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DIFFERENTIAL EXTENSION FIELDS OF
EXPONENTIAL TYPE

MAXWELL ROSENLICHT

The special properties of differential extension fields which
can be generated by elements with logarithmic derivatives
in the base field are worked out. The results are analogous
to those for Kummer extensions of ordinary fields, where
ntΆ roots are adjoined. The problem of the integration in
finite terms of elements of such extension fields is considered,
with applications to certain distribution functions that occur
in statistics.

1* By a differential field is here meant a field k together with
an indexed family {Di}ίeI of derivations of k. For brevity, we speak
of "the differential field k", referring to the whole combination, and
of " the given derivations of fc", referring to the set {Dt}ieI. The
constants of the differential field k are f\ieIker Dif a subfield of k.
A differential extension field of k is an extension field K of k together
with a family of derivations {D'i}ieI of K indexed by the same set
such that the restriction of each Ώ\ to k is A

If fc is a differential field and x a nonzero element of some
differential extension field K of k, we say that x is exponential over
k if Dx/x e k for each given derivation D of K; in virtue of the
"logarithmic derivative identity" Dxjx + Dy/y = D(xy)/(xy), the set
of all elements of K that are exponential over k forms a multiplicative
subgroup of K that contains the multiplicative group k* of k.

Part of the following result occurs in [2, p. 1156].

THEOREM 1. Let k be a differential field of characteristic zero,
K a differential extension field of k with the same subfield of
constants. Any element of K which can be written as a finite sum
X^ yίf where each yt is an element of K that is exponential over k
and yJVj gk if i Φ j , can be written as such a sum in only one
way; in this case ^ yt is algebraic over k if and only if each yt is
algebraic over kf which is true if and only if some power of yi is
in k. If K = k(xJf •••,#*), with each xt exponential over k, then
the multiplicative group E of all elements of K which are exponential
over k is generated by xlf , xn and k*, and the abelian group Ejk*
has rank deg. tr. K/k and torsion subgroup of order [(algebraic closure
of k in K):k\.

If the first s tatement is false, we can find elements ylf •• ,2/Λ-

of K t h a t are exponential over h, with yjyd £ k if i Φ j , such t h a t
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Σ*U Vι — 0. Suppose that such yu , yN are chosen with N minimal.
Then N> 1 and for any given derivation D of K we have Σf=i Dy, = 0,
so that Σf=i (DVi/Vi — DyJyJVi = 0, which is a relation of the
unwanted type with effectively smaller N unless for each i = 1, , N
we have Dy^y* = Dyjy19 or D{yjy^ = 0. Since this is true for each
given derivation D, yi/yι is a constant, hence an element of k, a
contradiction. Therefore our first contention is true. Note that this
implies that if yu , yNe K are exponential over k and yjyj g k if
i Φ j then Σί=i#, is exponential over k if and only if N = 1, and
also that any polynomial relation with coefficients in k that is satisfied
by Vi, , yN is a sum of binomial relations, each got from an equality
of monomials. This last statement implies that any y e K that is
exponential over k and algebraic over k has some power in k; con-
versely, the equality Dym/ym = mDyjy shows that if a power of y
is in k then y is exponential over k. We now claim that if ylf ,
yNeK are exponential over k, with ^ / ^ $k it i Φ j , and Σf=i 2/* is
algebraic over k, then each yi is algebraic over &. For if not, take
such yί9 •••, yN that give a counterexample with minimal iV. Then
N > 1 and for any given derivation Z) of K we have Σ & Ί JΊ/t algebraic
over k, hence also Σf=1 (Dyjyi — DyJyύVi is algebraic over fc. Since
the last expression has at most N — 1 nonzero terms, all Dyjyi —
Όy^yx must be zero, implying as before that each yijyι e &, a contra-
diction. All the rest of what we wish to show, except for the
statement on the order of the torsion subgroup of E/k*9 will now
be proved by induction on n. The case n = 0 is trivial. If n > 1
and our statements are true for n — 1, then applying them to the
fields kak(xί9 •• ,a?»_i) reduces us immediately to the case n = 1.
Therefore suppose K = &(#), with # exponential over &. If x is
algebraic over k and we set [if: k] = m, then any element of if can
be uniquely written in the form ΣΓ^ό1 &&* with each α, 6 k, and what
we have already shown indicates that only elements of the form a^
are exponential over k, proving that E is generated by x and k*; in
this case we also note that both the rank and transcendence degree
are zero and that the statement about the order of the torsion sub-
group of E/k* is verified. If K = k(x), where x is both exponential
over k and transcendental over k, then any nonzero element of K
can be written as ffg, where / and g are relatively prime elements
of k[x]. To prove that in this case too E is generated by x and &*,
it suffices to show that if / and g are relatively prime elements of
k[x] with constant terms 1 and f/g is exponential over k then / =
g = 1. To do this, note that for any given derivation D of K we
have Df, Dg elements of k[x] of degrees at most those of /, g respec-
tively and with zero constant terms, and since f/g is exponential
over k we have Df/f — Dg/g e k, so that fg divides gDf — fDg, so



DIFFERENTIAL EXTENSION FIELDS OF EXPONENTIAL TYPE 291

that / and g divide Df and Dg respectively, implying Df = Dg — 0;
since this is true for all D, f and g are constants, hence elements of
k, hence equal to 1. In this case rank E/k* = 1 = deg.tΐ.E/k. It
therefore remains only to prove the part about the torsion subgroup.
For this, we use the fundamental theorem on abelian groups to
replace xl9 -—,xn, if necessary, by other elements xl9 >—,xn, such
that xjc*, •••, xrk* generate the torsion subgroup of E/k* while
xr+Jc*f , xnk* are a minimal set of generators for a complementary
free subgroup. Here deg. tr . K/k — rank E/k* = n — r, so that xr+19

. . . , xn are algebraically independent over k, and therefore the
algebraic closure of k in Kis k(xu , xr). We are therefore reduced
to proving the contention about the torsion subgroup of E/k* in the
case where K is algebraic over k. In this case the above method
of induction on n works perfectly well, immediately reducing us to
the case n = 1, which was proved above. Note that once the finite
generation of the group E/k* was proved, we could have altered
xlf •—,%*> if necessary, to obtain xγk*, -—,xrk* a minimal set of
generators for the torsion subgroup of E/k* and xr+ίk*, , xnk* free
generators for a complementary subgroup, and then both the rank
and torsion subgroup statements would have followed directly.

2* If x and y are elements of a differential field k, with y Φ 0,
then x is called a logarithm of y, and y an exponential of x, if
Dx = Dy/y for each given derivation D of k. A differential extension
field of k is called an elementary extension of k if it is of the form
k{tu , tN), where for each i — 1, , N, tt is either a logarithm or
an exponential of an element of k(tlf •••, ίί_1), or algebraic over the
latter field. Note that if tu •••,£# are constants then k(tu •••,£#)
is an elementary extension of k. We quote from [6] the basic general
theorem on the elementary integrability of functions.

LIOUVILLE'S THEOREM. Let k be a differential field of charac-
teristic zero and for each given derivation D of k let aD e k. Then
there exists an elementary differential extension field of k having
the same constants and containing an element y such that Dy = aD

for each given derivation D if and only if there are constants
Ci, -—,Cn£k and elements ulf •• ,un,vek such that for each given
derivation D we have

±^+ Dv .

For completeness we include the proofs of the following lemma
and proposition, which appear in somewhat less generality in [3,
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p. 87] and [4, p. 171] respectively.

LEMMA. Let k be a differential field, Ka differential extension
field of k. Then k and the constants of K are linearly disjoint over
the constants of k.

For if not, we can find constants cl9 , cn of K that are linearly-
independent over the constants of k but such that there exist
#i, •••,#»€&, not all zero, such that c1x1 + + cnxn = 0. Choose
such clf , cn, xu , xn with n minimal and with xλ = 1. For any
given derivation D of K, the equation Σ?=2 t̂ -D î = 0 contradicts the
minimality of n unless each Dxt = 0, from which it follows that each
Xi is a constant of k, contradicting the linear independence of clt , cn

over the constants of k.

PROPOSITION. Let k be a differential field of characteristic zero
and for each given derivation D of k let aDek. If there exists an
elementary differential extension field of k which contains an element
y such that Dy = aD for each given derivation D, then there exists
such an extension field of k whose sub field of constants is an algebraic
extension of the subfield of constants of k.

For suppose such a y exists in the elementary differential exten-
sion field K of k. We may assume that K is algebraically closed.
Let & be the subfield of constants of K. Applying Liouville's
theorem to the differential fields ^{k) and K, we get elements
Ci, , on e & and ulf , un, v e ^(k) such that for each given
derivation D of K we have aD — Σi=-LciDui/ui + Dv. Each element
of ^{k) is the quotient of sums of products of elements of <g*
by elements of k. Using the logarithmic derivative identity and
enlarging n if necessary, we can get each ut to be such a sum of
products. Hence we can write ut — Σf=icϋ^i for i = 1, ---,n and
v — (Σί=i αi%)/(Σf=i bjXj), where each ci3 , a3-, bd e ^ and each xs e k.
We can change xlf , xN if necessary to be able to assume that they
are linearly independent over the constant subfield <g* = ^ Π k of k.
Choose integers i(0), j(l), "-,j(n) from among {1,2, •••,.#} such
that bj(0)clίω - cnj{n) Φ 0. Now consider undetermined constants
{ C i 9 Cijf A h B d } i s = l t . . . t n ; ί s = l t . . . t N o f ^ s u c h t h a t B S i 0 ) C ι i ω ••• CnHn) Φ 0
and impose the further condition that

Σ
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for each given derivation D of K. Since BύwC1Jω Cnάu) Φ 0, the
expression for aD is well-defined and the last equation can be cleared
of fractions to get an equivalent equality with zero of a certain sum
of products of elements of ^k[{Cif Cijf Ajf Bj}] by elements of k. The
elements of k appearing here can be taken to be linearly independent
over ^k, in which case the lemma implies that all the coefficients
must be zero. Thus all the equations for all the aD's are equivalent
to the annulling of a certain subset of <g*[{C,, Cijy Ajf Bj}]. To get
special values of {Cu Cijf A, , Bj} in the algebraic closure of ^ (a
subfield of K) for which all the equations for aΏ hold, and so to
prove the proposition, we need only take a ^-specialization into the
algebraic closure of <iffe of {cif cijy ajy bjf l/bj{0)cίj{ι) cnj{n)}.

For simplicity, the following result is stated and proved only
for the case of ordinary differential fields, that is the case where there
is only one given derivation D. The modifications necessary for the
more general case are indicated later.

THEOREM 2. Let kczk(xlf •••,&») be ordinary differential fields
of characteristic zero with the same subfield of constants and with
each Xi exponential over k and suppose that k contains a primitive
mth root of unity, where m is the annihilator of the torsion subgroup
of the group of elements of k(x) that are exponential over k modulo
the multiplicative group of k, that is m is the least positive integer
such that if some power of an element of k(x) is in k then so is its
mth power. If ylf •••, yNek(x) are exponential over k and yjyjgk
for i Φ j , then y1 + y2 + + yN is the derivative of an element in
some elementary differential extension field of k(x) having the same
constant subfield if and only if each yt has this property, in this
case, if yt is not algebraic over k then it is the derivative of ayif

for some aek, while if yt is algebraic over k then it differs from
an element of the form Σ?=i CtX'JXi, where each ct is a constant of
k, by the derivative of an element of some elementary extension field
of k having the same constants.

If Vi, —', VN are as given and each yt is the derivative of an
element of some elementary extension field of k(x) having the same
constants, then each yi is of the form indicated in the statement of
Liouville's theorem, with all relevant quantities in k(x)f hence y1 +
• + VN is also of this form, so that the latter is the derivative of
an element of some elementary extension field of k(x) having the
same constants. For the converse and main part of the theorem,
we first consider the special case where xlf * ,xn are algebraically
independent over k, a case where m = 1. Each yt here can be written
uniquely as the product of an element of k times a power product,
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possibly with negative exponents, of xl9 -* ,xn, and we can write
Vi+ + yN = Σί=i CtUilUi + v\ with each ct a constant of A: and
ul9 •• ,ur,ve k(x). Assume, as we may, that each ut is an irreducible
element of k[xl9 , xn] or is in k, and that ut divides uj only if
ut e k. For any fe k[xl9 , xn], the derivative / ' is also in k[xu , xn],
with the degree of / ' in each xt at most that of / . In addition, if
fe k[xlf , xn] is not a monomial then / ' is not a multiple of / ; for
if {a<r..<w}cA;*f (il9 •••, in) ranging over a finite subset of Zn, then

Σ
= Σ α,

and if this were a multiple of Σ ^iV -ίn

χ\ι a?»» then α<1...in/α<1...<Λ +

ii&ί/cci + + in

χn/xn would be independent of (il9 * 9in)f giving

(ah...inx^ x£*/adl...ίnxί>- xί»)' = 0 s o t h a t

atl-tjvil ' KΦh. inti1 * * * x-n

is a constant, therefore an element of k, which is false for (il9 ,
K) Φ OΊ, '• , i*) Therefore if ^ is not a monomial the fraction
^/u έ is in lowest terms, with denominator ut. Furthermore if
fek[xlf •••, xn] is an irreducible nonmonomial occurring as a factor
of the denominator of v exactly s ;> 1 times, then / occurs (s + 1)
times in the denominator of vf. Since each yt is a product of an
element of k by a power product of xί9 •••, a?w, comparing denomi-
nators in the equality y1 + + ^ = Σi=i cM/Ui + v' shows that
each factor of the denominator of v must be a monomial or in k,
as must be each ut for which ct Φ 0. Equating corresponding terms
on the two sides of the equality gives the full theorem in the case
where xl9 , xn are algebraically independent over k. Now consider
the general case. Without loss of generality, as indicated at the end
of the proof of Theorem 1, we assume that xl9 ---,xr are algebraic
over k and that xrΛU ••-,&* are algebraically independent over k.
Assume that yl9 , yN are as given and apply what we have already
proved to the case where k is replaced by its algebraic closure in
k(xl9 , xn), that is by k{xu , xr). For each i = 1, , N, we
have to consider Σu) Vh with the sum extending over all j = 1, , N
such that y3'/yiGk(xί9 •• , # r ) , and we obtain that each Σu) Vs is the
derivative of an element in some elementary extension field of
k(xlf •••,»») having the same constants, plus some further information.
More precisely, we are reduced to the case where yjy^ekix^ •••, xr)
for all i = 1, , N, with the further knowledge that if y1 is not
algebraic over k then yt + + yN = (α^/i)', for some a e &(»!, , a?r),
while if ^ is algebraic over k we can write
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Vι + + yN = Σ ctx'i/xt + Σ y&j/us + v',
* — l j

where each c, and Ύ3- is a constant of k, j ranging over some finite
set, and each Uj and v is an element of k(xl9 •• ,a?r). Since
ccΓ, •••, x™ek and & contains a primitive m t h root of unity, the field
k(xl9 « ,^r) is a normal extension of k. We identity the galois
groups G = Aut (&(#!, , ίcr)/fc) and Aut (&(#i, , xn)/k(xr+l9 , #„)).
For any ?/ e k(xlf •••,»„) that is exponential over & we have # m e
k(xr+l9 •••, a?n), so that for each σeG we have α y/i/ an m t h root of
unity. We claim that not only yx+ + yN9 but also each yif is
of the form indicated above. To prove this, suppose the contrary,
so that N> 1, and suppose that N is minimal for a counterexample.
Since each σeG is a differential automorphism of k(xl9 , xn)9

&(Vi + + VN) is also of the desired form, hence also

σ{Vi + + yN) - (σyjy\){y1 + + yN) ,

which is a sum of constant multiples of y29 •••, yN. Since yjyiίk
we can choose σ such that σ(y2/y1) Φ y2/ylf and then the minimality
of N implies that y2 is of the desired form, hence each of ylf , yN.
That is, we can write each yi in the form indicated for y1 + + yN

We are therefore done in the case where yt is algebraic over k and
reduced to the statement that yt = {ay%)f for some α e k(xl9 , xr)
if 2/ί is not algebraic over k. Here a is unique, since if we also have
axek{xu - -9 xr) and 2̂  — {a{yx)

f, then ((α — αOi/*)' = 0, so (a — a^yt

is constant, hence in k, contradicting the transcendence of yi over k
unless a = a^ For any σ e G we have 0 ^ = ((ffa)(σyt)γf so that
i/, = {{σa)yt)

f, so that σα = α. Thus we have aek, which was the
only item remaining to be shown.

COROLLARY. If fl9 , /», ^i, — *, gn are algebraic functions of
a complex variable and no two of gίf •••, gn differ by a constant,
then feϋl + . . . + fne

9* is the derivative of an elementary function
if and only if each fe9i is.

We recall that an elementary function of a complex variable is
an element of an elementary differential extension field of the field
of rational functions. The Corollary, a well-known result of Liouville
[5, p. 49], follows immediately from the fact that the exponential of
a nonconstant algebraic function is not an algebraic function.

Theorem 2 and its proof generalize immediately to the case of
differential fields with more than one given derivation. We merely
indicate the changes necessary in its statement: We drop the word
"ordinary". Instead of being given yί9 •• , yNek{x), we are now
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given N nonzero functions yu , yN from the set of given deri-
vations into k(x) such that for each ί — 1, •••, N and each given
derivation D, y^D) is either exponential over k or zero, and such
that if i, j = 1, , N and D and 3 are given derivations such that
yi(D) Φ 0 and yά(h) Φ 0, then yi{D)lyό{δ) is in k if and only if i — j .
To say that a function y on the set of given derivations of k(x) is
the derivative of an element z of some differential extension field
will of course signify that y(D) — Dz for each given derivation D.
Finally, the statement that ^ is or is not algebraic over k is to be
interpreted as meaning that y^D) is or is not algebraic over k for
any given derivation D for which y^D) Φ 0.

In the last part of the theorem it is stated that under certain
conditions T/* is the derivative of ayif for some aek. One of the
conditions is that yt is not algebraic over k. That this condition is
necessary is seen by the example k — R (tan x), with R the real
numbers and (tan x)' = tan2 x + 1, and y = seex: here y, which is
both exponential and algebraic over k, is the derivative of log (sec x +
tan#), but not of any multiple of itself by an element of k. How-
ever if the element y, which is exponential and algebraic over k, is
the derivative of an element of k(y), then it is the derivative of ay,
for some ask: for if m = [k(y): k], then each element of k(y) can be
uniquely written in the form Σ 5 1 α<2/*\ with each at e k, and from
the equation y = Q£ α<2/*)' we deduce y — (a^)' by homogeneity, since
each a{y* is exponential over k. This comment will apply to the
case of an algebraic function y of the complex variable x some power
of which is in the rational function field C(x) if 1 ydx is an elementary

function of x and the differential fax has no residues, for here we
can write y — Σ CiUl/Ui + v', with each c% e C and each ui9 v e C(x, y),
and if we arrange, as we can, that {ct} are linearly independent over
the rational numbers Q, then the absence of residues of ydx =
X CtduJUi + dv implies that each ut e C, so that y = v', with v e C(#, ?/).

The statement of Theorem 2 fails without the condition that k
contain a primitive mth root of unity. For a counterexample, consider
the differential field of functions on the positive real line k = R(x),
where x' — 1, and its differential extension field R(t), where t — xι}m,
with m e Z , m > 2 , which has the same subfield of constants R and
in which V = t/mx. The element (1 — t)'/(l — t) is the derivative of
an element in an elementary extension field of R{t) having the same
constants. However

(1 - t)f

 == -t' = -t'{l + t + --- + tm-1) == _ t + ^2 + - + tm

1 - t 1 - ί 1 - £m m&(l - α?)

and we claim that t/mx(l — x) cannot be written in the form
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Σ?=i CiUijUi + v' with cl9 , cneR and ul9 , uny v e R(t). For

n n

Σ (CiUi/Ui + vr)dx — Σ CfdUiJUi + dw

has a real residue at the place t — ζ, where ζ is a primitive m th root
of unity, while the residue there of tdx/mx(l — x) is — ζ/m g i?.

3* In this section we consider the differential field C(x) of
rational functions of a complex variable x, with xr — 1, and functions
that are exponential over C(x), that is elements y of a differential
extension field of C(#) having the same constants C and such that
y'jy — weC(x). Since 1 w(#)cte is an elementary function, that is an
element of an elementary differential extension field of C(x) with the
same constants, y •— exp I w(x)dx is also an elementary function. The

element y will be in C(x) if and only if w is a finite sum of elements
of the form (integer)/(x — (element of C)); y will be an algebraic func-
tion, that is algebraic over C(x), if and only if some power of y is
in C(x), and a necessary and sufficient condition for this is that w
be a finite sum of elements of the form (rational number)/(# — (element
of O).

We ask when I ydx is an elementary function. If y is trans-
cendental over C(x), a condition for this is given in Theorem 2, and
the next to the last paragraph of § 2 gives a partial extension of
this condition to the case where y is algebraic over C(x): If y is
transcendental over C(x) or if y is algebraic over C{x) and the

differential ydx has no residues, then \ ydx is elementary if and only

if there exists a e C(x) such that y — (ay)' or, equivalently, 1 = α' + aw.
If y g C(x) and such an a exists, it is unique, for if also ax e C(x) and
1 = a[ + a^w, then (a — α j ' + (a — aλ)w = 0, so ((a — a^)y)f = 0, so

(α — a^yeC, which is possible only if a = aλ.
For a given w e C(x) we can find a e C(x) such that a' + αw — 1,

if such an α exists, by examining the partial fraction expansions of
a and w. We get immediately that a can have a pole at a finite
place a? = a, where aeC, only if x — a is a pole of w9 and that if
a has a pole of order r ^ 1 at x — α then the principal part of w
at x — a must be r/(x — a), that is w — r/(# — a) must be finite at
x ~ a. Similarly, if a has a pole of order r > 1 at x ~ co, the
expansion of w at x — oo must start with —r/x, that is #w + r
must vanish at x = oo. If α has a pole of order 1 at x — co, then
w must vanish there. Thus for any given w the poles of α, if any,
must occur among the poles of w and the place x = oo, and to at
most certain specified orders at these places. Thus the partial fraction
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expansion of a can be written out with indeterminate coefficients in
C and finding a e C(x) such that a! + aw = 1 reduces to solving a
system of linear equations in the coefficients of the expansion of a.
Note that if w has a pole of order r ^ 1 at any place of C(x) over
C, finite or infinite, and a is finite at this place, then a must have
a zero there of order at least r.

Michael Tarter, in connection with his work on approximating
inverse cumulative distribution functions [8], [9] has asked whether
certain natural cumulative distribution functions, or their inverse
functions, are elementary. The cumulative distribution function F(x)
corresponding to the probability distribution y(x) is given by F(x) —

I y(t)dt, so that F = y, and his case of special interest is that in

which y'jy = w e C(x), in particular the case of Pearson distributions
[1, pp. 148-154], where w(x) — (x — cQ)/(cι + c2x + c3x

2), with each ct

constant. Here y is an elementary function, and in virtue of the
theorem of Ritt to the effect that if the inverse function of the
integral of an elementary function is elementary then so is the integral
(see [5, p. 87] or, for a modern exposition, [7]), F~^ can be elementary
only if F is elementary.

If we have a Pearson distribution y <£ C(x), then w — y'jy must
be of one of the following forms:

(1) w = p(x - 6), p, b e C, p Φ 0
( 2 ) w = p + q/(x - 6 ) , p , q , b e C, p Φ O
( 3 ) w = p/(x - 6 0 + q/(x - δ 2 ) , p , q , b l y b2 e C , b, Φ b2, p $ Z
( 4 ) w = p/(x ~ b ) + q/(χ - b)\ p , q , b e C , q Φ 0 .
In each of these cases, y is transcendental over C(x) except in case

(3) with p, q eQ. Special cases of (1), (2), (3) respectively that are
of statistical interest are w = — 2x, where y = e~χ2 (normal distri-
bution), w — — 1 + (λ — l)/x, with λ e Q, where y — xλ~ιe~x (Gamma
distribution), and w = (p — l)/x — (q — 1)/(1 — x), with p, q eQ, where
y = χp~ι(l — χ)q~ι (Beta distribution, whose cumulative distribution

function is the Ghebyshev integral ί ^ " ' ( l - x)q~ιdx, cf. [5, p. 37]).

S J
ydx is elementary in the various cases (1),

(2), (3), (4), we must check whether there exists a e C(x) such that

a' + aw = 1. Note that a can have poles only at x = 6, x — bu x = b2

and x = oo, and of orders depending on p and q. In case (1), a can

have no poles, therefore we must have a e C, and for no such a

can we have a' + aw = 1, so I ydx is nonelementary. In case (2) a

must be finite at x — °o and can have poles at x = b only if q e Z,

q > 0. We deduce that I ydx is nonelementary unless q e Z, q ^ 0, in

which case we know from elementary calculus that I ydx = I (x —
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b)qepxdx is elementary. In case (3) we have 1 ydx — \(x — biy(x — b2)
qdxf

and integration by parts shows that computing the latter integral is
equivalent to computing either

( ( x - b t )
p + 1 ( x - h γ - ' d x o r [(x- \ y - \ x - b2)

q+1dx .

Using this fact repeatedly, we get I ydx elementary if qeZ. The

substitution xι = l/(x — bt) shows that 1 ydx is elementary if p +

qe Z. Hence, slightly more generally than case (3), if w = p/(x — &0 -f

q/(x — b2), wi th p, qy bu b2eC and bι Φ b2, we have 1 ydx e lementary

if either p, or q, or p + q is in Z. We claim that, conversely, I ydx

is nonelementary if none of p, q, or p + q is in Z. First, if y is

algebraic over C(x) then p, qeQ and an easy computation shows that

ydx — (x — b^p(x — b2)
gdx has no residues. Therefore we need only

check the existence of aeC(x) such that a! + aw = 1. We see that

a can have no poles when x is finite and a pole of order at most

one at x = °o, so that α = α# + /?, with a, β e C, and this a does

not work; this proves our contention. In case (4), we claim that

I ydx is never elementary. For here \ydx = \(x — bye~ql{x~b)dx, and

integration by parts shows that if p Φ — 1 then the computation of

\ ydx is equivalent to that of \(x — 6)p~1β~9/(a;~δ)cZίc, so that we may

suppose p^ — 1 . Then α, which can have no poles for finite x, can
have a pole of order at most one at x — oo, so again a = ax + β,
with a, βeC, and again this a fails to satisfy a' + aw = 1.

Tarter has also asked whether for a distribution function of

the form c1y1 + + cnyn, where each c^C and each yyyt — wt e C(x),

the inverse of the cumulative distribution function F(x) = I (c1yι +

• + cnyn)dx can be elementary. By the result of Ritt already
referred to, this can happen only if F(x) itself is elementary, which

will be true if each \ yxdx is elementary. By Theorem 2, if F(x) is
elementary, then for each i = 1, •••,?&, I (Σ<i>Cil/i)d& is elementary,
where j ranges over the indices 1,2, •• , ^ for which yj/yteC(x),
which is equivalent to Wj — wt being a finite sum of elements of the
form (integer)/(# — (element of C)). In particular, if each c* Φ 0, then
for each % = 1, , w there must be a j = 1, , n such that i ^ i
and tϋj — W; is of the indicated special form, a rare circumstance.
In any case the problem of finding when for given ylf , yn of the
above type there exist constants clf *-,cn not all zero such that
£i2/i + + cnyn has an elementary integral reduces to the special
case where each yt is of the form yt = fcy, where y'/y = w{x) e C(x)
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and ft 6 C(x) is such that I fydx is nonelementary; we therefore have

to find for which cl9 , cneC there exists a function A e C(x) such
that cxy^ + . . . + cnyn = (Ay)', or equivalents cjx + + cnfn =
A! + Aw9 a generalization of the type of equation handled before.
One case of special interest is that in which we are given y such
that y'jy = w e C(x) and take each #< to be of the form y^x) =
2/(̂ α? + /9i), where (alf βj, , (αw, βn) are distinct elements of C2 and
no α* is zero. In this case Wi — y'ilvt = a^ipc^ + /3*). It is easy to
verify that for no such (au /3i), , (^%, /9%) can there exist constants
cu , cn not all zero such that 1 {cιy1 + + cnyn)dx is elementary
in the cases where w is of Pearson type (2) with q£ Z, or of type
(3) with p, q, p + q& Z and p Φ q, or of type (4). But we can find
such (aίf βj, , (an, βn), clf , cn for Pearson type (1), say for the
normal distribution y = e~χ2, w = —2x, where y(x) — y(—x) ~ 0 has
an elementary integral.
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