a function f on G define f’ by
f'@) = fE)4@™),

where 4 denotes the modular function of G. Then f” = f and
(f=9) =g =f" for f,ge L.

If B is a left Banach module over L, (see [3; 32.14]), then B*
becomes a left Banach module by

U, f+¢) = (f'+3, ) (eB;pecB*;fel).

If B=L,(1<p< «) or B =C, the module operation on B* coincides
with the convolution operation on L,(¢ = p/(p — 1)) or M.

Let B be a left Banach module over L,. By [3; 82.22], {f=Jj: f €
L;;je B} is a closed submodule of B. We denote this submodule by
L,xB or B,,. We call B absolutely continuwous if B,;,, = B.

Suppose B is a Banach space, and there is a map (j, ) —j, of
B x G into B such that

(1) J5.=34(eB),

507
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(2) )y =JuieB;x, yc@),

(3) for every ze@, j—j, is a linear isometry,

(4) for every je B, x+ j, is a continuous map G — B.
Then (4, ) —j, is called a continuous shift in B. Such a continuous
shift makes B into an absolutely continuous left Banach module over
L, by

(f 3, ¢) = §f<x)<y;,—l, ¢)dw, (f e L je B; ge BY) .

For details, see [2], [4].
We can define continuous shifts in L,(1 < p < «) and C, by

3:(y) = i(wy) (e L, or Ciu,ye@).

The resulting module operation is ordinary convolution.

Let B be a left Banach module over L,. The continuous module-
homomorphism L, — B (the multipliers of B) form a Banach space
Mult B that can be turned into a left Banach module by

(f=T)g) = T(g*f) (f,9€L;; Te Mult B).

Every je B induces the multiplier f+— f=*j. The following theorem
is essentially due to Rieffel [6] and is proved in [2] as Theorem 5.2:

THEOREM 1.1. Let B be an absolutely continuous module. For
o€ B* let T, be the multiplier f i+ fx¢ of B*. Then T is @ module
isomorphism and o linear homeomorphism of B* onto Mult B*,

A Radon measure on G is a linear functional p: Cy,— C such
that for every compact set C c G there exists a number ¢ such that

G, M =cllill.  (G€Cy, SuppjcC).

The Radon measures form a vector space which we denote by R.
For preR and for an fe L, with compact support we define
f=preR and +xfe R by

U, f=1) = (f"+4, 1)
@, L= f) = G*4f, 19

These formulas reduce to the familiar convolution formulas in case
re L,

Every Radon measure is a linear combination of positive Radon
measures [1]. Thus, if #e R and if X is a relatively compact Borel
subset of G, we can in a natural way define #(X). Further, if pre
R and if A is any Borel set there is a unique &,#e¢ R such that
(X)) = (X N A) for all relatively compact Borel sets X. There

(e Cy) .
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exists a unique |¢|e R such that &,|p] = |&,t| for every compact set
A (see [1; Ch. 13]).

By the Radon-Nikodym Theorem [3; 12.17] we may identify L, ic.
with {¢re R: ¢t < \}.

THEOREM 1.2. If fe L, has compact support and if (€ R, then
Sfxp and pxf lie in L, 1... If, in addition, f is bounded, and pe
L, 14, them fxp and pxf are continuous.

Proof. Let C = Supp f. If Dc G is compact, then

(f *E-1p)(X) = (f » )(X)

for all Borel set X< D. It follows that fxpg < . Further by [3;
20.16], if f is bounded and g€ L, .., then f * g is continuous on every
compact D CG.

The proof for p= f is similar.

From now on, K will be a nonempty compact subset of G which
18 the closure of its imterior.

For e R we define ¢%: G — [0, ) by
() = [|&xtll = | ] (@K) (e@).
It is easy to check that
(= |l

Thus, p*e L, 1., and p# is continuous if e L, ..
Further, if f is a measurable function on G, define f* G — |0,
o] by

Fi@) = | féexlle -

f* is lower semicontinuous, hence measurable. (Proof: For € R put
f+A(x) = min (r, | f(x)]); then f* = sup, f4. Thus, we may assume that

f is bounded and = 0. For jeL,j=0, Xj =1, the function fj*&x_,
is continuous [3; 20.16], and for every ze G,

fH(@) = sup Séxxfj = SUD f7*Exms -
Thus, f* is a supremum of continuous functions.)

LeMMA 1.3. Let ptc R, let f be a measurable function. Assume



510 TENG-SUN LIU, ARNOUD VAN ROOIJ AND JU-KWEI WANG

that either (t <\ or f is continuous. Then
(% 8 = MEDS L, 11D -

Proof. By the assumption, for every xcG we have |f]| =
fH=)| | a.e. on 2K, so that

Paee z | 1wl ).

We may assume f%u%c L,. Then there exists a o-compact set X such
that f*u«* = 0 a.e. outside X. Since the X is o-compact, it follows
from [3;5.7] that there exists a closed and open o-compact subgroup
H of G containing X and K. Every relatively compact Borel subset
C of G\H can be covered by finitely many cosets a,K, «--, a,K where
fHa)t?(a;) = 0 for each 7. Then

(7110l = 2r@p@ =0,

Put f, = &x|fl, 1 = éxlp¢l. Then Slfldlﬂl = gfldﬂl- Further,
fipi = ff5 on Hand fi < f% pf < pf everywhere; therefore (f*, %) =
(f% 9. It follows that we may replace f by f, and ¢ by p;i.e.,
we may assume that f =0, # =0 and that G is o-compact. This
enables us to apply the Fubini Theorem:

(% 9 2 ([ 1 7@ d 2] @)
= {{exa) 1 7)1 dod 1 11 @)
= k) 17@)1 a1l @) = W& 7w d 1 @) -

Note. This lemma, and also its applications, Theorems 3.1 and
6.1, should be read with some caution. In the case where f is con-
tinuous the “f” in the right hand member of the formula denotes
a single function, but the “f” in the left hand member stands for
the class of all functions that are l.a.e. equal to f.

COROLLARY 1.4. For all pteR, S/x“ = MK | ¢ (G). Thus, if
¢ =0 a.e., then 1 =0.

Proof. It is clear that Sy“ < |éx= L £ 1(G) = ME )| £](G). On
taking f =1, we get S/ﬁ = MK Y| ¢|(G). Hence the equality. If C
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is compact, then
e = e = (el s = MK 2021 6) = ME 10 -
Hence we have the second statement.

2. For 1 <p< o let
T2 = Vo= {1€ Lot J°€ Ly} .
Further, put

7o =1{ie L J%e L.},
Z ;0 = {je Ll,loc;jhe Co} .

Clearly 72, 77. As gﬁ - x(K—‘)S]j[, we have ¥, = L,. For je
7 We set

15 = 117°1l, -

THEOREM 2.1. Let 1 < p < . %, and 7, are Banach spaces.
L, is a dense subset of %, the natural injection L,— 7, s con-
tinuwous. The formula

J.(y) = jl@y) (e 7, yeh)

defines a continuous shift in ;.

Proof. Clearly o7, <,, are vector spaces and || [|; is a norm.
To prove completeness of 77;, let {j,} be a sequence in %7, such that
S 17118 < co; it suffices to prove that 37, converges in 77,. We
know that 3 j%(x) converges for all xe G outside a certain locally
null set X. Take a compact set CcG. C is covered by finitely
many translates a,K, +--, a,K of K and we can choose all a, in G\X.
Then

s {152 S50 < =,

so that ¥|j,| < = a.e. on C. By [3; 11.39 and 11.42] there exists
a measurable function ;5 such that Y 7, =7 lLa.e. Then |,|j| <
§Z’S |7.] for every compact C, so je L 1. and 5% < 3j%. Hence,
je 7. We also obtain (j — S 4.)" < 32, 7%, s0

§

”.7 - Zyn

2,

< 513l = 3 4.0 -
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Therefore, j = 2j, in the sense of ;.

For 7, we simply observe that j+ j% is a continuous map 7., —
L., so that 77, is closed in 7.

Next, take je L,. Since &x—1€ L,, j* = |j|*éx—1€ L, and ||7]]} <
171 || éx—ll,» It is easy to see that j*c C,. Hence, L, C 7, and the
injection is continuous. To prove that L, is dense, take je 7;,
e > 0. There is a compact set C such that [|j#(1 — &)|l, =¢. Then
(1 — jécx)" =0 on C and (5 — jé.x)* < 7% everywhere. For p < o it
follows that ||j — jéoe|l% < ||175(1 — &) ||, < e. But jésxe L. Thus, for
p < oo, L, is dense in 7;,. A similar proof works for p = oo.

Trivially, if je 7;, then j,e 7;, for every x. We only have to
prove that x> j, is continuous. As L, is dense, we may assume
je L,. Now for such j we know that the formula 2+ j, defines a
continuous map G — L,. Now observe that the injection L, — 7,
is continuous.

THEOREM 2.2. For 1 < p < o, L, is a dense subset of 7, and
the injection L,— 7; is continuous. Further, C, is a dense subset
of 72, and Cy— 77, 18 continuous.

Proof. The first statement follows from the formula
jh = 1.7 | *Ep—1

and [3; 20.18]. Further, for je C, we have |j|*&x-1€C, as is easy
to prove.

According to the remarks made in §1, 7;, can be made into an
absolutely continuous module. The module operation * is given by
the familiar convolution formula:

THEOREM 2.3. If feL, and je 431 < p £ ), one has for
locally almost every xc @,

£ri@) = @ity -
Proof. We may assume f,j =0. If heC, and h =0, then
t, £.9) = [F@) 4, -9dy = ([ Fh@i@Ddady
= |nt@) | r @i m)dyds .
3. For 1 < p < o let _#] be the set of all measurable functions

f on G for which f¥e L,. Then .4} is a vector space, and the
formula
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LA =1, (fetr)
defines a norm on _7;.

THEOREM 38.1. Let 1< p < oo, q=p/(p —1). Every fe 4, de-
termines @ Of € 7,5 by

G, o) = [i@r@is  Ge 7).
D is a linear homeomorphism on 4V, onto 7,i. We have

o] < 1/MK™) and |07 < SK At

K1

Proof. It follows directly from Lemma 1.3 that @ maps 7} into
7:¢ and that ||@|| < MK~)~'. For the converse, take sc 77. As
L, c 7;, and as the injection L, — 7;, is continuous, there is an f € L,
such that

G, 9 = [i@r@as  GeL).

If fe 7 then ¢ = @f on a dense subspace of 7}, hence on all of
7. We proceed to prove that fe._#; and ||f|}} < |]¢]|S 47,
KK

—1

Assume for the time being that f = 0. Take ¢c(0,1). The set
S ={@ y)eG:yeak; f(y) = 1 — &) f* )}
is measurable. Then for l.a.e. x€ G the set
S. ={yeG:(x,y)e S} = yezK: f(y) = 1 — &) ()}

is measurable. Moreover, the function x — A(S,) is measurable, and
AMS,) > 0 l.a.e.
Let he L,n L, h =0, Supp » compact. Then

(- o r@heis < [ [L8 6. way o) = @ = [rariwd,

where

h(x)
MS.)

i) = |2 @y .

One easily sees that je L, so that
- | r@hds = {r@iwa = 6,0 = 161111515 -

To find an estimate for ||j||% we observe that for every acG,
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woy (e o h() (L MaENS)
@ = [[antw) Sy Esdude = Sh(x)_wdm :

As S, czK we have MaK N S,) =0 unless xcaKK™, so that
7(a) < S h)de = hxEeen(a) .
aKK—1
By again applying [3; 20.13] we find

1315 = e Zmslly < D10l | 40y

KK

Thus, for all ¢ >0 and all he L,N L,, h =0 we get

@ =alrn=susiian |, _ 4.

KKl

Then fe Ly, ice., f& 15 and I Fl; = llg)l | 47"
KK
We have proved our point for the case f = 0. For the general
case we notice that there exists a measurable function 7: G — C such

that |z(x)] =1 for all  and zf = 0. Define : 7;,— C by
(U, ¥v) = (77, 9) .
Then e 735, [|¥] = lisll, and G, ¥) = [i@) @0 for je L. It
follows that zfe._ 7] and ||zf||} < ||qp{[§ 471 g0 fe 4, and
KKl
171l = nell| a7,

KK

COROLLARY 3.2. _/;C L.N L,. The injections A ;— L. and
A5 — L, are continuous.

Proof. By Theorem 2.1, there is a constant ¢ such that for
every je L, |75 £ ¢lljll,. Then if fe._4;, we have

ir = G, 0 = ellol 71N -

Hence fe L. and || f|l. < ¢||®]|||f|li. The proof for the statements

concerning L, is simimilar, using Theorem 2.2 instead of Theorem 2.1,

COROLLARY 3.3. _7; s a Banach space which is also an L,-
module under convolution.

Proof. We know that 7, can be made into a left Banach module
over L,. After Theorem 3.1 we only have to show that the induced
module operation in .77 is convolution. Now for fe L, g€ .7, and
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je 7;, we have
G, 729) = ("5, 9) = || £ @it Doy
= (i e ae-ydady

= [[r@ienawavie = | r@iwoe s

Il

liw|s@o@ sy .

4, For 1 < p < o let

Ay ={f e f is continuous} .
THEOREM 4.1. Cy is a dense subspace of .z,

Proof. Take fe_, ¢ >0. There exists a compact C CG such
that || f%(1 — &y)||, < ¢, and there exists a g C,, g = f on CK, such
that |g| = ]f]|. Then (f — g) =0 on C, and

W =gl = 1(f — 9réell, + [17°Q = &)l + [lg"(@ — &)l = 2¢ .

THEOREM 4.2. For 1 < p < co, #y = (A})as- The formula
Tig =9=«f (feAds9el)

establishes a one-to-one correspondence between ./, and Mult _,.

Proof. First, take feC,. Let S = Supp f. Let U be a compact
neighborhood of S. For every ¢ > 0 there exists a neighborhood V.
of 1 such that V:'ScU and || f — f.|l. =¢ for all xe V.. Then for
xe V, we have ||(f — f.)il. =<¢ and (f — f.) =0 off UK'. Thus,
for we V,, || f — f.ll, = e[MUK)]'".

It follows that x+ f, is a continuous map G — _7, for every
feCy hence for every fe._+, (see Theorem 4.1). Thus, .7 can
be made into an absolutely continuous left Banach module over L,.
It is easy to see that the induced module operation is convolution,
which is the same as the module operation in _/;. Thus, .7, =
Ll*/'//z7 = (J/z;)abs'

Now (A3)ass = Lyx 45, C L+ L, and every element of L =L, is
continuous [3; 20.16]. Hence, (_4;)u. 7, $0 that (A})ws = Ape

We also see that every T, maps L, into .7, hence is an element
of Mult _7,. Let q=p/(p —1),(q@= if p=1). As 7, is an
absolutely continuous module, it follows from Theorem 1.1 that for
every Te Mult 7,¢ there exists a ¢ € 7,7 such that Tf = f=¢(f € L,).
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The rest of the theorem follows from Theorem 3.1 and the trivial
observation that Mult _, c Mult _7;.

COROLLARY 4.3. _/, is a Banach space.

Let us consider the case p = «. Obviously, /. = L... Thus,
{f e N.: f is continuous} is the space of all bounded continuous funec-
tions. It is known, however, that (L.).,, = C,.(see [3; 32.45]). We
could save the situation by defining, for 1 < p < oo,

Ay =Cy N A5 .

Then Theorem 4.2 remains valid if we change “1 < p < «” into

“1 g 10 § OO”,
5. _#, deserves some special attention.

THEOREM 5.1. 717 and _# are Banach algebras under convolu-
tion. If G is abelian, _# is a Segal algebra (as defined in [5; Ch.
6, §2]).

Proof. The injection I: 47— L, is continuous (Corollary 3.2).
For f, ge 77 we have || f«glli = || Il gl = | I|I | fIillg]lf. Further,
#, is a left ideal in L, by Theorem 4.2. The second statement
follows from Theorem 4.1 and the continuity of the shift (see proof
of Theorem 4.2).

Consider in particular the case G = R, the additive reals. Wiener
defines his Banach algebra M, as the set of all continuous functions

S on R for which || f||,;, < o=, where
171, = 3 max [f()] -

M, was discussed in [7; Ch. 2] and [5; pp. 12, 127], [3; II pp. 506,
600]. To show that M, = _#,, for a continuous function f on R
define f* on R by

fi@)=sup |f] if neZn<=ax<n+1.
[(n,n+41]

Then |[[flw, = Ilf*]l.. By taking K =[0,1] we find f*x) = /*(x) +
@+ 1) and f(x) < f5x — 1) + f¥«) for all z. Hence M, = _# and

U= e, = 210 1

6. Finally, for 1 < p < « we set

7, ={re R e Ly}, el =111, -
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For all e R we have Sy“(x)dx = MK |¢]| (G). Hence %7 = M.

THEOREM 6.1. Let 1 < p < oo, q = p/(p — 1). The formula
¥ = far (resine 7))
establishes a linear homeomorphism of 27, onto _#,*. Further,

Pl =K, s |

K1

Proof. It follows from Lemma 1.3 that ¥: 97, — _#,* and that
7] = MK, Conversely, take g _2,*. If C G is compact, then
for every feC, that has its support in C we have

[, = sl AN = sl loIMCE)] 7.
Thus, there is a pte R such that

(9 = \Fde (FeCo.

If pfe L, and || 4], < 6]l erldﬁl/q’ then ¥/t = ¢ on a dense subset
of _#, and we are done.

Take heCy b = 0. Then
gh(xwx)dm _ §§h<x>5x,{<y>dlm(y>dm
= ([roeewdsaiziw) = @ets 120 -

By [3; 14.5] and the continuity of k=&, we obtain (b |#]) =
supje | (4, )| where F = (feCy:|f| =< h*&}. Observe that for
every fe # and aceQ,

f4(@) = sup hx&x(w) = sup gm_lh = Sm—lh = hx&xx-1(a) .

reakK

By another application of [3; 20.13] we find
\r@e@ds = (et 12) = sup |(F, 9] = suD (7, 9)]

= supl[81 1171 = g1l o]« nell, < Nl 1AL, | a7

KK~

Thus, ¢ L, and |[p2], < llgll | a7

KK—1
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COROLLARY 6.2. 97, is a Bamnach space.

By the general theory of Banach modules, 97, can be made into
a left Banach module over L, (see §1, and §3 where we introduced
a module operation on _#};). An application of Theorem 4.1 yields
the fact that for fe L, and pe 97, the module product and the
convolution product f = coincide. It follows that 7; is a submodule
of 7;.

We close the circle by:

COROLLARY 6.3. If p < oo, then 73 = ( #3)arse For all p the
Jormula

Suf = fxp (e %5 feLy)
yields a linear homeomorphism S of %, onto Mult 7.

Proof. For »p =1 we can apply Wendel’s Theorem [3; 35.5],
since %7 = M and 77 = L,. By the last part of Theorem 2.2, 7; =
(72)ars T Zp)ass if D < oo. For any p and for an fe L, that has
compact support, we have

[ Z,C(f*R)N %5 CLyjoc N #7= 75 .

As 7; is closed, (#3)ass = Lix %75 C 7;. Thus 75 = (%) if p <
co, and S, € Mult 7; for all e 9%,. The proof of the facts that
for p # 1 every element of Mult 7; is of the form S,, and that Sis a
homeomorphism is entirely analogous to the final part of the proof
of Theorem 4.2 (using 6.1 instead of 3.1).

7. In order to see how the operations * and ¢ depend on K,
take another nonempty compact set K, that is the closure of its
interior and define

(@) = |¢|(@K) (xeG;preR),
fi@) = || féixlle @€G; fE L) -

As K is compact and K, has nonempty interior, there exists a,, -,
a, such that K ca,K, U +-- Ua,K,. Then we see that

1S (Mg + vee A+ (D)., (HER),
fh = (f?)al +oeee + (fE)an (fe Ll,loc) .

From these formulas it will follow directly that the Banach spaces
Doy Py N7 A4y W, are essentially independent of K: A different
choice of K will only lead to a different, but equivalent norm in
the same space.
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In fact the proof shows that we can relax the conditions on K.
We only need to require that K is a relatively compact set with
nonempty interior. Any such K will lead to the same spaces 7,
Vry N 3y A4y, and 2%, with equivalent norms. The inequalities in
Theorem 6.1 will no longer be true for such a general K. (The
analogous inequalities in Theorem 3.1 remain valid.)

The results obtained so far can be summarized in the following
table where we use the equality sign to indicate linear homeomor-
phism. In each formula, 1/p + 1/q¢ = 1.

7y =Ny o= (1= p< )
(A Dare = Ay Mult 2, =4, AZp= )
Ay =W, 1=p< )
(%ﬁ)abs:% (1§p< 00)
Mult 7, = 97, L=p= )

The equalities in the first and third line clearly do not hold in
general if we put p = o. For the fourth line this is less easy to see.
Take G =R, K =[0,1]. Let j be the function that vanishes on
(— o, 0] and coincides with nth Rademacher function ¢, on (» — 1,
n] for every positive integer n (see [8; Ch. I, §3]). Then je 72,
but 7€ ( 7.)as (It is not hard to prove that, if je( 7l)w, then
lim, , || — j.1|2 = 0, and that the latter formula is false.)

We do not have an adequate description of Mult 72,.

Let us conclude with a table listing 7;, %,, _#,, .+, for compact
G and for discrete G.

G compact discrete
71 < p < o) L, L,
7 0 L, Co
P (1< p = o) M Ly,
7, M Lo
APl £ p = ) c L,
AL = p = ) L, L,
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