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A "GOING DOWN" THEOREM FOR CERTAIN
REFLECTED RADICALS

B. J. GARDNER AND PATRICK N. STEWART

In a category ^"suitable for radical theory, a functor
φ: J2Γ-* J%Γ is studied which is associated with a natural
transformation 1%-^φ in a way which bears a formal re-
semblance to the behavior of certain "extension" functors
of rings, such as that which assigns to each A the polynomial
ring A[x]: every normal subobject N-+φ(A) has a "contrac-
tion" Nc-+ A. For a radical class & in 5ί"such that <^* =
{A\φ(A)e&} is also radical, some conditions are obtained
which imply that

!• Preliminaries. We shall work in a category J2Γ for which
the general theory of radicals can be developed (for a set of conditions
on SΓ which ensure this and for some other remarks on radicals in
categories, see [9]) and shall consider a left-exact functor Φ: <3ίΓ-+
3ίΓ which has associated with it a natural transformation 1%- —>Φ,
which will be fixed throughout the discussion. We shall further
assume that for each normal subobject N—+Φ(A) there is a normal
subobject NcA—>A and a pullback

N >Φ(A)

where the right-hand vertical map is defined by the natural trans-
formation mentioned above. When no confusion can result, NcΛ will
be abbreviated to Nc. We shall frequently find it convenient to write
Ae for Φ(A). A prototypical example of such a functor is that which
assigns to each ring A its polynomial ring A [x], in which case Ae —
A[x] ("extension") and Nc = N Π A ("contraction"). The symbol A —Ae

will always denote a map defined by the given natural transformation.
Our category-theoretic terminology is essentially that of [2]. We

shall not distinguish notationally between a subobject and a represen-
tative map. In particular if A e SΓ and & is a radical class, &(A) —>
A will denote the ^-radical of A.

PROPOSITION 1.1.

(a) // N—>A is a normal subobject, then N—+A g Nec —> A.
(b) // JVΊ —• Ae £ N2—+ Ae are normal subobjects then N{ —> A £

Ni-> A.
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(c) A" = A.
(d) If I—* A and J—>Ae are normal subobjects, with J-+ A" Ξ

P —+Ae, then there is a map Jcl —* JcA such that

JCI >I

I I
JcΛ >A

commutes.

(e) If

P N ,

i I
N2 >Ae

is a pullback and N,,—*Ae, Nt-+A% P-^A" are normal subobjects,
then

P' >Nt

i 1
Nl >A

is also a pullback.

Proof, (a) follows from consideration of the diagram

(b) follows from consideration of

(c) is obtained from (a) by taking N = A.
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(d) Since Γ > A ' , Jcl > I

V I I
J J—>f

and J°A * A commute and the last square is a pullback, consideration

i i
J >A°

of the following diagram establishes the result.

—A

(e) Consider the diagram

By (b) the two triangles on the top of the cube commute and so the
square on the top of the cube commutes. Suppose

F >Ni

i I
Ni >A

commutes. Since the base of the cube is a pullback we obtain an
appropriate map F > P and since

i J



384 B. J. GARDNER AND PATRICK N. STEWART

is a pullback, we obtain the required map P' > Pc which is unique
since P° —> A is monic.

2* The results* If & is a radical class in J3Γ, we denote by
^ ? * the class {A eJ?Γ\Φ(A) e &}. Henceforth we shall only consider
radical classes & for which ĝ>* is also a radical class. Some condi-
tions on Φ which imply that ^ * is radical for some or all radical
classes έ% are given in [5].

PROPOSITION 2.1. For every i e X we have
+ A.

Proof. Since ^*(A)e—>Ae is a normal ^-subobject we have
^*(A)«-*A e S^P(A e )-*A e . The result now follows from (a) and
(b) of Proposition 1.1.

A radical class & is hereditary it Ne& whenever Me& and
N—> M is a normal subobjeet. ^ is normally-hereditary if for every
normal subobject JV-^A we have

> N > A = (N~> A) n (^(A) > A) .

Clearly normally-hereditary radical classes are hereditary, but the con-
verse need not be true.

In what follows we shall be concerned with the following condi-
tions involving Φ and ^?.

(a) If &(Ae)ΰ = A, then Ae e &.
(a') &(Ae)ce -> Ae S &(Ae) — Ae for each A e
(a") &{Ae)cee& for each Az^έΓ.

It is easy to see that (a") => (α:') ==> (α).

PROPOSITION 2.2. 1/ even/ pαit o/ normal subobjects of each
object in J%Γ has a normal intersection, then for normally-hereditary
radical classes &, (a) and (ar) are equivalent.

Proof. We need only show that (a) implies (af). Assume (a) is
satisfied. The pullback

> A

exists. By Proposition l.l(e)
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Pc

I J
is a pullback and by Proposition l.l(a), &(Ae)° ~* A S
and so P° = &{Ae)c. Since & is normally-hereditary, it follows from
(*) that P = ^ ( ^ ( A e ) o e ) and so P° = ^(^(ATY We conclude
that &{AJ = έP(έP(A')"Y, i e , ̂ ?(/ )βil = ί» where 1=

Consider the diagram

Since Γ~^Ae is monic and

I J
is a pullback we obtain a such that

\

commutes. Thus &(Ie)CI = I and so by (a) we have
^?, which establishes (α')

PROPOSITION 2.3. If & is hereditary, then {af) and (a") are
equivalent.

Proof. Obvious.

PROPOSITION 2.4. If & satisfies (a) then

= A} .

Proof. If &(Ae)c = A, then Aeeέg, i.e.,Ae<^*, by (a). Con-
versely, if A G ̂ * , then Aee& and so ^T(Aβ) == Λe. Hence &{Ae)c =
Aβc = A by Proposition l.l(c).
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Proposition 2.4 gives a "global" description of ^ ? * . We can also
give a "local" description of <^P* under more restrictive conditions.
We shall need

LEMMA 2.5. If ^ satisfies (a") then for each 4 e X we have

Proo/. By (α"), ̂ ( A e ) c e e ^ , so

and ^ ( A 6 ) " > Ae £ ^ ( A e ) > A* .

The latter implies, by Proposition l.l(b), that &{Ae)cec-+ A £
A and from Proposition l.l(a) we see that ^?(Ae)c -> A £ ^ ( A e ) c e c — A.

THEOREM 2.6. 1/ ̂  satisfies (a) and ^(^(Ae)ceY = &(AeY, then

Proof. Applying Proposition 2.4 to &{Ae)% we see that &(Ae)c e
&*. The equality now follows from Proposition 2.1.

COROLLARY 2.7. If every pair of normal subobjects of each object
of 3ίΓ has a normal intersection and if & is normally-hereditary
and satisfies (a), then &*(A) — &{Aff for each

Proof. By Proposition 2.2, & satisfies (ar) and hence, by Pro-
position 2.3, (a"). By Lemma 2.5, & satisfies the requirements of
Theorem 2.6 for all A e X

3* EXAMPLES. In the category of associative rings, the functor
Φ which associates the semigroup ring A[S] with a ring A(S is a fixed
semigroup with identity) and acts on maps in the obvious way satisfies
the requirements listed in §1, the natural transformation being defined
by the standard embedding A~+A[S]. Moreover, ^ * = {A\ A[S] e &}
is radical for every radical class & (cf. [5]) and ̂ ? * £ ^ .

The following result is essentially due to Krempa [7] who proved
it in the special case where S is the free semigroup with identity on
one generator, i.e., A[S] is the polynomial ring A[x],

PROPOSITION 3.1. Every radical class of associative rings satisfies
{af) for the functor defined by the correspondence A t-» A[S]f for any
semigroup S.

From Proposition 2.4 we see that ^ ? * = {A\&(A[S]) Π A = A} for
every radical class &. Thus in the case Ae = A[x], &* coincides
with the radical class discussed by Ortiz [8].



A "GOING DOWN" THEOREM FOR CERTAIN REFLECTED RADICALS 387

Proposition 2.1 and Theorem 2.6 therefore generalize Theorem 1
of [8]. By Corollary 2.7, &*(A) = &(A[S\) Π A whenever & is
hereditary. For A[S] — A[x], this was proved by the first author in
[4].

Another example of a functor defined on the category of associa-
tive rings which meets our requirements is that which assigns to each
ring A the ring An of n x n matrices for some (fixed) n. Again
action on maps is defined in the obvious way. The natural transfor-
mation is defined by the embedding of A in An as the subring of
scalar matrices. In this case too, ^?* = {A\Ane&} is radical for
all radical classes & [5].

The proof of the following result closely resembles that of Pro-
position 3.1.

PROPOSITION 3.2. Every radical class & of associative rings
satisfies {ar) for the functor defined by the correspondence A\-* An.

By Proposition 2.4, ^ * = {A\A g &(An)} in this case and by
Corollary 2.7, ^ * ( i ) = ^ ( A J ίl i when & is hereditary. (Here
we have identified A with the ring of scalar matrices.)

Let 0—>J£—>X~+Ώ —+0 be an exact sequence of abelian groups,
where Z is the group of integers and D is torsion-free divisible. The
functor ( )(x)X has a right adjoint and so ĝ>* = {G|G (x) Xe <̂ ?}
is a radical class for every radical class & of abelian groups [5].
The map G —* G ® X defined by the isomorphism G = (? (x) Z and the
given exact sequence defines a natural transformation from the identity
to ( )(x)X. All requirements of §1 are satisfied.

PROPOSITION 3.5. Every radical class & of abelian groups satisfies
(a) for the functor ( ) (x) X.

Proof. If G S ^ ( G ® 1 ) , there is an epimorphism

G ® D ~ (G (x) X)/G > (G (x) X)/<&(G (x) X) .

If & contains only torsion groups, then G is torsion and so G (x) D =
0 G ^ . If & contains a nontorsion group, then it contains all
divisible groups (see e.g. [3], Corollary 2.3) and so (?(x)De ̂ . Hence
(G (x) X)/&(G (g> X) 6 & in all cases. Thus G (x) X e ^ .

In all the examples considered so far, the natural transformation
involved has arisen from a natural embedding A —> Ae. We conclude
with a simple example in which the relevant map A—>Ae need not
be monic.

Let R1 and R2 be associative rings with identity, R = Rλφ E2
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(ring direct sum) and let Φ be the functor defined on the category
Mod(ίJ) of right unital iϋ-modules by M^^ MR,. The classes ^ =
{MRi\Me Mod (R)}, i — 1, 2, are actually hereditary radical classes
and we have the situation analysed in Theorem 2.4 of Jans [6], It
is straightforward to show that Φ is exact and preserves unions of
ascending chains and hence (see [5]) that ^ * = {M\Φ(M) e&) is a
radical class for every radical class & in Mod (R). The projection
M-+MR, defines a natural transformation with the properties we
want. If N is a submodule of MR, = Me then Ne = Nφ MR2.

PROPOSITION 3.3. Every radical class & in Mod (R) satisfies (a)
for the functor defined by the correspondence M\-^MR,.

Proof. If & (MR,) 0 MR2 = AT = MR, © MR2, then MR, =

4* The question of "going uρ '\ We revert to our general
situation to briefly mention a related problem: to determine when
^(Ae) = &*(A)e. Since ^ * ( A ) e ^ ? * , we always have ^*(A)*->
Ae S &(A*) —>A\ The other inclusion seems to be more difficult.
Amitsur [1] has given a (highly nontrivial) proof for Ae = A[x] which
is valid when & is strongly hereditary or the Jacobson radical class.
On the other hand, when Ae = An, it is relatively easy to check that

= ^?*(A)e for all rings A when f̂5 is hereditary.

PROPOSITION 4.1. Let A be an associative ring, & a radical
class of associative rings. If A has an identity or & is hereditary,
then

Proof. If A has an identity, then &(An) = In for some ideal I
of A. Since Ine^we have Ie &*; thus / S ^?*(A) and so &(An) £
^T*(A)W. But &*(A)n e &, so &(An) = ^ ( A ) n . If A does not have an
identity and & is hereditary, we make use of the Dorroh extension
A1 of A. Because & is hereditary (= normally-hereditary), so is
^ * , and thus we have &(An) - A. Π ̂ ((A%) = An Π ̂ * ( A % =
[A n ^5*(A1)]W - ^*(A) Λ .
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