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ON GRAPHICAL REGULAR REPRESENTATIONS OF
CYCLIC EXTENSIONS OF GROUPS

WlLFRIED IMRICH AND MARK E. WATKINS

A simple graph X is said to be a graphical regular repre-
sentation (GRR) of an abstract group G if the automorphism
group of X is a regular permutation group and is isomorphic
to G. If a group Gι is a cyclic extension of a group G which
admits a GRR, the question is posed whether G1 also admits
a GRR. Nowitz and Watkins have given an affirmative answer
if Gt is non-abelian and finite and the index [Gχi G] ^ 5. This
paper applies some new graph theoretical techniques to inves-
tigate the problem if [Gt: G] = 2, 3 or 4, whether or not Gι
is finite. As long as Gx is non-abelian, an affirmative answer
can again be given except in only finitely many unresolved
cases.

1* Introduction* A simple graph X with vertex set V(X) and
automorphism group A(X) is a graphical regular representation
(GRR) of the group G if (i) G ~ A(X) and (ii) A(X) acts on V(X) as
a regular permutation group; that is, given u, v e V(X)9 there exists
a unique φ e A(X) such that φ(u) = v. The graph X is a GRR if it
is a GRR of some group.

A number of authors have investigated the question as to which
finite groups G admit a GRR. A complete and easily stated solution is
known in case G is abelian (see [10], [1], and [4]). If G is non-abelian,
the problem is more difficult and the results that have emerged to
date seem to fall far less readily into a neat pattern, (see [6], [11],
[7], [8], [12], and [13]). Nonetheless certain general principles appear
to take form. For example, we are tempted to conjecture that if G
admits a GRR and G <\Gt where G is non-abelian, then G1 admits a
GRR. In particular, it has been shown [7, Theorem 1] that:

If G admits a GRR and if the non-abelian group G1 is a cyclic
extension of G such that the index [Gx: G] ^ 5, then G1 admits a GRR.

The techniques of [7] are inadequate, however, if [Gt: G] = 2, 3
or 4, which is the task of the present paper. Elements of orders 2
and 3 have generally posed extra difficulties in the work on this
problem. Thus [8, Theorem 2]:

Every non-abelian finite group whose order is coprime to 6 admits
a GRR.
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Only affirmative answers are obtained for the existence of a GRR
if [Gv G] = 2, 3 or 4. While the results are not complete, as in [7]
and [8], the number of unresolved cases is finite, the results being
"complete" if \G\ is sufficiently large. This fits in with another
emerging principle that the only "large" groups not admitting a GRR
are either abelian or generalized dicyclic (see [6] and [11]).

In §2 notation will be introduced. The main result of the section
(Theorem 1) is a graph theoretical result that bypasses the obstacles
due to elements of orders 2 and 3 encountered in [7].

In §3 existence of a GRR is demonstrated when G (a group with
a GRR) is extended to a non-abelian group by the cyclic groups C2

and C4, provided G satisfies any of a variety of conditions. One such
sufficient condition is simply that | G \ > 32.

In §4 the group G is extended by C3. The existence of a GRR
follows when | G \ > 36 as well as when | G | assumes certain smaller
values and satisfies certain conditions.

2* Preliminaries* The letter X will always denote a finite simple
graph (except as noted in Corollary 1A below, where X is infinite)
with vertex set V(X), edge set E(X), and automorphism group A(X).
The complementary graph of X relative to the complete graph on
\V(X)\ vertices will be denoted by Xr. Thus A(X) and A(X') are
identical, even as permutation groups. If u e V(X), the stabilizer of
u is the subgroup

The valence (degree) of the vertex u is denoted p(u). The graph X
is said to be p-valent if p(u) = p for all u e V(X), and X is isovalent
if X is p-valent for some cardinal p. (We depart here from the more
conventional term "regular", which serves in another capacity in this
paper.)

The letter G (with or without a subscript) will always denote a
finite group. Its automorphism group will be denoted by Aut (G),
its center by Z{G), and its identity element by e. The cyclic group
of order n will be denoted by Cn and the dihedral group of order
2n by Dn. If K is a subset of G, then (K) represents the subgroup
of G generated by K. If geG, the order of g is o(g) = |<0>|. The
exponent of G, abbreviated by exp (G), is the least common multiple
of the orders of the elements of G.

The letter H (with or without a subscript) will always denote a
subset of the group G (bearing the same subscript, if any) with the
following three properties: (i) e£ H, (ii) heH=>h~ιeH, (iii) <ίf> = G.

The Cayley graph XG)H of G with respect to His the graph with
V(XG,H) = G, and [x, y] e E(XG>H) if and only if y = xh for some h e
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H. A Cayley graph X — XG;II is always connected, and since A(X)
contains all left-multiplications by elements of G, it is transitive on
V(X). If X is a GRR of G and |G | > 2, then X must be a Gayley
graph XGtH for some H, (see [9, Theorem 2]). Moreover, if X is a
GRR of G, then so is X\ and X is ^-valent with 3 ^ p ^ | V(X) | - 4,
(see [13, Lemma 1]).

The group G is in Class I if G admits a GRR. It is in Cίαss 27
if for each H there exists φ e Aut (G) such that φ[H] = i ί but 9? is
not the identity. These two classes are disjoint [11, Theorem 1], and
it has been conjectured that every finite group is in one of these two
classes.

To prove that a given Cayley graph X = XG,H is a GRR of G,
it suffices to show (see [7, Corollary 2.4]) that for some set KaH
such that (K) = G,

φ 6 Ae(X), heK=> φ(h) - h .

The only abelian groups in Class I are the elementary abelian
2-groups (C2)

n for n Φ 2, 3, 4. (See [4] and [10].)
For integers n }> 2, fc ̂ > 1, a graph X will belong to the class

^n,k if it is isovalent and if there exists a partition [Vl9 V2f •••, ^ ]
of F(X) with 2 <£ p g 7t such that every x e Vt is adjacent to ^ &
elements of F y, (i Φ j). Such a partition [Vlf , FP] is called a ^ , / : -
partition. We also allow [Fx, •••, FP] to denote a ^ ) r - p a r t i t i o n
when as many as p - 2 cells are empty.

It is an immediate consequence of these definitions that if [V19

•••, VP] is a ^Λ, f c-partition of X and if a vertex u of X is adjacent
to > k elements of Vi9 then u e Vt. Also, if n ^ n' and A <i A;', then

THEOREM 1. Lβί Xe^nιk and suppose \V(X)\ > n(τnh + 2k),
where m, h are integers such that m ^ 2, h ^ 1. Then Xr ί &m,h

Proof. Suppose X satisfies the hypothesis of the theorem but
not the conclusion. Let [Vl9 •••, VP] be a ^% ) f c-partition of V(X)
where the cells have been indexed so that

Then ^ITΊI ^ ^ I F J ^ |F(X) | > n(mh + 2/b), and so

(2.1) |T7i| >mfc + 2A; .

Arbitrarily choose and fix α e F(X)\FX, and let

Nx = {x\xe Vl9 [a,x]eE(X)} .
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Then \Ni\Sk, since
By assumption there exists a ^ m > / r p a r t i t i o n [Wu •••, Wq] of Xr.

Define Ut = WiΓ\ (FΛ.NΊ). Without loss of generality we may assume
t h a t ITJ11 Ξ> I Ui I (i = 2, , q).

By (2.1), mh + k<\Vx\ = \N,\ + Σ ? = i l ^ l ^ k + m\ U,], and so
h <\U1\. Since the vertex α is adjacent in Xr to all vertices of U19

we have aeWΊ. Moreover, a is adjacent to ^h vertices in each
cell Wt(i = 2, . - . , ? ) . Hence | IT, | ^ Λ, and so |jNi| + Σ?=i \U<\^
k + ICTΊI + (m — 1)Λ. By (2.1), |Z7J > fc + fc. Since each vertex in
V(X)\Vlf is adjacent to ^k and nonadjacent to >h vertices in Ulf

(2.2) F(X)\FX cTF x .

Arbitrarily choose and fix c e FΛZΛ. It will be shown that c e WΊ,
which together with (2.2) implies that W1 = V(X), contrary to the
assumption that [Wu , Wq] is nontrivial, and the theorem will follow.

Suppose e g Wλ. By (2.2), c e V1 and so c is adjacent in X to
^ (p — l)k vertices of ViX)^. Hence c is adjacent in X' to
^ | ViX^V.l -(p- l)k vertices of ViX^V,. But c is adjacent in X'
to Sh vertices of TFX. Hence h ^ | F(X)\Vi| - (p - l)k. This implies
h^ (p — 1)(| FPI — ά), whence A + k ^ | F P | , since p - 1 ^ 1.

Suppose X is |O-valent. Then by consideration of a vertex in F P

it is easily seen that

(2.3) p ^ (p - l)k + \VP\ - 1 ^ pk + h - 1 .

Also, in the light of (2.2),

(2.4) I V{X)\Wι I <; I Nx I + Σ I Ut I ̂  & + (m - l)h .
i=2

Now c is adjacent in X to ^ ^ vertices in Wx. Hence by (2.1), (2.3),
and (2.4), the number of vertices of W1 to which c is adjacent in X'
is at least

\W,\ - p = \V(X)\ - \V(X)\W1\ - p

^ n(mh + 2fc) - [k + (m - 1)A] - (pk + h - 1)

= {n - ϊ)mh + (2n - p - l)k + 1 > h ,

which implies that c e Wx.

COROLLARY lA. Let Xe^n>k be a infinite graph.
belongs to no class ^m>h.

Proof. Let X be infinite and let [Vu •••, VP] be a ^ ) f c - p a r t i t i o n
of X . Suppose X ' e ^ T O , Λ and let [PFί, •••, TFJ be a ^ m ,^-part i t ion
of X ' . Without loss of generality, we can assume that VΊ Π W1 is
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infinite. Since each vertex in V{X)\V1 is adjacent in X to ^k vertices
of V1 Π Wlf it is adjacent in Xf to infinitely many vertices of V1 Π W1

and is therefore in Wx. Thus V{X)\V1aW1.
If Vi were infinite for some i Φ 1, then each vertex of V1—and

hence each vertex of V(X)\W1—would be adjacent in X' to infinitely
many vertices of F*. That is to say, each vertex in each W5{j φ 1)
would be adjacent in Xf to infinitely many vertices of Wlf contrary
to assumption. Hence F2, •••, VP are each finite sets. Consideration
of a vertex, say in VP, yields that X is ^-valent for some finite
cardinal p. But then the valence pf of Xf is infinite. A vertex in,
say, Wq is therefore adjacent in Xf to infinitely many vertices of Wq

which is absurd, for Wq is finite since each vertex of WΊ is adjacent
to ^ p vertices of Wq and nonadjacent to ^ h vertices of Wq.

For integers n ^ 2, k ^ 1, define v(n, k) to be the smallest integer
for which it holds that whenever Xe &*ntkf X is a GRR, and \V(X)\ >
v(n, k), then X'$ &ntk. The following is immediate.

COROLLARY IB. If n ^ 2 and k^>l, then

v(n, k) S kn(n + 2) .

The inequality in Corollary IB is not necessarily as strong as
possible. While the authors have no uniform procedure for deter-
mining v(n, k) in general, improvements over the corollary exist
in special cases. For example, Corollary IB gives only y(3, 1) ^
15 and v(2, 2) ^ 16. The following stronger results will be used in
§§3 and 4.

LEMMA 1. v(3,1) ^ 11.

Proof. Let [Vlf F2, F3] be a ^8>1-partition of a GRR X where
\V(X)\ ^ 12, and suppose |FJ ^ | F 2 | ^ | F 3 | . Clearly |F X | ^ 4. Note
that ^ ^ 3 , since X is a GRR. Supposing the corollary false, let [Wlf

W2, Wz] be a ^"Par t i t ion of X'.
Suppose |F X | = 4 or 5. Clearly then | F 2 | ^ 4 and | F 3 | ^ 2. Also

Fi must intersect some cell of [Wlf W2, W3] in at least two vertices;
say αlf α2e FiΠ Wx. With fe = 1, at least two vertices blf b2e F2 are
adjacent in X to neither ax nor a2 and so they are adjacent in X' to
both αx and α2. Hence blf b2 e Wx. If c e F3, then c is adjacent in X to
at most one of au a2 and at most one of bί9 &2 So c is adjacent in Xf

to at least two of these four vertices. Hence c e Wx. We now have
that
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Moreover, any vertex d e Vt is adjacent in X' to at least one vertex
in Vj ΓΊ Wx for both values of j Φ i, whence d e Wx. We infer the
contradiction that Wt = V(X).

Now suppose | VΊ | Ξ> 6. We assert that the inequality

(2.5) \VίΠWi\^2

can hold for at most two values of j = 1, 2, 3. For if (2.5) held for
j = 1, 2, 3, then any vertex b e F2, being adjacent in X to at most
one vertex of V19 is adjacent in Xr to at least two vertices in each of
two of the sets VΊ Π W3 9 implying that 6 is in two different cells of
[Wl9 W2, Ws]. Since | F X | ^ 6, we may say for definiteness that \Vt Π
W,\ ^ 3 .

If c e F2 U F3, then c is adjacent in X' to at least two vertices
in VΊ Π Wί9 and so ce Wλ. Thus F 2 U F 3 c W , .

Pick α G W2 U TF3. Then α is adjacent in X to all but at most
one vertex in W^ But since aeV19 a is adjacent to at most one
vertex in each of V2 and F3. Hence | V2 \ ̂  2 and | F31 ^ 1. But | F31 ^
1, or else the lone vertex in Vs would be adjacent in X to two vertices
in Fi or in F2 since p ^ 3. Hence F3 = 0 . But then a vertex in F2

would be adjacent (in X) to at least two vertices in Vί9 giving a
contradiction. It follows that W2 U Wz = 0 , and no ^8>1-partition of
X' exists.

LEMMA 2. y(2, 2) ^ 15.

Proof. Since v(2, 2) ^ 16 by Corollary IB, it may be assumed
that X = XG>H is a GRR where |G| =16. Let [V» V2] be a ^ 2 , 2 -
partition of X9 and suppose [WΊ, TFJ is a ^2,2-partition of Z' . We
show first that

(2.6) I F . n ^ l - 4 , i , i = l , 2 .

Supposing (2.6) false, we may assume without loss of generality
that IVtΠWil^δ. Then each vertex in ViX^VΊ is adjacent in X'
to at least three vertices of VΊ Π Wλ and is therefore in TFi. Thus
F2 c Wt.

If IF21 ̂  5 we conclude by similar argument that VΊ is also con-
tained in W19 which is not possible. If | F21 ^ 4, then X is /O-valent
for p ^ 5, and \VΊ\ S 12. Now \V, Π TΓ2| ^ 4 or else V2cW29 which
is absurd. But then | Fx Π Wi I ̂  8 and, as every vertex in Tf2 can be
adjacent in X to at most 5 vertices of VΊ Π Wl9 it is adjacent in X'
to at least three vertices in VΊ Π W1 and hence is in WΊ. This proves
(2.6).

Each vertex a e VΊ Π WΊ must be adjacent in X to exactly two
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vertices in V2 Π W2\ a cannot have more than two neighbors in V2 Π W2

since Xe ^ 2 > 2, while if there were fewer than two, a would be adjacent
in X' to at least three vertices of V2 Π W2, in contradiction to the
assumption that aeWx. Furthermore, a must be adjacent in X to
all vertices in Vi ΓΊ W2. Otherwise a would be adjacent in Xf to at
least one vertex in VΊ Π W2 and to two vertices in V2 Π W2, making a
adjacent in X' to at least three vertices in W2f which is not possible.
In summary, with %Φ V and j Φ j ' , each vertex in Vt Π Wj is adjacent
to all vertices in Vt Π Wjf, to exactly two vertices in Vv Π W^, and
to no vertices of W Π Ws, (ί, i'f j , f = 1, 2).

Thus ^ ;> 6. It may be assumed that p <̂  7; otherwise X and
X' can be interchanged.

The eight edges joining VΊ Π PFi with V2 Π W2 span a 2-valent
subgraph on eight vertices which must be either the union of two
disjoint 4-gons or a single 8-gon. In the first case let [vlf , v4] and
bδ, •••, ̂ 8] denote the two 4-gons. In the second case let [vlt •••, vs]
denote the 8-gon. In either case, one may suppose that the vertices
with odd index lie in VΊ Π Wx.

Let Ti denote the subgraph of X induced by the vertices in V< Π
Wi(i = 1, 2). If p = 6, then T, is totally disconnected. If p = 7,
then each Γ̂  consists of two edges without common end-point.

Consider the permutation β on V{X) whose cyclic decomposition
is given by

Since β has fixed-points without being the identity, β $ A{X), for A(X)
is a regular permutation group. But clearly β e A(X) when p = 6,
and the verification is straightforward when |0 = 7.

The result in Theorem 1 is far more general than is required
for the applications in the next two sections. Actually, a rather
narrow formulation is involved repeatedly. In the interest ultimately
of economy, we here formulate that application in the following way:

LEMMA 3. Let G be a group in Class I. Let n ^ 2 and k ^ 1
be given and suppose \G\ > v(n, k). Then G has a GRRX = XG,H&
^%}k. Moreover, let G <^\G1 and suppose that for some b e G^G, G1

admits the coset decomposition Gx = G U bG U U b^G. Let Hλ be
a set of generators of Gx such that

( i ) eiHx = HT\
(ii) HiΠG^H,
(iii) fc^lfζnδ'GI, (i = l, . . . ,tt-l).

Form the Cayley graph Y — XGl,Hlf and let Xt be the subgraph of Y
induced by vertices in the coset bιG. Then Xt~X and the sets
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{V(Xi) I i = 0, , n — 1} form a complete system of imprimitivity
for the permutation group A{Y). Finally, if φe A{Y) satisfies φx0 =
x0 for some xQ e V{X%), then φx = x for all x e V{X%).

Proof. If X = XGrH is a GRR of G, then so is X'. Since | F(X)| =
|G| > v(n, k), at most one of X and X' belongs to &>n,k by definition
of v{n, k). For definiteness, suppose X$ &*n,k.

Assume the remainder of the hypothesis. That X* = X is imme-
diate from the definition of a Cayley graph. Let φeA(Y). Choose
one of the subgraphs X3 and let Vt = V(Xτ) Π φ[V(X3)]. If i Φ j,
each vertex of Xt is adjacent to at most k vertices of Xj. If more
than one of the sets Vt are nonempty, the sets Vt form a ^n>k-
partition of <p[Xj]. But φ[X3] ~ X3 ~ I ? ^ , f c . Hence φ[X3] — X{

for some i. Since 7 is a Cayley graph, A{Y) is transitive, and the
assertion concerning imprimitivity is proved.

Now suppose φx0 = x0 for some x0 e V{Xτ). Since V{Xτ) is a block
of imprimitivity, φ[Xz] = Xt. Hence the restriction <pt of φ to Xi

belongs to A(X%). But Xt ~ X and so A(Xτ) is a regular permutation
group. Since φi has a fixed-point x0, φi is the identity of A(Xt)9 which
proves the lemma.

LEMMA 4. Every non-abelian group G of square-free order \G\ >
10 is Class I.

Proof. Since \G\ is square-free, G is generated by two elements
a and 6 satisfying relations of the form

(2.7) <α, b\ar = bs = e, b~'ab = am)

where \G\ = rs and ms = l(mod r). (See [5, p. 261].) All groups (2.7)
have been classified [7, Theorem 2]. Except for the groups Dz and
Dδ, the only groups (2.7) not in Class I are either abelian or have
order divisible by 4.

3* Classification of Extensions by C2 and C4* The main result
of this section is:

THEOREM 2. Let the non-abelian group Gx contain a subgroup
G of index 2, and suppose that G is in Class I. Then each of the
following conditions is sufficient for Gx to be in Class I:

(a) \G\ > 2 and Gt is a semi-direct product of G by C2.
(b) |G| > 12 but \G\ Φ 16 or 32.
(c) \G\ = 16 or 32, and either:

(i) there exists an element beGt\G such that o(b) Φ 4, or
(ii) Z{G) does not contain C2 x C2 as a subgroup.
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REMARK. The reader should not infer that condition (c) is neces-
sary if IGI = 16 or 32, but merely that the profusion of groups of
orders 16 and 32 not satisfying (ii) and of their cyclic extensions
not satisfying (i) renders a case-by-case study inordinately tedious
and without anticipation of surprising outcome. Theorem 2 is
stated in the given form merely to convey as much information as
possible.

Groups of order 16 have been classified (see [12]) and exactly two
such groups both are in Class I and fail to satisfy (ii). There are
six groups G1 of order 32 failing to satisfy (i) which are extensions
of these two exceptional groups of order 16. There are more than
100 groups Gι of order 64 failing to satisfy (i) which are extensions
of those groups G of order 32 failing to satisfy (ii). For a complete
list of such groups, see [3].

Proof. First consider the case where there exists an element
b e G,\G of order 2. Since G is in Class I and G £ C2, we have |G | ̂
12 (see [7, 1.10]). By Corollary IB and Lemma 3, G has a GRR X =
XG,H& «̂ *2,I If -Hi = -ffU {b}, one may form the Cayley graph Yo =
XGl,Hl- Let <peAβ(YQ). With Xo and Xλ defined as in Lemma 3, it
is immediate that ψ fixes each vertex of Xo. Hence φφ) = 6, and φ
is the identity on all of V(Y0), whence Yo is a GRR of G1# It has
been shown that (a) is a sufficient condition.

Suppose now that b2 Φ e for all b e G\G. If | G | = 14, then G ~
D7. Of the two non-abelian groups of order 28 [2, p. 135], only one
contains DΊ as a subgroup, namely Du which is known to be in Class
I, [11, Theorem 2]. Since no group in Class I has order 13 or 15 we
now let IG\ ̂  16. By Lemmas 2 and 3, G has a GRR X = XG,HZ^2>2,
as before. Arbitrarily choose then fix b e Gt\G. Let i?i = H U {b, b'1},
and form Yλ = XGl,Hl. Let φ e A£Y^. As before, φ fixes each vertex
of Xo, and the theorem is proved unless φ has no fixed-point in X19

which we now assume to be the case. In particular, φ interchanges
b and b~\

The vertices in XQ adjacent to b are e and b2 while those in XQ

adjacent to b"1 are e and ίr 2 . Thus b2 = 6~2, and δ4 — e. Since the
choice of b e Gλ\G was arbitrary, it follows that o(b) = 4 for all b e
GAG.

We next show that b2 e Z{Gλ) for all b e G,\G. Let heH. Since
b'1 is adjacent to b~xhf b — φ(b~ι) must be adjacent to φφ^h). The
neighbors in X, of b^hb e V(XQ) are b~ιh and b~ιhb2. Thus φφ-'h) =
b^hb2. There exists some h' e H such that bh' — b^hb2, i.e., hf = b~2hb2.
This implies that the set H is fixed under conjugation by 62, but since
X is a GRR, the automorphism x \-+ b~2xb2 in Aut (G) must be the
identity. Thus b2eZ(G). But for any x e G, φx)b2 = b(b2x) = b\bx)9
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so 6 2GZ(Gi), as required.

Recalling that the choice of b e Gt\G was arbitrary, we have that
the set

K= {C2|CGGAG}

generates an elementary abelian 2-group contained in Z(G^) ΓΊ G. If
K consists of a single element, then b2 = (bxf for all xeG, be Gλ\G.
This implies that

(3.1) b~'xb = x-1 x e G, b e G,\G .

Thus G is abelian. Since the only abelian groups in Class I are
elementary abelian 2-groups, (3.1) implies that G1 is abelian, contrary
to the hypothesis of this theorem. Hence

(3.2) \K\^2.

At this point condition (c) has been shown sufficient.
Having obtained the foregoing information about Gί9 we continue

to prove the sufficiency of (b) by first supposing that | G \ > 32. By
Corollary IB and Lemma 3 we may assume that X = XG,H & ^ U By
(3.2), there exist 6, c e G,\G such that b2 Φ c\ Redefine H, = Hi)
{b, b~\ c, ίΓ1}, and form Y2 = XGί,Hl. As before, let φe Ae(Y2). Again,
φ fixes each vertex of Xo, and we may assume that ψ fixes no vertex
of Xlm For each x e V(X0), its neighbors in Xx are xb, xb~\ xc, xc'1

while the neighbors in Xx of xb2 are xb~\ xb, xb% xb2c~\ Since b2 Φ
c2 (and so 6 ^ c"1), the vertices x and xb2 have precisely two common
neighbors in Xlf namely xb and xb'1. They must be interchanged by
φ, as are xc with xc'1. This is so for all x e V(XQ). In particular,
for x = e or δ-1c we obtain

implying that b2 = c2, a contradiction. Hence Y2 is a GRR of Gx.
It remains only to consider the cases where 16 < | G \ < 32. Because

of (3.2), G contains the central subgroup M = (K) of order divisible
by 4, leaving only 20, 24, and 28 as possible orders of G. If | G | =
20 or 28, then GjM is cyclic. But then G is abelian but not an
elementary abelian 2-group, contrary to the hypothesis that G is in
Class I.

Suppose finally that | G \ = 24. It suffices to prove that G is
abelian, for then it cannot be in Class I. There exists an element
α e G of order 3. We show first that

(3.3) α~ι = d-'αd == αd for all debG .

Since d2

y (dαf e K, one has immediately that
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d2aad = ad2ad = (ad)2 = d~\da)2d = (dα)2 = d2d~ιada = d2ada .

It follows that α and αd commute and that (ααd)2 = [cΓ2(cZα)2]2 =
d'\daY = e. Since o(ad) = 3,

ααd = (aad)2aad = a\adf = e ,

and hence (3.3) holds. Now write d = xb for arbitrary x e G. By
(3.3), for any xeG,

axb = (xb)a~ι = ^(δα"1) = #αδ .

This shows that a e Z(G). Therefore, the subgroup (M U {a}) is central
and has order 12, which is possible only if G is abelian. This concludes
the proof of the theorem.

REMARKS. 1. Except in the case where G is abelian, Theorem 2
generalizes the result of Watkins and Nowitz [13] that the direct
product of C2 with any group in Class I other than C2 is also in Class I.

2. In addition to the special cases of groups of orders 16 and 32
previously remarked upon, the question remains open concerning the
classification of extensions by C2 (other than semi-direct products) of
the one group in Class I of order 12, namely D6.

COROLLARY 2A. Let the non-abelian group Gr contain a normal
subgroup G such that GJG = C4, and suppose that G is in Class I.
If IGI > 32, then Gλ is in Class I.

Proof. Let π be the projection morphism of Gx onto GJG ~ C4 =
(a). If π(b) = a, we have the coset decomposition

G± = G U bG U b2G U b'G .

Furthermore, Go = G{J b2G is a subgroup of G1 and [Go: G] = [G,: Go] =
2. If Go is non-abelian, it is in Class I by Theorem 2, and therefore
so is (?!•

We have only to consider the case where Go is abelian. Then G
is abelian, and since G is in Class I, we have G = (C2)

fc+1 with k *> 5
because \G\ > 32. If δ4 = e, the group Go is an elementary abelian
2-group and so is in Class I. Then Gι is also in Class I by Theorem
2. We can therefore assume that δ4 Φ e. As δ4 e G and exp (G) — 2,
we have o(δ) = 8.

Denote by K the subgroup of G such that G = K x <δ4>. Note
that K s (C2)

fc is in Class I since A ^ 5. If K <\ G19 then G, is an
extension of K by C8 and is in Class I by [7, Theorem 1]. Otherwise
bK Φ Kb, and there exists an element c e K such that be Φ cb. Using
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this c we shall construct a GRR of Gγ.
Since \G\ ̂  64 > 48 ̂  v(4, 2), G admits a GRR X - ΣGιHt ^ 4 , 2 ,

by Lemma 3. The set

H, = H\J {δ, &-1, δ2, δ"2, 6c, cδ"1}

generates Gx. We shall demonstrate that the Cayley graph Y1 = XGl,Hι

is a GRR.
First observe the distribution of elements of H\H amongst the

cosets of G:

δ, be € bG; b\ b~2 e b2G; b~\ cb'1 e b*G .

Let φeAe(Y1). By Lemma 3 (and in the same notation as in the
lemma), φ fixes each vertex of XQ. In particular, φ fixes the four
distinct vertices b\ bcb~\ c, and e. The only neighbors of b and be
in Xo are e and bcb~u, the vertices δ2 and b~2 have the neighbors e
and δ4e F(X0); and δ"1 and cδ"1 are each adjacent to e and CG V(XO).

Therefore, φ fixes each F(X*) setwise. As δ is adjacent to δ2 but not
to δ~2, while δc is adjacent to neither δ2 nor δ~2, it is clear that φ
cannot interchange δ with be. Hence φ(b) — δ. As φ fixes every element
of the generating set {δ} (J H of G19 it fixes every element of G1# This
proves the corollary.

4* Classification of extensions by C3.

THEOREM 3. Let the non-abelian group Gt contain a normal
subgroup G of index 3, and suppose G £ C2 is in Class I. Then
each of the following conditions is sufficient for Gλ to be in Class I:

(a) There exists an element b e Gj\G such that δ6 Φ e.
(b) | G | > 30 and either:

( i ) G£{C2)\
or

(ϋ) if \G\ = 36, then exp (G) Φ 6.
(c) G, = G x C3, and if \G\ = 24 or 36, ί/^w exp(G) ^ 6.

Proof, (a) By hypothesis, | G | ̂  12. Lemmas 1 and 3 imply
that G has a GRR X = XG,Hί ^*8>1. Assuming condition (a), let fζ. =
ί ί U {δ, δ"1} and form Yo = -3^,*,. Let φ e Ae(Yo) By Lemma 3 (and
in the same notation as in the lemma), ψ fixes each vertex of XQ.
It suffices to prove that φ fixes δ (and hence δ"1). We suppose not,
and so φ interchanges δ with δ"1. Lemma 3 further implies that φ
maps the subgraphs X1 and X^ isomorphically onto each other.

Since the only neighbor of δ"1 lying in Xx is δ~2, ̂ (δ~2) must be
the unique neighbor of δ = φ{b~ι) lying in X__19 namely 62. But δ3 e
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V(XQ) is fixed by φ, and so φ interchanges its neighbors V e V(Xλ)
with b2e V{X^). Thus φ(V) = b2 = φ(b~2), whence ¥ = b~\ or ¥ = e,
contrary to assumption.

(b) In the light of (a) above, it may be assumed that

(4.1) o{u) = 3 or 6 for all u e G,\G .

If o(u) = 6, then o(u2) = 3. So we may always select an element
d e GL\G of order 3. Write the coset decomposition Gx — G U dG U d~xG.

We shall now prove that:

(4.2) 36, c e dG such that f>3 = e and be Φ cb .

If G contains an element g such that g6 Φ β, let c = gb, where
b e dG has order 3. If b commutes with c, then b commutes with g,
and

c6 = (^6)6 - ^666 - g* Φ e ,

contrary to (4.1).
Suppose then that g6 = e for all # e G and that (4.2) fails. Since

dz = e, d commutes with every element of G^G. Thus, for all g e G
(dg)d = d(dg), and d e Z(G^. Define

i Γ - {xeG|o(ώ) = 3} .

Then x e G implies x3 = (dx)*, while (dxf = e if and only if ce e Ka

Thus for X G G ,

(4.3) x e K <=> o(x) = 1 or 3

(4.4) α 6 G\JS: <=> o(x) = 2 or 6 .

If x G K and # e G, then since (4.2) is assumed false, (dx)(dg) = (d#)(cfo).
Since d is central we have xg = gx, and so KαZ(G). If #!, x2eK,
then (ώ̂ xXg)3 = ώ3ίCiXi = e, so xλx2 e K, and K is a normal subgroup of G.

Consider the cosets of G with respect to K. Since by (4.3) and
(4.4) x2eK for all a eG, the quotient group G/K is an elementary
abelian 2-group. Moreover, if x1 — x2k for some xl9 x2eG and k e K,
then

That is to say, any two elements of the same coset with respect to
K commute.

Let L — {xe G\x2 = β}, and let y, ze L. If o(yz) = 3 or 6, then
— 3 whence (yzfeK and is therefore central. Hence

e = (yzyz)y2(zyzy) = {yzfy{yzfy =
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As no element of G has order 4, {yzf — e and yz G L. Hence L is a
subgroup of G. In particular, L is an elementary abelian 2-group.

Let g G G. If o(g) - 1, 2 or 3, clearly g e LK. If o(g) = 6, then
^ — #3(/-2 e Lif, and so G = LK. Since K is central and L is abelian,
G is abelian. But Gx — (G U {ώ}) We have a contradiction, since Gx

is non-abelian by hypothesis. This proves (4.2).
We now assume the hypothesis (b). By Corollary IB and Lemma

3, G has a GRR X = XGtH £ <^3,2 Select δ, c fulfilling (4.2). Let H, =
if U {6, ί>~\ c, c"1} and form the Cayley graph Y1 = XGltHl. Let φe
Ae(Yi). As in all the previous cases, φ fixes each vertex of XQ, in
particular 6c"1.

The neighbors in X_x of e are of course δ"1 and c"1; those of be'1

are δc^δ"1 and δc~2. Since δ ̂  cf certainly b~ι Φ bc~ιb~ι and c"1 ^ 6c~2.
If c"1 = bc~ιb~\ then 6c = c6, contrary to assumption. Also the equality
5-1 = bc~2 implies, since δ3 = e, that ό = c~2 which in turn implies
that δ and c commute. Hence e and δc"1 have no common neighbors
in X_,.

The vertex δ e V(X^) is a common neighbor of e and bc~\ Thus
φ(b) G V(X^, and by Lemma 3, φ[X%\ = X, (i = ± 1). If δ is the only
such common neighbor, then φ(b) = δ, φ is necessarily the identity,
and (b) is proved. Suppose that δ is not the sole common neighbor.
This is possible only if c — (6c-1)6, which implies

(4.5) (cδ-1)2 - e ,

which we assume to hold.
If G contains an element g such that gQ Φ β, then, as previously

noted, we may choose c = gb. Substitution into (4.5), however,
implies that g2 = β. Assume that gQ — e for all g eG. Inasmuch as
the group (C2)

5 and all groups of order 36 with exponent 6 are exempted
from consideration, no cases are lost if one assumes that | G | > 45.
Thus it may be assumed that X<£ ̂ 3 > 8 In addition to δ, c e dG chosen
according to (4.2), we select an additional element f edG such that

/ 6 {6, δcδ"1, δc^δ, b~ιc~\ c, cbc~\ dr% c2b~1} .

Redefine Hx = H\J {δ, δ"1, c, c~\ f, f'1} and form Y2 — XGι,Hι. One can
verify straightforwardly that despite the additional edges, δc"1 and
e still have no common neighbors in X_x and that δ and c remain
their only common neighbors in Xλ. Since / is the only neighbor in
X1 of e which is not a neighbor of δc"1, φ(f) — f. Thus φ fixes
pointwise the set H\J {/} which generates Gλ. Hence φ is the identity
and Y2 is a GRR of G.

(c) Let G1 — Gx C3. We first suppose that G contains an element
g such that g6 Φ e. There exists an element c e Gy\G such that c3 = e.
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and the result follows from part (a) above.
Suppose therefore, that exp (G) = 2, 3 or 6. By part (b), we need

only assume 12 ^ | G | <£ 36 and ignore the orders 24 and 36. If exp (G) =
2, then G is abelian. Since G1 is non-abelian, there are no cases to
consider. If exp(G) = 3, then \G\ = 27. But the (unique) group G
of order 27 with exponent 3 is in Class II, [8, Theorem 3].

If exp(G) = 6, then |G | = 12 or 18.
Since G is in Class I, G~C5xD3 if |G | = 18, and G~D6 if

|G | = 12. (See [12].)
Following Coxeter and Moser [2, p. 134], C3 x D3 can be represented

by
s3 = t* = β, tst = s'1 .

(?! is formed by adjoining a generator it with

Let

= e, su = us, tu = ut

x = {s, s~\ t, t~\ ts, t~% t\ r V 1 , u, vr\ tτi, t'hc1} .

We assert that the Cayley graph Y — XGl,Hl is a GRR of Gt. Let Ye

denote the subgraph of Y induced by the neighbors of β, namely the
set J3i, and let ψ e Aβ(Y). The restriction of φ to Ye belongs to A(Ye).
One straightforwardly verifies that Ye has the form of Figure 1.

tu

t-'s I"1 V\Γ]

FIGURE 1. Ye when Gi = C3 x C3 x Dd

The two vertices whose valence in Ye is 5 are t and ί"1, but only
t~ι has exactly one neighbor t~ιιι~ι of valence 2. Therefore, φ fixes
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both of these vertices and hence all vertices in the subgroup (t, u)
generated by them. Then φ fixes the second neighbor t2s of t whose
valence in Ye is 2. But G1 = (t% t, u), and so ψ is the identity and
Y is a GRR of G,.

If G = D6, we represent G, = C3 x A by

s6 = f = u* = e, tst = s~\ su — us, tu = ut .

Then Gx is generated by

Hλ — {s, s"1, t, ts~\ u, u~\ su, s"1^"1, ίu, ίu"1} .

Define Y, Yβ, and ^ as in the preceding paragraph. In this case (see
Figure 2) φ fixes ts~ι since it is the only vertex whose valence in
Ye is 4. Its only neighbor with valence 5 (in Ye) is tu and with valence
β is t. But (έs"1, ί, tu) = Gi, and so, as before Y is a GRR of Gx.

REMARKS 1. When \G\ ^ 3 0 , the only cyclic extensions by C3

which we have considered here are the direct products of C3 with the
various groups G in Class L Some of the other cases are readily
dispensed with. For example, if |G | = 14, 22 or 26, then Gλ is square-
free and is in Class I by Lemma 4.

There is a semi-direct product Gλ of D6 by C3 given by

s6 = f = u3 = e, tst = s~\ su = us, u~ιtu = ts2.

If one lets JÊ  = {s, s"1, ί, is"1, w, u~\ tu~\ ts2u}, then the Cayley graph
XGvIIl is a GRR of Gλ.

2. All cyclic extensions by C3 of the two Class I groups G of
order 16 with exponent 8 are in Class I. Indeed in the light of (a),
we need consider only the semi-direct product. First G is generated
by s and t where
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s8 = f = e, ίsί = tm, m = 3 or 7 (mod 8) .

Pick c e Gi\G such that c3 = β. The subgroup generated by s is the
only cyclic subgroup of order 8 and so is invariant. We have c^sc =
sj where o(sj) = 8. Thus f = 1 (mod 8), and the only solution is j =
1 (mod 8). But G1 = G x C3 is known to be in Class I by part (c).

3. Infinite graphs satisfy condition (b) in both Theorem 2 and
Theorem 3. By virtue of Corollary 1A, these theorems and Corollary
2A hold for infinite graphs.
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