PACIFIC JOURNAL OF MATHEMATICS
Vol. 55, No. 2, 1974

GROUPS OF MATRICES ACTING ON
DISTRIBUTION SPACES

S. R. HARASYMIV

Let E be a locally convex space of temperate distributions
on the n-dimensional Euclidean space R”, and G aclosed sub-
group of Gl (n, R), the general linear group over R". An
attempt is made to identify those distributions which can be
approximated in £ by linear combinations of distributions of
the form u(Ax -+ b), where u is a fixed element of E, A varies
over &, and b varies over R”. A cancellation theorem is
proved; this then allows the support of the Fourier transform
of any annihilator of the set of distributions of the form
u(Ax + b) to be localized. This in turn is used to obtain
approximation results.

1. Notation. Throughout, R" denotes n-dimensional Euclidean
space. The character group of R* is again R"*, the identification
being made in such a way that multiplicative factors in the Fourier
inversion formula are eliminated. The Haar measure on R" is denoted
by dz.

We denote by C2(U) the space of indefinitely differentiable func-
tions on R” which have compact support inside the open set U in R”.
S(R") is the space of rapidly decreasing indefinitely differentiable
functions on R”. The space of all Schwartz distributions on R" is
designated by D’(R"), and its subspace consisting of temperate dis-
tributions is denoted by S'(R").

Gl (n, R) is the general linear group over R*. The determinant
of an element A in Gl (n, R) is written det 4, and A’ denotes the
adjoint matrix of A.

Now, consider a fixed element A in Gl (n, B). Then it is easy
to see that the function

x— ¢(Az) (e R")

belongs to C:°(R”) whenever ¢ does. We write ¢* for this function.
This definition is extended to include all distributions by making use
of the adjoint of the map which carries ¢ onto ¢*. More precisely,
if % is a distribution, then we define #* to be the unique distribution
which satisfies

(g, u') = |det A7 (", up (6€ CZ(R"))

The translate of a distribution % by an element b in R" is defined
in the usual fashion, and denoted by u,. We write ui for (u,).
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These notational conventions entail that when u is a function, then
ui is the function defined by

uy(x) = w(Ax + b) (xe R").

Let G be a closed subgroup of Gl(n, B). We write G for its
adjoint group. G will always be equipped with the topology induced
by Gl(n, R). With this topology, & is a Lie group. We write dA4
for left Haar measure on &. If V is an open set in G, then CZ(V)
denotes the set of all smooth functions on G having compact support
in V.

Finally, again consider a closed subgroup G of Gl(n, R). If E
is a locally convex space of temperate distributions which is invariant
under all mappings of the form u# — 4, where A is a fixed element
of &, we say that E is G-invariant. Similarly, if E is invariant
under all maps of the form % — u,, where b belongs to R", then we
say that E is translation invariant. Now, suppose that £ is both
translation invariant and G-invariant, and that « is an element of
E. We denote by T.[u] the closed linear subspace of E spanned by
the set of all distributions of the form u{, with A in G and b in R".

2. Preliminaries. We shall be concerned with the problem of
characterizing T.[u]; that is, given two distributions v and w in E,
when can we say that w belongs to T¢[#]? Without some restrictions
on E, the problem is a rather intractable one. However, quite mild
assumptions about E enable us to obtain a great deal of information
about T,[u]. These assumptions are mild in the sense that they allow
us to include most of the classical distribution spaces in our results.
In essence, the assumptions are that the topology on E is barrelled,
and that the action of the topological dual of E can be expressed as
a “convolution”. We examine this situation below.

DerFINITION 2.1. (cf. [1]). A locally convex space of temperate
distributions is admissible if

(i) S(R") is a dense subspace of E,

(ii) The inclusion maps S(R") — E — S’(R") are continuous.

The topological dual space of an admissible space can be identified
with a subspace of S'(R") which contains S(R”). We shall always
make this identification in such a way that the relations

{8, v) = 6x0v(0)  (9eS(R"), ve E)
Su, ¢ = uxg(0)  (ue kK, seS(R")

hold.
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DEFINITION 2.2. Let G be a closed subgroup of Gl(n, R). If K
is a G-invariant and translation invariant admissible space, we say
that E is a G-space if it has the following properties.

(i) For each # in E, the map «-— %, is continuous from R”
into E for the weak topology on K.

(ii) For each 2 in R*, the map u— u, is weakly continuous
from K into E.

(iii) For each w in E, the map A — u* is continuous from &
into E for the weak topology on E.

(iv) For each A in &, the map w— u? is weakly contintous
from E into E.

(v) For each u in E and each v in E’, the continuous (by (i)
function » — <{u,, v) is a temperate distribution on R".

We shall find it convenient to denote by u*v the function in (v)
above.

The next result lists some of the basic properties of G-spaces.
These properties will be used repeatedly and without further reference
in what follows.

PrROPOSITION 2.3. Let E be a G-space, where G is a closed sub-
group of Gl(n, R). Then
(a) E’ is tramnslation invariant, and for each b in R”

UFV, = Uy *V = (U * D), (we E,ve F'),
(b) E’ ts G-invariant, and for each A in &
uxv* = |det A7 | (u* ¥ v)4 (wec E,ve k') .

If E 1s barvrelled, then we have also
(¢) E’ is a module over S(R") with respect to convolution, and
for each ¢ S(R™)

Uux(vxg) = (U*v) =6 (we E,ve K').

Properties (a) and (b) reflect the fact that the maps « — u, and v —
u* of E into E, being weakly continuous, have adjoints which are
weakly continuous from E’ into E’. Property (¢) derives from the
fact that, if E is barrelled, the map # — u*v is continuous from E
into S'(R™), for each fixed v in E’. This may be verified by making
use of the Closed Graph theorem; see [2].

Most of the classical spaces of temperate distributions are Gl (n,
R)-spaces, and hence G-spaces for every closed subgroup G of Gl (n,
R). The following result identifies a large class of G-spaces. However,
since we shall not need this result in what follows, we omit its proof.
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PrOPOSITION 2.4. Let G be a closed subgroup of Gl(n, R) and E
a G-invariant and tramslation invariant admissible space. Suppose
that E 1is barrelled, B,-complete and a module over S(R") with respect
to convolution. Then E is a G-space if and only if the following
conditions hold.

(i) For each w in E, the map x— u, of R" into E is bounded
on compact subsets of R".

(ii) For each u wn E, the map A— u* of G into E is bounded
on compact subsets of G.

3. The function ¢VF. In this section, we construct a certain
function, which will serve as the basic tool in proving our approxi-
mation results. Before we carry out this construction, it is con-
venient to introduce some additional notation.

Suppose that H is a closed subgroup of Gl(n, R), of Lie group
dimension m = n. Let 6: (¢, «--, t,) — 0(t, - -, t,) bea diffeomorphism
of a neighborhood of the origin in R" onto a neighborhood of the
identity in H, and such that 6(0, ---, 0) is the identity matrix. We
write 0;,(t,, ---, t,) for the (j, k)th matrix element of (¢, -« -, t,). Let
1 be the set of all subsets of {1, ---, m} which have cardinality u.
Suppose that ¢ = {3, ---, 7,} is an element of I (we adopt this notation
because we shall be using I as an index set). We define a polynomial
P, on R" by setting P(x) = P(x, ---, x,) to be the determinant which
has, as its (J, k)th entry, the expression

6051
ot

-%—902@-’-2—%— . e +xn
ot

00;,
ot

@,
il ik
evaluated at ¢, =¢, = --- =t¢, = 0. Then each P, is a homogeneous
polynomial of degree n. We write Z(H) for the set of common zeros
of these polynomials; that is,

Z(H) = ire]I {x: P(x) = 0} .

We can now turn our attention to the promised construction.
Let H be a closed subgroup of Gl(n, R). Consider a distribution ¢
in D'(R") and a function F' in C3(H). If ¢ isin C2(R"), then the
mapping

A—> g% ¢y (AeG)

defines a continuous function on H. It then follows that we can
define a linear functional

s— | <@t o P4
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on C=(R"). We claim that this functional is continuous, and hence
a distribution on R”. For if (¢,) converges to ¢ in C7(R"), then it
does so uniformly on equicontinuous subsets of D'(R"). Now, the set
{g*: Acsupp F'} is the image in D'(R") of the compact subset supp ¥
of H under the map A to ¢*. Since this map is continuous for the
weak topology on D'(R"), {g*: Acsupp F'} is weakly compact as a
subset of D'(R"). It is thus an equicontinuous subset of D'(R")
(because C(R") is barrelled) and so

lifn <qA’ ¢z> = <qu ¢>

uniformly for A in supp F. Form this, it follows that

lim | <¢*, p> P44 = | (0%, HF ()24

which proves our assertion.
In view of the above, we may now define a distribution ¢VF
on R" by setting

@ avFy = | @t pFaa geci®).
Using a similar argument, with S(R") in place of C7(R"), it can
be shown that ¢VF is a temperate distribution whenever ¢ is.

We have the following result.

LEevMMA 3.1. Suppose that H has dimension m =n. Then qVF
18 an tndefinitely differentiable function on R\Z(H) for every q in
D'(R*) and F in Cy(H). Moreover, for each multi-index o

D*(qVF) = 3 (D'q)V(G3F)
where each G§ is a smooth function on H depending only on a and G.

Proof. The proof proceeds in several stages.

First, we make the observation that if f is a continuous function
on R”, then for each ¢ in C7(R"), and each F in Co(H)

@, FYFY = | <74 9y F(4)ia
— Su{gm f(Ax)¢(—x)dx}F(A)dA
- Sans(—w){SH f(Ax)F(A)dA}dx

from which it follows that fVF is the function
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3.1) FYF() = S,, F(Az)F(A)dA .

It is easy to see that this function is continuous on R".

We now show that if x is not in Z(H) then there exists a
neighborhood U, of = in R" and a neighborhood V, of the identity
in H such that, for every continuous function f on R" and every
Fin C2(V,), fVF is indefinitely differentiable in U,. To do this, choose
a diffeomorphism 6 of a neighborhood of the origin R™ onto a neigh-
borhood W of the identity in H, as in the opening paragraphs of this
section. If W is chosen to be sufficiently small, then there exists an
indefinitely differentiable function %z on R™ such that

S F(A)dA = g FO)h(t)dt
H RM
for all F in C3(W); see [3]. In particular, (3.1) becomes

(3.2) fVF(x) = SRM JS(O@)x)F(O@)h(t)dt

for every continuous f on R" and every F'in C3(W). Now, in view
of the choice of «, there is an ¢ in I such that P,(x) = 0. We may,
without loss of generality, assume that ¢ ={1,2, ---, n}. Consider
now the map

(tu ) Ty Yy ** 7, yn)_') (Su ey Smy Ryttt zn)
of R™" into R™™ which is defined by

S = 0k1(t1y ] tm)yl + oo+ 0kn(t1’ ) tm)yn (1 k= %)
Sy =ty m+1=k=<m)
2 = Yy A=k=n).

It is easy to verify that the Jacobian of this transformation, evaluated
att, = - =t,=0,y, =2, -+, Yo = &,, is just P,(x), which is nonzero.
Thus, there exists a neighborhood U, of # in R* and a neighbor-
hood V, of the identity in H, such that the Jacobian of the trans-
formation (3.3) does not vanish on U, x 67%(V,). The Inverse Function
theorem now tells us that the transformation, when restricted to
U, x 67(V,), has an inverse

(819 Ccty Smy Ry 000, zn)_)(tly syt Yy 0, yn)
which clearly has the form

tkzgk(sl; C0ty Smy Ry 0y zn) (1§k§m)
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where ¢, -+, 9., are indefinitely differentiable functions on R™*".
We write this briefly as

t:g(S,Z)
y==z.

(3.4)

We assume that V, is contained in W. If this is the case, then, in
view of (3.2),

@5 | eswrvFmay = | | swrewnFemmeddy

for all ¢ in C2(U,), F in C2(V,), and each continuous function f on
R*. If we now make the change of variables defined by (8.4) in the
integral on the right of (3.5), we find that

| s@rvF@ay = | 6@ OF G, 2, )G, 2)dsdz
(3.6)

= | S OF (s, (s, )6, v)dsdy
where the functions f’, F’, and h’ are defined by

F(s) = f(s, =+, 8.)
F'(s, z) = F(0(g(s, 2)))
W(s, z) = h(g(s, 2))

and J is the Jacobian of the transformation (3.4). From (3.6), we
deduce that

FVE(y) = SRmf "(S)E"(s, )I'(s, y)J(s, y)ds

for all y in U,. Since F”, k', and J are indefinitely differentiable on
R™*", the indefinite differentiability of fVF in U, is now evident.
We now go a step further, and show that fVF is indefinitely
differentiable everywhere in R"\Z(H) for all F' in Cy(H) and all con-
tinuous functions f on R". First, we make the observation that

(3.6) P,(x) = det A~ P,(Ax)

for all x in R*, A in H, and 7 in I. To see this, assume, without
loss of generality, that ¢+ ={1,2, ---, n}. Temporarily denote by T
the map (3.3) of R™*" into itself. Then T is composed of the maps
(3.7) (¢ y)—> (¢, A7'y)

and

(3:8) (t, v) — T(t, Ay) .
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Hence, the Jacobian of T is the product of the Jacobians of the maps
(3.7) and (3.8). Evaluating these Jacobians at ¢t =0,y = «, we get
(3.6). It now follows that if x is in R"\Z(H) then the same is true
for Az, for all A in H. Thus, in the notation of the preceding
paragraph, we may choose, for each A in H, a neighborhood U,, of
Az and a neighborhood V,, of the identity in H, such that fVG
is indefinitely differentiable in U,, whenever G is in C2(V,) and f
is a continuous function on R*. Now let F be an arbitrary element
of Co(H). Then the collection of open sets {V,,A: Aecsupp F'} covers
the compact set supp F' in H. (Here, V,,A denotes the set {BA: Be

V.i.t.) Thus, there exists a finite number of elements 4, ---, 4, in
H such that

supp FcV, A U--- UV, A, .
Now choose functions F, ---, F, in C2(H) such that
F,+..-+F, =1
on supp £ and
supp K, C VA,
for k=1, ---, 7. Then we clearly have
(3.9) SVE = fV(FF) + --- + fV(FF,) .

We claim that each of the functions fV(FF,) is indefinitely diffe-
rentiable on some neighborhood U of 2. To prove this, write

U= A7 UAlz) N---N ATI(U’irT)
and define (for ¥ =1, ---, r) the functions G, by
G(A) = F(AA)F(AA,) (AeH).
Then G, belongs to C(V.,,.), and so fVG, is indefinitely differentiable
in U,,,. But, if 4 denotes the modular function of H, then for each
¢ in CZ(R")
| SYEF)@s(—)ds = | (7, HFAF(A)dA
= A4 | < D FAL)F(AA)IA

= 447 det 47| | (1, 547G U(A)AA

(A7) det A7 Ln FVG ()67 (— w)dw

= 44 | rYGA)s(—a)ds
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Thus, we conclude that
SV(FF)(x) = 4(A) VG (Aw)

for all « in R". Since fVG, is indefinitely differentiable in U,,.,
it follows that fV(FF)) is indefinitely differentiable in A;'(U.,,.), and
hence in U. Thus fVF is also indefinitely differentiable in U.

Now consider an arbitrary distribution ¢ in D’(R"). Again, let
® be an arbitrary point in R"\Z(H). We first notice that for each
multi-index «, and each ¢ in C(R"), we clearly have

Dr(eY) = 3 GiA)D)*

where the G§ are C= functions on H depending only on a and £.
It follows easily that for each distribution ¢ on R,

(3.10) D(qY) = 3, GHA)D*9)"
and
(3.11) (Dqy* = 5, Gi(A)D(q")

where we have written
Gi(4) = GXA™)  (AeH).

Now choose a neighborhood W of & which has compact closure. Then,
inside W, ¢ can be expressed as

=3 D,

where the f, are continuous functions on R”*, and the sum is finite.
Using (3.11), we see that if F'is in Cy(H) and ¢ is in CP(R"), then

9, (D*fIVE)

Il
ey

ADefy, HF(A)dA

I
id

|, D78, A F(A)A

(3.11) |, <ft DoGHAFA)LA

5
S (D%, £.V(GEF))
I

6, DIFN(GER)]) .

Il

We infer that
(D*fIVF = 3, DSV (GF)]
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as distributions on R". But, in view of what we have already shown,
each of the functions f,V(G$F') is indefinitely differentiable on some
neighborhood U of x. The same is therefore true of the distributions
(D*f)VF. Now, it is evident that

QVF = 3 (D*f)VF

in W. Since we may obviously assume that U is contained in W, it
now follows that the distribution ¢V F is an indefinitely differentiable
function in the neighborhood U of %. This completes the proof of
the first assertion in Lemma 3.1.

To prove the second assertion, we refer to (38.10) and carry out
a computation similar to (3.12).

LEMMA 3.2. Suppose that H has dimension m = n. Let q be a
distribution on R™ and x a point in suppq which is not in Z(H).
Then there is a function F in C°(H) such that qVF(x) == 0.

Proof. Write S for the set of all points z in R"\Z(H) such that,
for some F in C2(H), qVF(z) = 0.

We first observe that x is in the closure of S. For suppose that
there were a neighborhood U of  which contained no points of S.
This would entail that each function ¢VF vanishes identically in U.
It would then follow that, for each ¢ in Cy(U) and each F'in C7(H),

[.<ot oFaa = avFu)s(—u)dy
=0.

This would lead to the conclusion that the function A— (g%, ¢> is
identically zero on H, for every ¢ in C2(U). In particular, we would
have

{g,6>=0 (2 CX(U))

contradicting the fact that # is in suppq.
We know that P,(x) = 0 for some ¢, and, as usual, we assume
that 7 = {1, 2, ---, n}. Consider the map

(tlf tcty tm) — (yl’ ct Ty ym)
of R™ into itself defined by

Y, = 0k1(t19 Tty tm)xx F oo + 0kn(t17 ) tm)xn (1§ k = %)
Y = U nm+1=k=<m).

The Jacobian of this transformation is P,(x), and is therefore nonzero
at ¢, = ..+ =t,=0. Hence this map carries a neighborhood W of
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the origin in BR™ onto a neighborhoed of the point (x,, +++, 2,, 0, - -+, 0).
It follows that the set {6(t)x:te W} is a neighborhood of xin R" and,
consequently, so is the set {Bx: Be H}. Since z is in the closure of
S, there must be a point z in S which has the form z = Bz, for some
Bin H. Choose a function G in CP(H) such that ¢VG(z) = 0, and
define the function F' by

F(A) = G(AB™) (Ac H) .

Then F is in C(H). Moreover, using an argument similar to one
used in the course of the proof of Lemma 8.1, it may be shown that

qVF(y) = qVG(By) (yeR").
It follows that
gV F(z) = qVG(z) = 0

as we wished to show.

4. A cancellation theorem. In this section, we prove our
main theorem. Before we do so, however, it is necessary to make
some brief comments about notation. We shall want to make use of
the Schwartz-Fourier transform. Now, if ¢ is a temperate distribution
and A is in Gl(n, R), then it is easy to verify that

(4.1) (¢*)" = |det A7 [g*+ .

It appears, then, that we shall be dealing with both a closed subgroup
& of Gl(n, RB) and its adjoint group G'. It is actually to the group
G’ that we shall apply the theory developed in the preceding section.
As far as the operation V is concerned, we shall use it in both the
case when we are considering the group & and in the case when we
are considering the group &'. Thus, if ¢ is a distribution on R” and
Fis in C2(G), we shall write ¢V F for the distribution defined in
83 (with @ playing the role of H); but also, if ¢ is a distribution
and F’ is in C2(G'), we shall write ¢VF” for the distribution arising
when we replace H by &' in the definitions of §3. The context makes
evident the group (G or &) with respect to which the operation V is
being defined.

We begin with a lemma. This will then yield the main theorem
as an easy corollary.

LEMMA 4.1. Let G be o closed subgroup of Gl (n, B) of dimension
m =n, Let E be a barrelled G-space. Then for all w in E, v in
E', F" in CAG"), and ¢ in C7(R™) such that
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supp ¢ < R"\Z(G")

we have the identity
(g, AVEF"-5Y = S CuA™h, osdSF(ANIA
GI
Proof. Recall that if q is a temperate distribution, then so is
gVF’. Thus if ¢ is in C(R"), then

[qVE"-g]7(2) = (qVEF")" * $(—2)
= (P, (qVF')")
={(3.)", ¢VEF")

(4.2 = | <a*, @GP
= | <@ goFanaa
= | Jaet 4 1<q*, g Fanaa
= L,' det A7 |q*™ () F'(A)dA’ .

Now consider a temperate distribution v, a function F’ in C3(G’),
and functions 4 in S(R") and ¢ in CJ(R"). Then, if (1) is a net
extracted from S(R") which converges to v in S(R"), we have, by
virtue of (4.2),

<¢, “/I}VF"6> = limz <"ﬁVF/'¢y 771.>
= lim | [WVF-sI"@n(~)da

R™
=tim| | Idet 4=y g@F (A4 (—0)ds
7 Rn ’

= lim S [det A~ |44 x g+ 1,(0)F"(A")dA’ .
% G’
Now, the set
{v4 7« g: A’ e supp F'}

is a bounded subset of S(R"). Hence

lim Y47« @+ 7,(0) = P47 = G xv(0)
uniformly for A’ in supp F’. Thus (4.3) becomes
(4.4) {p, yVEF"-D) = gc’l det A7 [v* x$xv(0)F"(A")dA" .

Now consider a fixed ¢ in C2(R") with
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supp ¢ C R"\Z(G")

and a fixed F’ in C7(G’). Then, for each w in E, #VF" is indefinitely
differentiable on a neighborhood of supp ¢ (by Lemma 3.1). Thus
AVE'-¢ is in C2(R™) and so [uVF'-4]" is in S(R"). We claim that
the map

(4.5) w— [AVEF'-¢]"

is continuous from E into S(R"). Since E is barrelled and S(R") is
fully complete, it suffices to show that the graph of this map is
closed. Thus, assume that (u;) converges to % in E and that

lim, [4.VF"-¢]" = 7
in S(R"). Then, for each ) in Cy(R"), we have, in view of (4.2),
7+A(0) = lim [Z,VF"-6]"» M(0)
= lim Sm [4,VF"- ] ()M —z)de
= lim Ln Sc,' det A~ |ud™ » 3(@) F' (AW —2)d A'das
= lim Sc,' det A |ut ™+ MO0)F"(A)d A’
= lim Scl(ui, (G N)SF(A)AA’ .

Now, since supp F’ is compact, the set {A: A’ € Supp F"} is a compact
subset of G. Hence, since E is a G-space, the set
{($*\)*: A’ e supp F'}

is a weakly compact, and hence equicontinuous (E being barrelled)
subset of E’. It follows that

lim Cu, (B0 = <, Br)S

uniformly for A’ in supp F’. Using this in (4.6), we get
M0 = |_Cu, GO FA)aL

= L}[ det A= <uA™, §+ A F'(ANdA’

G’

= || det 4~ jut " per ) (434

. L,l det A~ |uA~"» $(z) F'(A") AN — 2)dax

—
—

=AVE g+ \(0) .
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We conclude that 7 coincides with [#VEF’-¢]" and therefore the graph
of the map (4.5) is indeed closed.
Now consider again a function ¢ in C2(R") with

supp ¢ € R"\Z(®@) .

Let (¥,;) be a net extracted from S(R") which converges to  in E.
Using the continuity of the map (4.5) and relation (4.4), we find that

(, AV -Y = (AVE'+, B
= lim (HVF"-5, 0
= lim 80,1 det A1 |~ x % v(0)F'(A)dA’
= lim L[ det A~ |{ya™) Gx o) F'(A)AA’
- 86'1 det A~ [ Cut, § vy F'(A')dA’

the last equality following from a now familiar argument. This
completes the proof of our lemma.

THEOREM 4.2. Let G be a closed subgroup of Gl (n, R) of dimension
m = n. Suppose that E is a barrelled G-space. Let w in E and v
in K’ be such that

4.7) {ud, v) = 0
for all A in G and b in R*. Then

supp 9 N { U A'(supp fa,)} C 26 .

Proof. Relation (4.7) entails that

Cuty prxv)y =0

for all ¥ in S(R"). Lemma 4.1 now tells us that #VF’-9 vanishes
in R\Z(G') for all F' in C3(G'). Lemma 3.2 now leads us to the
conclusion that

supp 9 N supp 44 < Z(G')
for each A in G. Since

A~ gr—1

supp 4 = A'(supp %)

the desired result follows.

5. A density theorem. Let E be a subspace of S'(RB*). If S
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is a subset of R", we say that Sis a set of uniqueness for E relations
supp?cS,ve
entail that » = 0.

THEOREM 5.1. Let G be a closed subgroup of Gl (n, R) of dimen-
ston m = n. Suppose that E is a barrelled G-space and that the set
Z(G") is a set of unmiqueness for E'. Let w be an element of E.
Then Tclu] coincides with the whole of E if and only if

(5.1) U {4'(supp u): Aec G}
18 dense in R".

Proof. The density of the set (5.1) is clearly necessary for T¢[u]
to coincide with E. For suppose that some nonvoid open set U in
R" did not intersect the set (5.1). Consider a nonzero ¢ in C(R") with
support in U. Then its Fourier transform ¢ is a nonzero element of
E’ which annihilates T.[u].

To prove the converse, suppose that (5.1) is dense. Let = be
in R"\Z(G'). Then, as in the proof of Lemma 3.2, we deduce that
{A’x: Ac G} is a neighborhood of ». Thus, there exists a point in
the set (5.1) which is also in {4'z: A G}. In other words, there is
a point 2z in supp %, and elements A, B in G, such that A’z = B'w.
Hence, v = B''A’z is in the set (5.1). By Theorem 4.2, x cannot
belong to the support of the Fourier transform of any distribution
v in E’ which annihilates Tg[u]. It follows that if v annihilates
T¢[u], then we must have supp 9 contained in Z(G'). Since Z(G')
is a set of uniqueness for E’ by assumption, we infer that v = 0. The
Hahn-Banach theorem now tells us that T;[«] is the whole of E.

The problem considered above has been studied by Gosselin [1]
in the case when F is the space Lebesgue square integrable functions,
but with no restriction on the dimension of G. The approach in [1]
is a measure theoretic one.
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