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ABSOLUTELY DIVERGENT SERIES AND
ISOMORPHISM OF SUBSPACES

WiLLiaM H. RuckLE

We consider the relation between the following two state-
ments for E and F a pair of normed spaces.

(SI) For each absolutely divergent series =, x, in E there is
a continuous linear mapping T from E into F such that =, Tx.
diverges absolutely.

(LI) The finite dimensional subspaces of E are uniformly
isomorphic to subspaces of F under isomorphisms which extend
to all of E without increase of norm.

Our main result is that (SI) implies (LI) when F is isometric
to FF X F with a certain type of norm. We also observe that if a
normed space E is not isomorphic to a subspace of an L,(un)
space, then for each r with 1 = r < « there is a series 2, x, in E
such that =, || Tx, || < = for each continuous linear mapping T
from E into [, but =, ||x. | = .

It is not hard to show that (LI) = (SI) (Proposition 4.1). The main
thrust of our work is to prove that (SI) => (LI) in some important cases
when F has infinite dimension. (Theorems 4.2 and 4.6). Our most
important result is Theorem 4.6 which roughly maintains that (SI) =
(LY) if F is uniformly isometric to F X F in a way which we shall later
clarify (Definition 4.5). The condition we need on F is satisfied for
most familiar Banach spaces (e.g. [,, L,[0, 1], (1 =p =), C[0, 1]).

Sections §2 and §3 are devoted to a basic study of properties (SI)
and (LI) respectively. In §5 we relate our work here with that of other
authors and state some problems.

2. Series immersion.

DErFINITION 2.1. A normed space E is said to be series immersed
in a normed space F if the following statement holds:

(SI) For each absolutely divergent series =, x,(Z, ||x, || =) in E
there is a continuous linear mapping T from E into F such that Z, Tx,
diverges absolutely.

If E is series immersed in F then each subspace of E is also. An
easy perturbation argument shows that E the completion of E is also
series immersed in F.
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PROPOSITION. 2.2. The normed space E is series immersed in the
normed space F if and only if the following condition holds for (one) all
p=1l

(SI,) For each absolutely p-divergent series =, X, (Z, || X, [P = )

in E there is a continuous linear mapping T from E into F' such that
2, Tx, is absolutely p-divergent.

Proof. (SI) = (SI,) for all p. Suppose (SI,) fails to hold for
some p. Then there is a series =, x, in E such that Z, | x, |F =« but
2, | Tx,|P <« for al T in L(E,F). Let (a,) be a sequence of
nonnegative numbers in [“(1/p +1/q =1) such that 2, a,|x,|=
. Then Z,a,x, diverges absolutely but X, T(a,x,) converges abso-
lutely for all T in L(E, F) so that (SI) fails to hold.

(SI,) = (SI). Suppose (SI) fails to hold. Then thereis 2, x, in E

with =, |[x,[|=o but =, || Tx,|[<% for all T in L(E,F). Let y,=
X,/|[x, "¢ for each n where 1/p +1/q =1. Then

Syl =3 dunleor =3 ul =

but for each T in L(E, F)
Simnr =3 [155]
T : T liq]p
=3 {[Be AT 20

=TI S | T | <

Thus (SI,) fails to hold.

ProrosiTiON 2.3. (SI) holds if and only if:
(SY') There is M >0 such that

3 I l=Msup{ 3 |7
T e U(E, F)}

for every finite subset A of E. Here U(E, F) denotes the unit ball of
L(E, F).
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Proof. Let I(E) consist of all (x,) in E for which

lw)l=3 <=

Let o:(E) consist of all (x,) in E for which

Il )l = sup {3 I T |: Te UE, P

< oo,

If E is complete, as we may assume, [(E) and o (E) are Banach spaces
with their respective norms and

I ) Il SN, (x0) in o (E).

(SD = (SI’). If (SI) holds then ox(E)=1[(E). Thus the norms
| and || || are equivalent so there is M >0 such that

2-1) leeoll=M | )l (x.) € U(E).

But (2-1) implies (SI') in the special case when (x,) consists of only
finitely many nonzero vectors.

(SI') = (SI). Condition (SI') implies that (2-1) holds for se-
quences which are finitely nonzero. Since such sequences are dense in
or(E) it follows that (2-1) holds for all (x,) in oz(E). Hence [(E) =
or(E). If 2, | Tx.| <« foreach T in U(E, F) then (x,) € - (E) by the
Uniform Boundedness Principle. Therefore, (SI) holds.

We can imitate the proof of 2.3 using [, (E) the space of all (x,) in E
for which

ol = (2 1 P)” <=

and o, (E) the space of all (x,) in E for which

1lp
el = sup{(S 17, lP)
TeU(EF )} <
to obtain the following statement.

ProrosiTION 2.4. (SI,) holds if and only if
(SI,) There is M, >0 such that
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;A lxlF =M, sup{; |Tx|P: T € U(E, F)}

for every finite subset A of E.
3. Local immersion.

DEeFINITION 3.1. A normed space E is said to be locally immersed
in a normed space F if the following condition holds:

(LI) Thereis a number K = 1 such that for each finite dimensional
subspace G of E there is a continuous linear mapping T in U(E, F)
such that

ITx|zK x| x€G.

In other words (LI) means there is an isomorphism T from G into
E with | T| || T™'||= K which extends without change of norm to all of
E.

ProrosiTiON 3.2. (a) (L) is equivalent to the following statement :
(LI') There is a number D = 1 such that for each finite subset A of
E there is T in U(E, F) such that

ITx|zD|x|| x€A.

(b) If D satisfies (L1"") then D + € = K satisfies (LI) for each € >0. (c)
If K satisfies (LI) then K = D satisfies (LI').

Proof. (LI') > (LI); and (b). If G and € are given, let D be
determined by (LI') and let § = €/(K*+ Ke). Let A be a -net in the
unit sphere of G. If T is given by (LI') for A and x in G has norm one
there is y in A with ||y —x || <8. Since ||T||=1 we see

ITx [z Ty |- T(y =)l

€

1
K K*+Ke

v

-0

1

K
1

K+e€’

Thus

(K +e)|Tx||z|x]|

for x in G.
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(LI) = (LI'); and (¢). Obvious.
Condition (LI) is commonly described by saying that E is finitely
represented in F.

4. Series immersion and local immersion.

ProrosITION 4.1. If E is locally immersed in F then E is series
immersed in F. If D satisfies (LI') then M = D satisfies (ST').

Proof. The second statement is obvious and implies the first.

If E is a finite dimensional normed space then E is series immersed
in every normed space, but locally immersed in normed spaces of
greater dimenion. Thus the converse of 4.1 is not generally true, but it
is true in certain important cases.

The first case, which we treat in Proposition 4.2 is an easy isometric
condition.

PrOPOSITION 4.2. If E is series immersed in F and for somep = 1
(SL;) holds with M, = (1 + €) for each € >0, then E is locally immersed in
F. In this case D = (1+ €) satisfies (LI') for each € >0.

Proof. For A a finite subset of E, and € >0 let

(1) s=—1al
|A|—<1+e>

where | A | denotes the number of points in A. Since (SI}) holds with
M, =1+18 there is T in U(E, F) such that

(4-2) Al=3 ﬁ"
<(1+8) 3 ”—ﬁ".
If
Tx 1
m <1+e

for some x in A then since T € U(E, F) we would have
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4

Tx
|

>

XEA

<(al-n+(37)

1 (€
1+€—]A| (l+e>

SIA|-1+

so that

AL 145

€
IAl__1+e

which contradicts (4.1). Therefore, we conclude

(1+e)|| Tx| =] x|

for each x in A.
Let 6 be a norm on R? with the following two properties

000, )=06(1,0=1

6(a,b,a,b,) =max{|a,|,|a,|} (b, b,). We extend 6 to a norm on
R" for all n by the iterative formula

(4_3) 0((1., a, -, an) = 0(0((11, a2, Y an—l)a an)-

For convenience we shall speak of 6 as an iterative functional. 1t is
easy to see that (2., |a; /)" (1=p <») and max{|a;|: i =i =n} are
examples of iterative functionals. See [7] for other examples.

LemmMmAa 4.3. For 6 given as above let

(4-4) 6'(b,,b,) = sup{a,b, + a,b,: 0(a,,a,) =1}

Then for 0', the iterative functional determined by 6’ we have for all n,

ol(bl’_ c b,,) = Sup{i a,'b,': O(a,,' ce,a, = 1}.

i=1

Proof. We use induction. Assume the statement holds for n — 1.
Then
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ol(blybh o .’bn) = 0’(0’(bly b2’ Tt bn-—l)a bn)
=sup{0'(b, by, -+, ba_y)ci+ bycy: 0(ci,c) =1}

n—1
= Sup{cl Z d,'b,' + b,,C2: o(dl, tt ey, dn-l) é 1, 0(b|, bz)é ]}
i=1

n-1

= Sup{z aibi + aucu: e(ala Y an—l) é Ch O(Cl, an é 1}

i=1

=sup{i ab;: 0(a,,- -, a,)= 1}.

i=1

LEMMA 4.4. Let 0 be an iterative functional, and let 0' be deter-
mined by (4-4). If ¢,;=0 i=1,2,---,n there are a,=0 and b, =0
i=1,2,--+, with ab; = ¢; and

6(a)0'(b) = 3, c.

Proof. We use induction on n, first proving our assertion when
n=2.
We may assume ¢, +c,=1. Let
S={uuv,xy):0=uv,x,y=1, 0(u,v)=0'(x,y) =ux +vy =1}
Si={u,v):0=u,v=1, 0(uv)=1}.

Then S, is connected in R? and

S = U{Sw.: (u,v) €S}
where

Sy ={U,0,x,y):0=x,y=1, 8'(x,y) = ux + vy =1}.

It is easy to see that each S, is convex, hence connected. We shall
prove S is connected. Let S, be any component of S. Then S, and
S ~ S, are compact so both P(S,) and P(S ~ S,) are compact subsets of
S,. Here P(u,v,x,y)=(u,v). For each (u,v) in S, either S, is
contained entirely in S, or in S~ S, so P(S,) and P(S ~ S,) are
disjoint. But S, = P(S,) UP(S ~ S,) so that P(S ~ S,) is empty and
P(S,) = S,. Therefore, S, =S so S is connected. The function

f(u,v,x,y) = ux
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is continuous and assumes the values 0 and 1 on S. Hence there is
(a,a,, b, b,) in S such that a,a, = a. This establishes our lemma when
n=2.

Now assume the lemma holds for n — 1. Given 2., ¢;, we use the
preceeding case to find (a,, a,), (b, b,) with a,b, =2 ¢, a.b, = ¢, and
=t.,0(ae,a,)8'(by,b,) =="_,c.. We then use the inductive hypothesis
to find ay,--:,0.-1; by, b,y with ¢, =ab. and acb,=
0(a,,---,a,,)0'(hy,---,b,_;). We may assume 6(a,,"--,a,_;) = a, and
0'(by,:-+,b,-) =by. Then ab; =c; for each i and

0(a|, ) an) el(bl’ R bm) = 0(00’ an) Ol(bOa bn) = ; Ci.

DEeFINITION 4.5. A Banach space E is called unconditionally
resolveable if E is isometric to E X E with the norm

(4-5) G, I =olx 1y
where 6 is a norm on R? with the property that
6(a,b,, a,b,) =max{|a,|, |a,|}0(b,, b,).

Since E X E with the norm (4.5) is isometric to E X E with the
norm

of(1ED)

for all r,r,>0 we may assume 6(1, 0)=6(0, 1)=1. If E is uncondi-
tionally resolveable then for each n it is isometric to the n-fold product
E XE x---x E with the norm

[Gens == xa)ll= 0l - - <, I xa 1)
where 6 is the iterative functional determined by 6.

THEOREM 4.6. (a) If a normed space E is series immersed in a
Banach space F, which is unconditionally resolveable, then E is locally
immersed in F. (b) If M satisfies (SI') then (1+ €)M satisfies (LI') for
each € >0.

Proof. Suppose M satisfies (SI'). Given A a finite subset of E
and € >0 we imitate the development of inequality (5) on p. 1021 of [5],
but using 1/(1+ €)M instead of 1/2A, to obtain a number r numbers
¢ >0 with 2/_, ¢; =1 and mappings T,,---, T, in U(E, F) such that
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r

(4-6) 2 Gl T >

1
2 AT oM =l x € A.

(Note that inequality (5) cited is misprinted; it should read

r

S T > 5 Il n=12k)

i=1

Next we use Lemma 4.4 to find (d,, - -, d,) with

o(dh Tt dr) = GI(CI/dl, C2/d2, Y Cr/dr) = 1'

Here 9 is the iterative functional for which E is isometric to E X E X
.-+ X E (r factors) with the norm

el = 6 (llx. -
We define T, from E into E X---X E by
Ta(x)=(dT;(x)).

Then if ||x||=1

I Tax || = 6(d | T.COID)
=sup; [ Ti(x)||6(d) =1

so || T.]|=1. Moreover, if x € A

I Tx || = 6((d: | T:(0) )
=0((d: | T:(x)[)) 6'(c:/d)

1
=2 al TOI> graar Ix1-

Therefore, (1+ €)M = D satisfies (LTI').

If F is any Banach space [°(F) is unconditionally
resolveable. Thus the I spaces 1 = p < are unconditionally resolve-
able as are m, C[0, 1] and L,[0, 1], 1=p <.

CoroLLARY 4.7. If a normed space E is series immersed in a
Banach space F and F is locally immersed in an unconditionally
resolveable space G and G is locally immersed in F then E is locally
immersed in F.
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S. Remarks and problems.

5.1. In[5]itis proven that a normed space E is not isomorphic to
a subspace of an L,(u) space 1 =p < if and only if there is a series
3. X, in E which diverges absolutely but such that T, || Tx, || < « for each
continuous linear mapping from E into /,. This proof is based on the
facts that [, is unconditionally resolveable (with 6(a,b)=
(Jar +|b[P)") and that a normed space is locally immersed in [, if and
only if it is isomorphic to a subspace of L,(u) for some p (e.g. see
Proposition 7.1 of [6]). In [9] P. Saphar announced a result which
implies that E is not isomorphic to a subspace of L,(n) 1 =p <~ if and
only if there is a series =, x, in E such that =, || Tx, [F < for each T in
L(E,L,)butZ, ||x,|P =. By Proposition 2.2 these two statements are
equivalent and in fact equivalent to the following more general state-
ment:

THEOREM. A normed space E is not isomorphic to a subspace of
L,(n) (1 =p <) if and only if for one (each) r with 1 =r <o there is a
series 2,x, in E such that =, | Tx,| <« for each T in L(E,l,) but
S llxall = 0.

As a corollary to this theorem we get the following strengthening of
the Dvoretzky-Rogers theorem [2] due to Pietsch [8] and perhaps also to
Grothendieck [3].

CoroLLARY. For every infinite dimensional normed space E and
every r with 1 =r < there is a series 2, x, in E such that =, |x'(x,)|" <
w for all continuous linear functionals x' on E but Z, ||x, | = .

Of course, this corollary also follows from the Dvoretzky-Rogers
Theorem and Proposition 2.2.

Problem 5.2. To what extent may we weaken the requirement in
Theorem 4.6 that F be unconditionally resolveable? Is the theorem true
if F is merely infinite dimensional? Isomorphic to its square?

Problem 5.3. What Banach spaces are unconditionally resolve-
able? Is the following conjecture true: If F is isomorphic to F X F, then
there is an equivalent norm on F for which it is unconditionally
resolveable?

5.4. If E is series immersed (resp. locally immersed) in F and F is
series immersed (resp. locally immersed) in E we write E ~ sF (resp.
E ~,F). Both ~; and ~, are equivalence relations. Every ~ .
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equivalence class is contained in an ~ s equivalence class. The finite
dimensional spaces constitute the smallest ~ 5 equivalence class, but
two finite dimensional spaces are ~ ; equivalent if and only if they have
the same dimension. By a theorem of Dvoretzky [1], the class of
infinite dimensional Hilbert spaces constitute an ~ ; equivalence class
which is minimal among infinite dimensional spaces. It is easy to see
that this class is also an s equivalence class, which is the second
“smallest.” By the theorem stated in 5.1 the L,(u) spaces constitute
distinct ~,; and ~ s equivalence classes.

5.5. The argument (SI,) = (SI) in Proposition 2.2 holds for all
p >0, but the argument (SI) = (SI,) holds only for p = 1.
Problem. Does (SI) = (SI,) for all p >0?
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