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GENERALIZED SUMS OF DISTANCES

RALPH ALEXANDER

Let K be a compact set in a Euclidean space and let d be a
metric on K which is continuous with respect to the usual
topology. The generalized energy integral I(μ) = ff d(x, y)
dμ(x) dμ{y) is investigated as μ is allowed to range over the
lamily of signed Borel measures of total mass one concentrated
on K. A trick of integral geometry is used to define a class of
metrics d, including many standard ones, possessing a number of
pleasing properties related to the functional /.

1. Introduction. In his article [4] L. Fejes Tόth discus-
ses problems of the following nature: Suppose K is a compact subset of
a Euclidean space and that p,, ,pn are variable points in K. How

can these points be arranged so as to maximize the sum of the ( n

distances they determine, and what is the maximum value attained by
this sum?

Since these problems are usually very difficult, it is advantageous to
look for generalizations which can be attacked. K. B. Stolarsky and
the author [1] had considerable success with the following: Let μ vary
over all signed Borel measures of total mass one concentrated on
K. What can be said about the maximum value of the generalized
energy integral J(μ) = fj\x - y | dμ(x) dμ{y)Ί

If μ is defined by placing mass 1/n at each ph we see that
n2I(μ) = 2Έi<j \pi -pj\. Information concerning the generalized prob-
lem has proved most helpful in the study of the original problem, at least
for obtaining good estimates. We remark that an explicit solution to
the generalized problem is obtained in [1] when K is a finite set.

Using a trick of integral geometry we will define a rather general
class of metrics d, including certain of the L p metrics as well as the
great circle metric, which has a number of pleasing properties with
respect to the functional I(μ) = jjd(x,y)dμ{x)dμ{y). Concavity,
given by 2/((μ, + μ2)/2) ^I(μx) +I(μ2), is probably the most useful of
these.

Each metric is defined in terms of a measure on hyperplanes, and it
turns out that I(μ) possesses a nice representation as an integral with
respect to this measure. This allows an easy derivation of the basic
properties of /. As is often the case, these are more apparent in the
general situation than in special cases where it is not clear what is
important.
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We use some standard terminology and notation from measure
theory. For example, if μ is a signed measure, | μ | will denote μ+ -f μ ~
where μ+ - μ" is the Jordan decomposition of μ. The book by Halmos
[5] contains a thorough discussion of such topics.

2. A definition and a general example. By a Borel set
of hyperplanes, or (ra - 1)-flats, in Em we mean a collection of
hyperplanes whose dual is a Borel set in Pm. However, we are thinking
of the hyperplanes as "points". Let η be a measure on the Borel sets
of hyperplanes (t denotes a hyperplane), and let K be a fixed compact
set in Em, We make the following basic assumption:

(1) The η- measure of planes containing points in the convex hull
of K is finite

(2) If p is any point in K, η{t: p &t} = 0.

(3) If p,q in K are distinct. η{t: t Γ)pqV φ } > 0 .

DEFINITION 2.1. If p,q are points of X, define d(p,q) to be

PROPOSITION 2.1. The function d is a metric on K which is
continuous with respect to the Euclidean topology.

Proof. Let p, q, r be points in K. Properties (1), (2), and (3) imply
that d(p,p) = 0 and that d(p,q) is a positivejreal number if p and q are
distinct. Since_any^ hyperplane which cuts pq must cut at least one of
the segments pr, rq, the subadditivity of η immediately implies that

Suppose K* is the convex hull of K and B(x,δ) is the set of points
in K* within Euclidean distance δ of x. Let {pj be a convergent
sequence in K with limit p(). Observe that rf(po,Pι) =
η {t: t Π B (po, I Po ~ Pi: |) ̂  Φ} < °°. Also, since Π ,β (p0, | p0 - pt |) =
{po}, property (2) together with "continuity from above" of η imply that
limited(po,P;) = 0. The continuity of d as a function on K x K
follows easily as a consequence of the triangle inequality.

Now we give a reasonably general construction of a measure on the
hyperplanes of Em. Let l(u) be the directed line through the origin
containing the unit vector w, and let mu be a Borel measure on /(w); p
will be a finite Borel measure on the surface of the unit ball. If T is a
family of hyperplanes, let T(u) denote those members of T which are
orthogonal to u. Put h(u) = mu(T(u)Γ) l(u)). Finally, we define
η(T) = Jh(u)dp(u). Whether or not η satisfies our three basic condi-
tions is a separate problem depending on the choice of K.
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Next we give four special cases of this construction to serve as
examples and for future reference.

(1) Let K be an arbitrary compact subset of Em. If for each w,
mu is Lebesgue measure and p is σ, the usual surface measure of the
ball, then d(p,q) = Cf\(p - q,u)\dσ{u) for a suitable constant
C. Hence d is essentially the Euclidean metric.

(2) If in example (1) we replace σ by m atoms of weight one
concentrated on υλ = (1,0, ,0), , vm = (0, ,0,1), we see that
d(p,q) = Σi\(p -q,Vi)\. H e n c e d is the L 1 metric on Em.

It is known that for l S p ^ 2 , the Lp metric on Em may be
represented as J\(p - q, u)\dp{u) for a suitable measure p on the
surface of the unit ball. See Bolker's interesting article [3] for further
discussion.

For our next two examples we let K be the spherical surface of
radius r centered at the origin.

(3) Let mu consist of a single atom of weight one concentrated at
the origin and let p = σ. Here it is seen that d is a constant multiple of
the great circle metric on K.

(4) Let mu consist of a single atom of weight one concentrated at
rou where 0 < r0 < r and let p = σ. We do not know if these metrics
have received attention in the literature. Various interesting metrics
on the sphere K, including the usual Euclidean metric, may be expres-
sed as weighted averages of these metrics as r0 varies from 0 to
r. Also, it is clear that as r0 tends to zero, the great circle metric is
obtained.

Even our general construction is far from being all-
inclusive. Indeed if η' is any centrally symmetric Borel measure on
the surface of the (m + l)-ball, the principle of duality gives a corres-
ponding Borel measure on the hyperplanes of m-space.

3. Basic properties of the functional J(μ, ). Let At and
B be the two open half-spaces determined by the hyperplane t. We
define υ(t) to be μ(Λt)μ(Bt). Our next result gives the fundamental
integral expression for /.

PROPOSITION 3.1. We have I(μ) = 2jv(t)dη(t).

Proof. We begin by noting that \v(t)\^\[\μ \(K)f for any
t. Hence v is an integrable function.

Let χxy be the characteristic function of the open seqment from x to
y (excluding JC and y). Since η(t:xEt or y E ί ) = 0, d(x,y) =
fχxy(t Πxy)dη(t).

Thus
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Kμ) = SΠxΛt Π Jy)dη(t)dμ(x)dμ(y).

We now may apply FubinΓs theorem to move the 17- integral to the
outside. We consider the integral

fSXχy(tΠxy)dμ(x)dμ(y).

Since χxy(t Π xy) = 0 unless x E Λ , y E. Bt o r x £ β ( , y G At, we can
evaluate the integral directly as

The result follows.

LEMMA 3.1. Let H = {t:\μ\ (tΠK)^O}. Then η(H) = 0.

Proof. Let χx be the characteristic function of the point x so that
| μ I (t ΠK) - ίχx(t Π x)d\μ \{x). We may again apply FubinΓs
theorem to assert

The inner integral on the right is zero by property (2) of the measure η,
and the result follows.

Because of Lemma 3.1 we may assume that the integral of Theorem
3.1 is taken only over those hyperplanes which intersect K in a set of
μ-measure zero. This lemma also implies that μ(At) + μ(Bt) = 1 for
almost all t.

PROPOSITION 3.2. For any μ we have I(μ )^\η(T) where T is the
set of hyperplanes having nonempty intersection with the convex hull
X*.

Proof. It is clear that v(t) = 0, if t Π K * / 0 since μ is supported
by K. For almost all t μ(At) + μ{Bt) = 1; whence »(ί) = ί, and
2fv(t)dη(t)^\η(T) for any μ. This completes the proof.

For the special case of the Euclidean metric, it was established in
[1] that I(μ) was bounded above using indirect arguments involving
metric embeddings in the sequence space I2.

Next, let μι and μ2 be two Borel measures of the type we are
considering which have common support K. For almost all t, μs{At) +

f) = μ2(At) + μ2(Bt) - 1. Hence
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call this number C{t). We define a variance by

PROPOSITION 3.3. Let μι and μ2 be signed Borel measures of total
mass 1 supported by K. Then

+ μ2)/2) - [ί(μ.) + ί(μ2)] - Var (μ,, μ2).

Proof. Let μx(At) - ku μ2(At) = k2. For almost all t μ,(B,) =
1-fci, μ2(B2)= l — k2. Applying Proposition 3.1, the left side of our
equation may be written

The integrand immediately simplifies to C(t)2/4.
It is natural to call / strictly concave if Var(μ,,μ2) >0, whenever

μ{/μ2. It can be shown that / is strictly concave when d is the
Euclidean metric. If d is the great circle metric and μ,, μ2 are centrally
symmetric measures on a sphere, we see that Var (μ,, μ2) = 0, and hence
/ is not strictly concave in this situation.

The question whether / is strictly concave in the case of the metric
defined by example (4) is interesting. Suppose K is a circle of radius r
and K' is the concentric circle of radius r0. A line tangent to K' will
divide K into two arcs of length /, and /2. A technical but straightfor-
ward argument shows that / is strictly concave if and only if /,//2 is
irrational. For spheres of higher dimension it seems "intuitive" that /
will always be strictly concave. However, a detailed proof could be
involved.

The final result of this section is obtained by combining our results
with the Menger-Schoenberg theory of metric embedding. The essen-
tial features of the proof are to be found in [1] where the special case of
the Euclidean metric is treated. Although we regard this as a very
interesting and useful theorem, we will omit the proof.

PROPOSITION 3.4. Let the metric d on the compact set K arise from
a measure on hyperplanes. Then the metric space (K,d') can be
isometrically embedded on (the surface of) a Hubert
sphere. Furthermore, the number supμ/(μ) is equal to 2ρ\ where pQ is
the least radius for which such an embedding is possible.
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We remark that Proposition 3.2 assures us that p() is finite. In [1] it
was proved by explicit construction that the metric space ([0,1], d'),
where d is the Euclidean metric on the line, can be isometrically
embedded on a Hubert sphere of radius \. Since d^(0,1) = 1, this shows
that p0 = \. Now, however, we observe that the idea used in the proof
of Proposition 3.2, taking points as hyperplanes and μ to be Lebesgue
measure, shows that / achieves a unique maximal value when μ
consists of atoms of weight 5 concentrated at zero and one. In this case
J(μ) = ί, and Proposition 3.4 allows us to deduce that po = :.

4. Brief discussion of applications to extremal prob-
lems.

PROPOSITION 4.1. Let K be a finite set in a Euclidean space, and
suppose that the metric d arises from a measure on hyperplanes. Then
the number supμί(μ) may be explicitly computed.

Proof. By Proposition 3.4 the finite metric space (K,dή can be
isometrically embedded on a Euclidean sphere. Clearly p() is the radius
of the sphere of minimal dimension. Standard methods may be
employed for computing the radius of the circumsphere of the simplex.

If / is strictly concave, it is easy to show that (K,d") embeds as a
nondegenerate simplex in Em where m + 1 is the number of points in
K. In this case the computation of p0 is straightforward.

PROPOSITION 4.2. Let K be a Euclidean sphere and d arise from a
measure on hyperplanes. Furthermore suppose that d is invariant
under orthogonal transformations. Then ί ( μ ) g / ( σ ) where σ is the
normalized surface measure of K.

Proof. Suppose that / is strictly concave. If μ ̂  <x, there will be
an orthogonal transformation τ such that r μ ^ μ. Since /(rμ) = ί(μ),
I(μ)< I(\(μ +τμ)). Thus /(μ) is uniquely maximal when μ = σ.

If / is not strictly concave, the functional JA associated with the
metric dk will be, if 0< A < 1. Letting λ -» 1 yields the result. The
ideas of Schoenberg [9] may be employed to prove the strict concavity
of ίλ.

We observe that if d is the great circle metric on K, then /(μ) = \πr
for any centrally symmetric μ. The papers of Sperling [10] and
Nielson [8] treat this case when μ consists of n atoms of weight 1/n.

Next suppose K is an arbitrary compact set. Except when K is
finite, we have not dealt with the problem of whether there generally
exists an extremal signed measure μ0 such that /(μ0) = supμ/(μ). The
difficulty, of course, is that signed measures are not weakly
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compact. Yet, all evidence indicates that μ0 will always exist if d
arises from a measure on hyperplanes. It may be that this issue can be
settled by an existing theorem in the vast literature on potential
theory. Since the positive measures of mass one are weakly compact,
we record the following proposition. The case where d is the Eucli-
dean metric is due to Bjorck [2].

PROPOSITION 4.3. Let K be a compact set and let d arise from a
measure on hyperplanes in such a manner that the functional I is strictly
concave. Then as μ varies over positive Borel measures of mass one
concentrated on K, there will he a unique μ() such that/(μ0)

 = supμ/(μ).

5. The work of J. B. Kelly. Kelly [6], [7] has done some
interesting work which is closely related to the results of this
paper. He calls a semimetric d "n-hypermetric" if given any 2n + 1
points in the space pu ,prt, qu ,<jrn + I, we always have

Σ <*(P.,P,) + Σ d{qhq,)^Σ d(p,,q}).
t<! i<j ι,j

Thus an ordinary metric is at least 1-hypermetric. We note here that a
slight modification of the proof of Proposition 3.3 shows that if d arises
from a measure on hyperplanes, then d is n-hypermetric for all
n. Kelly's papers contain many important results concerning hyper-
metrics in general.

We close with an obvious question. Let d be a metric on the
Euclidean space Em which is continuous with respect to the usual
topology. When does d arise from a measure on the hyperplanes of
EmΊ Two conditions must be met: (1) If p,q, r are collinear in the given
order, then d(p, r) = d(p,q) + d(q, r)\ (2) d must be /i-hypermetric for
all n. Are they sufficient?

It is not hard to show that any Minkowski metric on the plane arises
from a measure on the lines; see [3]. So, we would like to see at least
one example of a plane metric satisfying condition (1) but not condition
(2).

We wish to thank the referee for a number of comments which
improved the clarity of this article. Also, we should point out the
results of K. B. Stolarsky [11] which deal with the case where K is a
Euclidean sphere. For spheres of higher dimension his estimates of
distance sums are by far the best known.
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