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A NOTE ON QUADRATIC FORMS OVER PYTHAGOREAN
FIELDS

ROGER WARE

A theorem of T. A. Springer states that if F is a field of
characteristic not two and L is an extension field of F of odd
degree then any anisotropic quadratic form over F remains
anisotropic over L. A weaker version (and an immediate
consequence) of this theorem says that the natural map
r : W(F) -> W(L), from the Witt ring of F to the Witt ring of L,
is injective. This note investigates the relationship between
these statements in the case that L is a finite Galois extension of a
Pythagorean field F. Specifically, it is shown that if r is
injective then any anisotropic quadratic form over F remains
anisotropic over L and if, in addition, L is pythagorean then the
extension must be of odd degree. An example is provided of a
Galois extension of even degree with r injective.

Notations and terminology in this paper will follow [4]. Thus by a
field F we shall mean one of characteristic different from two and W(F)
will denote the Witt ring of anisotropic quadratic forms over F. If
F CL is an extension of field then rL/F : W(F)-> W(F) will denote the
induced homomorphism of Witt rings. When there is no possibility of
confusion we shall simply write r in place of rL/F. In general, the
mapping r will fail to be injective. However, if F CL is an extension
of odd degree then the above mentioned theorem of Springer will imply
the injectivity of r [4, Chapter 7, §2]. In the case of ordered ( =
formally real) fields, information about the kernel of r can be used to
yield information about extending orderings. Specifically, every order-
ing on F extends to an ordering on L if and only if Ker r is a nil ideal of
W(F) [3, Corollary 2.11]. One can use this, together with Springer's
theorem, to recover the fact that if F C L is an extension of odd degree
with F formally real then every ordering on F extends to
L. Moreover, if F is pythagorean then W(F) has no nonzero nilpotent
elements [4, Theorems 3.3 and 6.1, pp. 236 and 248] so for any
extension L of F, r: W(F)-> W(F) is injective if and only if every
ordering on F extends to L.

PROPOSITION 1. Let F C L be a finite Galois extension of degree n
with L pythagorean. If r : W(F)-> W(L) is injective then n is odd.

Proof. Let G be the Galois group of the extension F C L, let H be
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a 2-Sylow subgroup of G, and let K = L H be the fixed field of if. Then
K is also pythagorean [4, Exercise 17, p. 254].

If F is not formally real then every element of K is a square in K
(i.e. X is "quadratically closed"). Thus, from Galois theory, H must
be trivial and hence G is a group of odd order.

Now assume F is formally real and let < be an ordering on
F. Since r : W(F)->W(L) is injective, < extends to L (and to
K). Moreover by [2, Exercise 2, p. 289], < extends to exactly [L : F]
orderings on L and to t ^[K :F] orderings on K (compare [3,
Proposition 5.12]). Let < ,, < 2, , < m, m ^ ί, be the orderings on K
which extend < and which also extend to L. Since K C L is a Galois
extension, it again follows that each < f extends exactly [L:K]
different ways to L. Thus [L : F] = m[L : K], which implies that
m = [X : F]. Hence m = t so that every extension of < to X also
extends to L. But every ordering on K is the extension of some
ordering on F, so it follows that every ordering on K extends to
L. Since K is a pythagorean field, the mapping rL/κ : W(K)-* W(L) is
injective. If the Galois group if of the extension K CL is not trivial
then there will exist a nonsquare a in K with Vα in L. Then (1, - a) is
an anisotropic form over K whose class in W(K) is a nonzero element
in the kernel of rL/κ. Thus H is also trivial in this case, i.e. n is odd.

COROLLARY. Let F CLbe a finite Galois extension of degree n with
L pythagorean. If every ordering on F extends to L then n is odd.

Proof. By [4, Exercise 17, p. 254], F is also pythagorean.
The following modification of a construction due to Manfred

Knebusch shows that the hypothesis that L be pythagorean is essential
in Proposition 1 and its corollary.

EXAMPLE. A Galois extension F C L of formally real fields with F
pythagorean (actually euclidean), [L : F] even, and r: W(F)-> W(L)
injective.

Choose π § 5 and let K be a formally real field on which the
alternating group An acts as a group of automorphisms (e.g. K ==
R(Xι9"

myXn))' Let fc = KΛ" be the fixed field and let k be the quadratic
closure of k, i.e. the compositum of all Galois extensions of k with
degree a power of 2 [4, p. 219]. Then k is a Galois extension of k and
since [K :k] is not a power of two, K is not contained in k. Thus
k Π K?£K is a Galois extension of k so Galois theory and the
simplicity of An imply that k Π K = k.

Now let R be a real closure ([2], [4], [5]) of the formally real field K
and let F = R Π k. Then we also have F Π K = ίc. Moreover, F is
formally real and it is easy to see that any a in F is either a square in F
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or the negative of a square in F. In particular, F is pythagorean and
has exactly one ordering. From Sylvester's law of inertia we have
W(F) = Z (cf. [4, pp. 42-43]).

Let L = FK be the compositum of F and K in JR. Then L is a
formally real Galois extension of F with Galois group An [5, Theorem 4,
p. 196]. In particular, [L : F] is even. Finally, any signature
σ<: W(L) —> Z arising from an ordering < on the formally real field L
(see [4, pp. 42-43], [3, p. 211]) will provide a splitting for the map
r:W(F)-> W(L).

PROPOSITION 2. Let Fbe a pythagorean field and L a finite Galois
extension of F. Then the following statements are equivalent',

(1) r : W(F)-+ W(L) is injective.
(2) // q is an anisotropic quadratic form over F then qL = L ®F*Ϊ

IS anisotropic over L.

Proof. (1) Φ (2). If F is not formally real then F is quadratically
closed so all anisotrpic forms over F are one dimensional. Hence the
implication is obvious in this case.

Now assume F is formally real and let Tr* denote Scharlau's
transfer map relative to the F-linear trace map TrL/F (which associates
to each quadratic form q over L the F-quadratic form TrL/F°q) [4,
Chapter 7, § 1,6], [3, §5]. Then for any anisotropic form q over F, there
is an isometry L (g)F Tr*(qL )qL 1 1 qL = [L: F] qu where
[L: F] qL = qL 1 1 qu [L : F] times [4, Theorem 6.1, p. 212]
compare [3, Corollary 5.10]). Since the mapping r : W(F)-> W(L) is
injective this means that Tr*(qL) is isometric to [L : F] q over F. But
F is a formally real pythagorean field, so by (the proof of) [4, Theorem
3.3], [L : F] q is anisotropic over F. Therefore Tr*(qL) is anisotropic
over F so that, in particular, qL is anisotrpic over L.

The implication (2) => (1) is immediate.
It seems to be an open question whether, for an arbitrary extension

FCL, the injectivity of r: W(F) -> W(L) implies that anisotropic
forms over F remain so over L. However, for a certain class of
pythagorean fields the answer is affirmative. Let F be a formally real
field, let X be the set of orderings on F, and for a in F, let V(a) = {< in
X\a >0}. Then the family V(a)aeF generates a compact, Hausdorff,
totally disconnected topology on X [3, Lemma 3.3, Theorem
3.18]. The field F satisfies the Strong Approximation Property (SAP) if
given any two disjoint closed subsets ί/, V of X there is an element a in
F which is positive at the orderings in U and negative at the orderings in
V (cf. [1, Definition 1.4], [3, Corollary 3.21]).

PROPOSITION 3. Let Fbe a formally real pythagorean field satisfy-
ing SAP and let L be any extension field of F. If r : W(F)-+ W(L) is
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injective then any anisotropic quadratic form over F remains anisotropic
over L.

Proof. In view of [1, Theorem 5.3 (1)], any anisotropic form q
over F can be written q =(al9 -,an) where either all the α,'s are
positive or all the α f 's are negative with respect to some ordering < on
F. If r:W(F)^>W(L) is injective then < extends to L so an
equation axx?+ + anxn

2 = 0 with each xt in L is impossible.
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