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SUFFICIENT CONDITIONS FOR THE EXISTENCE
OF CONVERGENT SUBSEQUENCES

KEITH SCHRADER AND JAMES THORNBURG

Let R be the real numbers, S c R and E be an ordered
topological vector space. Sufficient conditions are given that
a sequence {yk}, yk: S -> E, will have a subsequence {hk} such
that for each teS, {hk(t)} is either eventually monotone or
else is convergent. In case E is a Banach space, sufficient
conditions are given that {yk} have a subsequence {hk} so that
{hk(t)} converges for each teS. Finally, if E— R, the concept
of {yk} being equioscillatory is defined and it is shown that
a necessary and sufficient condition for {yk} to have a sub-
sequence that converges at every point of S is that {yk} have
a subsequence which is pointwise bounded and equioscillatory.
An application of these results to differential equations is
treated briefly.

1* Introduction* The existence of solutions to initial and boun-
dary value problems for both ordinary and partial differential equations
is frequently shown by obtaining a convergent subsequence from a
sequence of functions and showing that the limit function is the
desired solution. For example, in the proof of the Picard-Lindelof
Theorem [1, Theorem 1.1, p. 8] and the Cauchy-Peano Existence
Theorem [1, Theorem 2.1, p. 10] such techniques are used. The
question arises then, for a given sequence of functions, what conditions
suffice to allow extraction of a pointwise convergent subsequence.
For a sequence {yk} with yk:I—>R, where / is a real interval, there
are many results which provide sufficient conditions for the existence
of a convergent subsequence; for example, the Helly Selection Theorem
and the Theorem of Ascoli.

Let {yk} be a sequence of functions from a nonempty subset S
of the real numbers R into an ordered topological vector space E.
Then we are interested in finding sufficient conditions that {yk} have
a subsequence {hk} such that for each s e S, {hk(s)} is a convergent
sequence. Theorem 2.2 yields a subsequence {hk} such that for each
s e S, {hk(s)} is either eventually monotone or else is convergent. By
adding conditions which will make these eventually monotone sub-
sequences converge, the desired convergence result can be obtained.
Such a result is given by Corollary 2.3. Furthermore, when E — R,
we obtain a necessary and sufficient condition for a sequence {yk},
yk: S-+ R, to have a subsequence which converges for each s e S.
This is stated in Corollary 2.5.
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In §3 an application to differential equations is given. A more
detailed description of the applications to boundary value problems
for ordinary differential equations may be found in [4].

2 Primary results* We begin this section with the definition
of a proper pair.

DEFINITION 2.1. Let S be a nonempty subset of real numbers
and / be a function, f:S-+E, where E is an ordered vector space
with positive cone K. Consider the set & of all finite nonempty
partitions P — {xu x2r , xn] of S where n ^ 1, xt e S for i = 1, 2, ,
n and x1 <x2 < - < xn. If f(s) Φ Θ for some s e S, we say that
(/, P) is a proper pair if (—iyf(xt) > θ for i = 1, 2, . , n or else
i-iyfiXi) < θ for i = 1, 2, . . , n. If /(s) = 0 for all seS we say
that (/, P) is a proper pair if P contains exactly one point.

THEOREM 2.2. Let S be a nonempty subset of real numbers
and {yk} be a sequence of functions, yk:S—>E where E is a sequen-
tially complete ordered locally convex space with positive cone K.
For each t e S assume that {yk(t)} is an eventually comparable sequence.
Assume, for each se S, that E has a nested countable basis of circled
sets at θ denoted by {Us(n)}. For each teS and each positive integer
n assume that there are nonnegative integers N(n, t), H(n, t) and a
number δ(n, t) > 0 such that for all k, j ^ H(n, t) if (yk — y^ P) is
a proper pair then P contains at most N(n, t) points x such that
yuipo) — yj(x) 0. Ux{n) and t — δ(n, t) < x < t + δ(n, t). Then {yk} con-
tains a subsequence {hk} such that for each teS, {hk(t)} is either
eventually monotone or else is convergent.

Proof. If yk(t) and yάif) are comparable for all k, j ;> M(t) and
M(t) is the smallest positive integer having this property then let
At = {ί: ί e S, M{t) = i) for i = 1, 2, . . . For any t e At we have
yk{t) and yό{t) comparable for k, j ^> i. We will prove the theorem
assuming that yk(t) and ys{t) are comparable for all teS and then
a standard diagonalization argument where S is replaced by A19 A2,
• yields the desired result.

We note that we may assume S is bounded because if the theorem
is true for bounded sets a standard diagonalization argument yields
the result for unbounded sets. Also, we may assume S is a closed
ieterval because if the theorem is true for closed intervals, I, then
we may choose J to be a closed interval containing the bounded set
S and define a sequence of functions {zk}, zk: S—*Eby

zk(t) = yk(t) for t e S

θ for t ί S
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then the sequence {zk} satisfies the hypotheses of the theorem on /
and the result would follow for bounded sets S.

Furthermore, because of the compactness of S, we may assume
that for each positive integer n there are nonnegative integers N(n),
H(n) such that for all k, j ^ H(n) if (yk — yif P) is a proper pair
then P contains at most N(n) points x such that yk(x) — yj(x)£ Ux(n).

Let {J,} be an enumeration of all nonempty open subintervals of
S with rational endpoints. Applying a slight modification of Corollary
2.2 of [3] to Ji, observe that either there is a subsequence of {yk},
again denoted by {yk}, such that {yk} is monotone on Jλ or else there
is a subsequence of {yk}, again denoted by {yk}9 such that for k Φ j ,
Vk{t)>yj{t) and yk(τ) < y3-(τ) hold for some £, τeJi- Now repeat
the process described in the previous sentence consecutively on the
intervals /2, J3, and then take the diagonal subsequence, denoted
by {yk} again. This sequence has the property that on Jt it is even-
tually monotone or else for every kφ j sufficiently large, depending
on i, there is t, τe /, such that yk(t) >yj(t) and yk(τ) <y3 (τ).

Now using JΊ and Ut(l) it follows from a slight modification of
Corollary 2.3 of [3] that either there is a subsequence of {yk}9 again
denoted by {yk}9 such that, for k Φ j , yk{t) — yά{t) e Ut(l) for all ί e Ji
or else there is a subsequence, again denoted by {yk}, such that for
k Φ j there is a ί e Ji with yk(t) — yj(t)& Ut(l). Now repeat the pro-
cess described in the preceding sentence for Ut(2), Z7<(3), and then
take the diagonal subsequence, denote it by {yk}. This sequence has
the property that for Ji and Ut(n) either for all k Φ j sufficiently
large, depending on n, yk(t) — y3(t) e Ut(n) for all teJx or else for
all k Φ j sufficiently large, depending on n, there is some ί e Ji such
that yk(t) - yά{t)£ Ut(n).

We now repeat the entire process described in the preceding
paragraph consecutively on the intervals J2, J3, and then take the
diagonal subsequence again denoted by {yk}. This sequence has the
property that for Jt and Ut{n) either yk(t) — yό{t) e Ut{n) for all t e Jt

and k Φ j sufficiently large depending on i and n or else there is
ateJi depending on k, j with yk(t) — y,(t) £ Ut(ri), for k Φ j sufficiently
large depending on i and n.

We will now show by contradiction that for all but countably
many values of x e S the sequence {yk(x)} is either convergent or
eventually monotone. For xe S such that {yk(x)} is neither convergent
nor eventually monotone let {Fxi} be the subsequence of {JJ consisting
of the intervals which contain x. There must be a smallest positive
integer nxt, such that yk(t) — ys(t) $ Ut(nxi) for all k Φ j sufficiently
large, depending on i, for some t e Fzi or else {yk} would be Cauchy
on Fxi and hence would be convergent at each point in Fxi. In
particular, {yk(x)} wold be convergent which contradicts the choice
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of a;. If lim^+oo nxi = + °° then there is a subsequence {nxi{a)} of
{nxi} such that limβ^+β0 wβ<(β, = +00 and by the definition of nxi{a) and
the nestedness of {Ut(n)} we have yk(t) — Vj(t)e Ut(nxi{a) — 1) for all
k Φ j sufficiently large, depending on a, and all t e Fxi(a). Thus
{Vk(%)} is Cauchy and hence convergent which is contrary to the
choice of x so lim^+oo nxt — cx < + 00. Let dx > cx be an upper bound
for the set {nxi}.

If there are uncountably many values of xeS at which {yk(x)}
is neither convergent nor eventually monotone then there is some
fixed positive integer d so that dx ^ d holds for uncountably many
x e S at which {yk(x)} is neither convergent nor eventually monotone.
Denote this uncountable set of x's by A. We now have xeA and
k Φ j sufficiently large, depending on i, implies yk(t) — ys(t) $ Ut(d)
for some teFxi.

Choose N > N(d) and u(ϊ) e A Π S° and Fu{ίHω e {Fu{1)i} such that
(S — Fua)tω) fΊ A is uncountable. Choose u(2) e(S — FuUHω) n ( 4 ί l S°)
and Fn{2)i{2) e {Fu{2)i} with Fuωtω Π Fui2)ii2) = 0 and

(S — (Fu{1)ia) U ̂ (2)1(2))) Π A

is uncountable. Continuing in this manner we get {u(l),u(2), •••,
u(2N+l)} in Af]S° and {Fw(1)ί(1), F U ( 2 H ( 2 ) , . , jP.(ϊy+1,<(Mr+i,} which are
mutually disjoint. By renaming the points u(i) we may assume
^(1) < u(2) < < u(2N + 1 ) . So choose k Φ j , k, j > H{d), suffi-
ciently large that for each odd positive integer a, 1 ̂  a ^ 2iV + 1,
l/A ίίcία:)) — y]{x{a))i Ux{a)(d) for some x(a)eFu{a)i[a), and for each
positive even integer a, 2 ̂  a <; 2iV, 2/fc(O — 2/y(U < ^ holds for some
taeFu{a)i{a) and yfc(rβ) - yj(τa) > Θ holds for some τaeFu{a)i{a). Now
consider the partition Po = {/Si, β2, , /9W} where ^ α = x{a) if α is
odd; βa is omitted from Po if α is even and yk{x{oc — l))—yj(x{a — l))<θ
and yk(x(<x + 1)) — y3(x(<x + 1)) > 0 or the opposite inequalities hold; /3α

is taken to be ta if ^(#02 — 1)) — yj(%(a — !))> θ and yk(x(oc + 1)) —
yό(x{a + 1)) > 0 and /Sα is taken to be τa if ^(#(0: — 1)) — yj(x(a —
1)) < θ and 2/fcO(α: + 1)) - y3(x(a + 1)) < θ. Then the partition Po is
such that (2/Λ — yjf Po) is a proper pair and yk(x(oc)) — y3{x(a)) g Ux{a)(d)
for a odd, x(a) 6 Po, and there are N+ 1 such x(α:). This is contrary
to the hypothesis of the theorem.

We conclude that the conclusion of theorem holds for all but
countably many values of x. By choosing a monotone subsequence
of {yic(%)} for each such x and diagonalizing, the subsequence, again
denoted by {yk}, is either eventually monotone or convergent for
each x in S.

NOTE. If one wishes to consider sequences {yk}, yk e ΓLes E§ where
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each Es is an ordered topological vector space then the definition of
a proper pair given in Definition 2.1 may be modified by replacing
f:S~+E by feU.e8E.,E by E., K by K.f and θ by θs. With the
corresponding changes in the statement and proof of Theorem 2.2
this remains a valid result.

COROLLARY 2.3. Let B be α reflexive ordered Bαnαch space with
normal positive cone K and S be a nonempty subset of R. Let {yk},
yk: S~^B be such that for each se S, {yk(s)} is an eventually comparable
norm bounded sequence. If there are nonnegative integers N(n) and
H(n] such that for all k, j ^ H(ri) (yk — yάj P) is a proper pair then
P contains at most N(n) points x such that yk(x) — yj(x) £ Ux{n) then
{yk} contains a subsequence {hk} which converges at each point of S.

Proof. It follows from Theorem 2.2 that there is a subsequence
which at each point s of S is either eventually monotone or else is
convergent. By [2, Proposition 3.7, p. 93] it follows that this subse-
quence conveges at every point of S.

DEFINITION 2.4. Let S be a nonempty set of real numbers and
{Vk} be a sequence of functions, yk: S—+R. We say that the sequence
{yk} is equioscillatory if for each s e S there exists a neighborhood
basis of 0 of radii e(n, s) and for each positive integer n there exist
positive integers N(n) and H{n) such that if k, j ;> H{n) and (yk — yά,
P) is a proper pair then P contains no more than N(n) points x for
which \yk(x) - yj(x)\ > e(n, x).

COROLLARY 2.5. Let S be a nonempty subset of real numbers and
{yk} be a sequence of functions, yk:S—>R. The sequence {yk} has a
subsequence which is pointwise convergent if and only if it has a
subsequence which is pointwise bounded and equioscillatory.

Proof. The sufficiency follows from Theorem 2.2. The necessity
is trivial since if N(n) — 0 in Definition 2.4 we see that this is equi-
valent to saying that {yk} is pointwise Caucny.

3* Applications* In this section we examine some examples
which serve to illustrate the results obtained in §2.

EXAMPLE 1. Let H be a complex Hubert space and E be the
ordered locally convex space, over the reals, of continuous linear
Hermitian operators on H with the strong operator topology. Let
the order for E be determined by A ^ θ <=> {Ax, x) ̂  0 for all xe H
and A ^ D <=* A — D ;> θ for A, DeE. Let Ak(t) be a sequence of
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functions from the real interval / into E which satisfies the hypotheses
of Theorem 2.2. It is known that monotone sequences in E which
are topologically bounded are convergent in the strong operator
topology. Thus it follows from Theorem 2.2 that if {Ak(t)} is topo-
logically bounded for each tel then there is a subsequence {D,} of
{Ak} such that {/?,-(£)} is convergent in the strong operator topology
on E for every tel.

EXAMPLE 2. If in Example 1 we take H to be the ώ-dimensional
complex Hubert space Cd and B to be the d x d Hermitian matrices
with the usual operator norm then B is a reflexive Banach with a
normal positive cone. Thus a sequence {Ak} of functions from a real
interval / into B which satisfies the hypotheses of Corollary 2.3 must
contain a subsequence which converges in norm for every tel.

Consider the sequence of linear differential equations

(3.1)k yf = Ak(t)y + /,(*), y(tk) = yk

where y e Rd, Ak{t) is a d x d matrix and fk{t) a d x 1 matrix each
with continuous real entries for tel. Assume that Ak(t) can be
partitioned independent of k and t into square submatrices, possibly
l x l such that each of the sequences of square submatrices satisfies
the hypotheses of Corollary 2.3. Assume also that fk(t) can be par-
titioned independent of k and t into square submatrices, necessarily
l x l , such that each sequence of square submatrices satisfies the
hypotheses of Corollary 2.3. Then the sequence {Ak}, Ak:I—»B
must contain a subsequence, {Ak3}, which converges in the operator
norm on the d x d matrices for each tel and hence converges
in B in each entry for each tel. Let us denote this limit by
A0(t). Also, {fk} must contain a subsequence which converges
in R in each entry for each t e I to a function we will denote by
/ 0 (ί). If tk —> ί0 and yk —* y0 as k —* + ^ where tke I for k = 0, 1, - -
then it follows that the sequence of solutions of (3.1)k contains a
subsequence which converges at every point of I to a function y
which is a solution of (3.1)0 almost everywhere on /.
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