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EQUIVARIANT MAPS BETWEEN
REPRESENTATION SPHERES

STEPHEN J. WILLSON

Let G be a finite group, V and W be finite representations
of G, S(V) and S(W) be the unit spheres in V and
W. Suppose dim V" =dim W" for every subgroup H of
G. We seek to classify the G-equivariant homotopy classes of
G -equivariant maps from S(V) to S(W).

Introduction. We wish to consider the following problem: Let
G be a finite group, and V and W be finite dimensional orthogonal
representations of G. Let S(V) and S(W) denote the unit spheres of
V and W respectively. Then S(V) and S(W) inherit G-actions.
Classify the equivariant homotopy classes of G-maps from S(V) to
S(W).

The case where G = Z, and S(V) and S(W) have free Z, actions
was done by Olum [6] and was used to give a classification of lens
spaces up to homotopy equivalence. In this paper we generalize
Olum’s result.

Our approach is to consider the behavior of an equivariant map
restricted to the various fixed point sets. Explicity, if X is a space with
a left action of the group G, and H is a subgroup of G, we denote by X"
the set of points in X left fixed by each element of H. H
f: S(V)— S(W)is a G-equivariant map (i.e., f(gv) = gf(v) forallg € G
and v € S(V)), then f induces maps f”:S(V¥ — S(W)¥ for each
subgroup H. Since V and W are linear representations, these fixed
point sets S(V)* and S(W)* are again spheres, and we may choose an
orientation for each S(V)# and S(W)*. If X is a manifold, denote by
dim X the (real) dimension of X. When dim S(V)” =dim S(W)", f¥
has a well-determined degree, denoted by deg f".

Our major theorem asserts that, under suitable hypotheses, the
homotopy classes of the maps f¥ for all H determine the equivariant
homotopy class of f:

DEerINITION. Let G be a finite group. If H is a subgroup of G,
denote by N(H) the normalizer of H in G. An orthogonal representa-
tion V of G is completely orientable if for every subgroup H of G, the
induced action of N(H) on S(V)" is orientation-preserving.

ExAMPLE. Any unitary representation of G is clearly completely
orientable.
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THEOREM A. Let G be a finite group, and let V and W be
orthogonal representations of G. Assume V @ W is completely orient -
able and that for each subgroup H of G we have dimV¥ =
dim WY Suppose h and k are G-equivariant maps from S(V) to S(W)
and degh" =degk" whenever dim V¥ = dim W*". Then h and k are
G-equivariantly homotopic.

We note that G. Segal [7] has obtained Theorem A for the case
V =W. 1Itis clear that if V and W are each completely orientable,
then so is VP W.

Theorem A may be restated as follows: Denote by [S(V), S(W)]s
the class of G-equivariant homotopy classes of G-equivariant maps
from S(V) to S(W). For each subgroup H of G denote by
[S(V)",S(W)"] the set of (not necessarily’ equivariant) homotopy
classes of (not necessarily equivariant) maps from S(V)? to
S(W)#. There is a natural map

v: [S(V), S(W)]g —>[HI [S(V)H, S(W)H]

where the product runs over all subgroups H of G; the map v is defined
by setting the H component of v(f) equal to the class of f¥ when
f: S(V)—> S(W) is a G-equivariant map. Theorem A then has the
following formulation:

THEOREM A (restated). Let G be a finite group, and let V and W
be orthogonal representations of G so V@EW is completely
orientable. Suppose dim S(V)" =dim S(W)* for each subgroup H of
G. Then v is one-to-one.

Given this formulation, the classification problem reduces to the
computation of the image of v. It is not a difficult exercise, although
somewhat cumbersome, to compute this image in the case where G is a
finite abelian group.

The hypothesis that dim S(V)” =dim S(W)* for all H cannot be
eliminated. An easy counterexample is provided as follows: Let
G =Z,. Let V be the antipodal representation on R® (i.e., if 7
generates G, let 7v = —v where v ER®) Let W be the constant
representation on R’ (i.e., 7 leaves every point of W fixed). Define
f: S(V)— S(W) by the composition

S(V)> S(V)/G = RP"=> §7-5 S¢ = S(W)
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where p is the projection map, k is the map of degree one which
collapses all but a single 7-cell to a point, and h is the appropriate
suspension of the Hopf map. Clearly f is G-equivariant. Since p has
degree 2 and h has order 2, f is (nonequivariantly) homotopically
trivial. If f were equivariantly trivial, then the induced map hk on the
orbit spaces would be trivial. Using the notation of Steenrod [9], we
observe that hk is trivial on the 6-skeleton of RP7; the difference
cocycle d(hk,t) is then defined using the trivial homotopy, where ¢ is
the constant map, and we find directly that it corresponds to h €
H(RP’; m(S%) = Z, where h#0. By Steenrod [9] it follows that hk is
homotopically trivial only if h lies in Sq*(H’(RP’; Z,)). But
Sq*(H*(RP’; Z,)) = 0 (see, for example, Steenrod [8, page 5].). Hence
hk is essential.

Nor can we eliminate the hypothesis of complete orientability. A
simple example follows: Let G = Z, with generator 7. Take V =R’
with Z, action 7v = — v, and take W = R’ with the trivial action. Let

h: S(V)— S(W) be defined by S(V)—P>S(V)/Zz=RP2—]—> S2=8S(W)

where P is the projection map and j is not homotopically trivial. Then
j - P is trivial since deg P = 0, but h is not equivariantly trivial since its
orbit map j is nontrivial.

Details. Let G be a finite group acting on a space X. If x € X the
isotropy subgroup of G at x, denoted G,, is the set of g € G such that
gx = x. A principal isotropy subgroup H is a subgroup H so H = G,
for some x and whenever G, CH, then G, = H. Itis well-known that if
X is a connected smooth manifold and the action of G on X is smooth,
then any two principal isotropy subgroups are conjugate. We shall use
0(G) to denote the order of the group G.

We are going to utilize equivariant obstruction theory and such
notions as ‘‘equivariant triangulation”, “obstruction cocycle”, and
“equivariant coboundary”. A good background source for such mater-
ial is Bredon [1]. Note that for us, an equivariant triangulation of a
space X with an action of G consists of a way of expressing X as a
simplicial complex in such a manner that (1) for each g € G, the map
g: X — X is a simplicial map; and (2) if A" is an r-simplex of X and s
lies in the interior of A" (denoted Int A”), then all points in Int A" have
isotropy subgroup G,, and the natural equivariant map from G/G, X A’
into X (where A" is here regarded as having no G-action) is a
homeomorphism of G/G, X Int A" onto its image. The r-skeleton of X
will be denoted X".

The basic tool for our analysis will be the following proposition:
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ProposITION 1. Let G be a finite group. Let S, and S, be spheres
with smooth actions of G such that each element of G preserves
orientation on S, if and only if it preserves orientation on S,.' Suppose
the principal isotropy group of Gon S, ise. Let L = Uy, SY. Leth
and k be G-equivariant maps from S, to S, satisfying that h|L =
k|L. Then

(1) if dimS,<dimS,, h and k are G-homotopic rel L;

(2) if dimS,=dimS,, then degh =degk modo(G) and degh =
deg k if and only if h and k are G-homotopic rel L.

Proof. By Illman [4] or Matumoto [5] we may obtain an
equivariant triangulation of S,. We observe that L is a
subcomplex. We try to construct an equivariant homotopy F: S, X
I—S, by equivariant obstruction theory. We set F|S,x0=h,
F|S x1=k, F|[L XxI=h -projection. Assume that F has been ex-
tended equivariantly over (S, X I)’, the r-skeleton of S, xI. If G/e x
A"xTisan (r+1) cell of S, XI—(S,xdl UL XI) then F induces a

map from S" to S, by S"=9(A" XI)—>e XA’ ><I—F->Sz. If r<dim$S,,

then clearly the map extends over A" X I, and we can easily extend
equivariantly over G/e X A" X I. This proves (1) by induction; and in
case (2), it shows there is an equivariant extension of F over (S, X I)"
where n =dim S, =dimS,. Continue to call the extension F.

In this latter case, we try to extend over (S, X I)"*'". Define a
function ¢ (the obstruction cochain) which assigns to each cell g X A* X
I CGJe x A" x I the integer which is the degree of the map F|d(g X A" X
I)— S5. (Here, each cell g X A" X I has been assigned an orientation
consistent with the orientation of S, X I.) It follows that c(g, X A" X
I)=c(g.g, x A" X I) for any g, and g, since F is equivariant and g,
reverses orientation on S, if and only if it reverses orientation as a map
from d(g, X A" X I)to d(g.g, X A" X I). Hence itis clear that F extends
equivariantly over (S, x I)"*" if and only if each such integer is 0.

From the proof that the degree map is a homomorphism from
7. (S") to Z, we see

> deg F|a(g X A" x I)=degk —degh

where the summation runs over all cells of form g X A" X I. Since
deg F|a(g xA"xI)=degF|d(e X A" X I), we obtain
0(G)Z,-deg F|d(e x A" x I)=degk —degh. This proves degk =
degh mod o (G).

' In fact S, need not be a sphere, but only a smooth closed orientable manifold: the same
proof then applies.
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If deg k = deg h, we shall see that ¢ is an equivariant coboundary
8l, where | is a cochain containing no terms involving cells of L X
I. Hence we may modify F equivariantly on (S, XI)"—
(S, xI)"'US,x3I UL X I) so that the new map extends equivariantly
over (S; X I)"*'. Note that the new map agrees with F on L X I. For
further details, see Bredon [1].

To see that ¢ is an equivariant coboundary, we choose a fixed cell
og,=GJe X A; X I. For each cell o, = G/e X A} X I, obtain a path from
one of the simplices of o' to e X Aj X I, which passes only through the
interiors of cells of form G/e X A* X I and G/e X A"' X I. Such a path
exists since the image in the orbit space S,/G of the set of points with
isotropy group e is connected. (See Bredon [2, p. 179].) For any cell
™ =Gle X A"' X I, we may let d,- be the cochain which assigns 1 to
eachcell g X A"'X I C7" and 0 to all other cells. Then ad,- assigns 1 to
each g XA" X1 on one side of 7" and —1 to each on the other
side. Following the path from each o, to o, and adding appropriate
multiples of 8d,- for the various G/e X A"™' X I which are crossed by
those paths, we obtain a cochain which assigns (deg k —deg h)/o(G) to
eachcell g X Aj X I Coyand 0 to all others. Hence, if deg h = deg k, we
may express ¢ = 2 a;,6d; where a; € Z, 8d; is the cochain obtained from
some Gle X A"' X I.

COROLLARY 2. Let G be a finite group. Let V and W be or-
thogonal representations of G, where V@AW is completely
orientable. Suppose the principal isotropy group of G on S(V) is
e. Suppose dimS(V)! =dimS(W)*  for all HCG. Let
h,k: S(V)— S(W) be G-maps. Suppose that whenever dim S(V)" =
dim S(W)¥ (H# e) then deg h® =degk”. Then

(1) if dimS(V)<dimS(W), h and k are G-homotopic;

2) if dimS(V)=dim S(W), then degh =degk modo(G) and
degh =degk iff h and k are G-homotopic.

Proof. We merely apply the Equivariant Homotopy Extension
Property (see Illman [4] or Willson [10]) and Proposition 1. Explicitly,
let H, be a maximal isotropy group. By Proposition 1, h|S(V)" and
k|S(V)* are N(H,)/H, homotopic. Extend the homotopy over
GS (V)" to a G-homotopy by equivariance; there is no difficulty since it
is defined on cells of form N(H\)/H, X A* X I CG/H,x A’ xI. Now by
the Homotopy Extension Property, we may equivariantly homotope h
to h, so that h,|GS(V)" =k |GS(V)".

Let H, be an isotropy group maximal among those remaining. By
Proposition 1, h,|S(V)® and k|S(V)®: are N(H,)/H,
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homotopic. Continue as above to G-homotope h, rel S(V)*" to a
G-map h, so h,|GS(V)*=k|GS(V)*™,
Continue inductively.

REMARK. Observe that in this corollary we use the assumption
that the actions are orthogonal to ensure that S(V)" and S(W)" are
spheres; and we use the assumption that V &5 W is completely orienta-
ble to ensure that any element of N(H,) either preserves orientation on
both S(V)* and S(W)" or preserves orientation on neither.

Proof of Theorem A. Let K denote the set of g € G such that
gx=x for all x€S(V). Then K is a normal subgroup of
G. Replacing G by G/K if necessary, we may assume the action of G
on S(V)is effective. Now Newman’s Theorem [3, p. 204] implies that
the principal isotropy group on S(V)is e. Then Corollary 2 yields the
Theorem.

CorOLLARY 3. Let G be a finite group. Let V and W be unitary
representations of G. Suppose dim V¥ <dim W¥ for all H. Then any
two G-equivariant maps h and k from S(V) to S(W) are G-equivariantly
homotopic.
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