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WHITNEY CONTINUA IN THE HYPERSPACE C(X)

JAMES T. ROGERS, JR.

Let C(X) denote the hyperspace of subcontinua of the
continuum X, and let μ: C(X)->[0,1] be a Whitney
function. The purpose of this paper is to investigate whether
certain properties of X are inherited by the continua μ~\t).

Let C(X) denote the hyperspace of subcontinua of the continuum
X. H. Whitney has defined a continuous function μ: C(X)-»[0,1]
satisfying (1) μ(X) = 1, (2) μ({x}) = 0, for all x in X, and (3) μ(A) <
μ(B), for A CB and Ay^B. We may think of the function μ as
measuring the size of a continuum. The map μ is monotone; that is,
μ~\t) is a continuum for each t. The purpose of this paper is to
investigate how properties of the continuum X are reflected in the
continua μ~\t), which we call the Whitney continua of X.

Before giving the results of our investigation, let us note that μ'\\)
is the degenerate subcontinuum X of C{X) and that μ~!(0), the set of
singleton subcontinua of X, is homeomorphic to X. We, therefore,
need only investigate the structure of μ~\t) for 0 < t < 1, and we state
our results only for these values of £.

There have been several papers which have contained information
on the continua μ~ι(t). J. L. Kelley [9] showed that if X is a
hereditarily indecomposable continuum, then so is μ~ι(t). This, recall,
wwas Kelley's technique for constructing infinite-dimensional,
hereditarily indecomposable continua, assuming the existence of
hereditarily indecomposable continua of dimension greater than one
(the difficult question of the existence of the latter continua was solved
by Bing about 10 years later). C. Eberhart and S. Nadler [5] have
observed that Kelley's result, together with a result of Bing [2], implies
that μ'\t) is a pseudo-arc whenever X is. In a recent paper, J.
Krasinkiewicz [10] has proved that if X is arc-like, then so is μ (t) and
if X is circle-like but not arc-like, then so is μ~\t).

There are two original techniques for hyperspace proofs introduced
in this paper. In the fourth section of this paper, we define, for an
arbitrary continuum X, an upper semi-continuous, continuum-valued
map yt of X onto μ~\t) and an upper semi-continuous, continuum-
valued map σt of μ~\t) onto X In the special case that X is a
circle-like continuum, these multi-valued maps can be applied to show
that X and μ~\t) are cohomologically equivalent continua.

This result yields as corollaries the following facts. If X is a
nonplanar, circle-like continuum, then so is μ~\t). If X is a planar,
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circle-like continuum, then μ~\t) is a plane continuum (which is either
arc-like or circle-like). This latter result answers a question of Krasin-
kiewicz [10].

We also prove a partial converse to Krasinkiewicz's results. We
show that if X is a decomposable, circle-like continuum that is also
arc-like, then there exists a t such that μ~\t) is not circle-like.

Since each nonplanar, circle-like continuum X is indecomposable,
our results imply that μ~\t) is indecomposable for such continua
X. We provide examples, however, of planar, indecomposable, circle-
like continua such that μ~\t) is decomposable, for all t between 0 and
1. On the other hand, we will find for the pseudo-circle (which, by
definition, is planar) that μ~\t) is again a pseudo-circle and thus
hereditarily indecomposable.

A second central idea of this paper is a technique developed in the
third section for locating arcs in the continua μ~\t). Besides being
crucial in later examples, this technique is applied in the second section
to prove that μ~\t) is arcwise-connected whenever X is. The exam-
ples mentioned in the previous paragraph show that if X is an
indecomposable continuum or a circle-like continuum, then μ'\t) need
not be such a continuum unless additional conditions are imposed. In
the last section, we give an example of an atriodic, unicoherent
continuum such that μ~\t) is neither atriodic nor unicoherent, for some
t between 0 and 1. We also give an example of a hereditarily
unicoherent, one-dimensional continuum such that μ'\t) does not have
either of these properties, for some t.

Turning to algebraic properties of continua, we find that the groups
associated with μ~\t) may be quite different from those associated with
X, whether these groups be Cech homology, Cech cohomology, singular
homology, singular cohomology, or homotopy. Hence circle-like con-
tinua are rather special in the fact that X is (Cech) cohomologically
equivalent to μ~{(t).

This paper continues the author's investigation of the analogies
between cones and hyperspaces. In previous papers [12,13], we have
shown that the cone over a continuum X and C(X) are actually
homeomorphic in some instances. In fact, the first example [12] of a
continuum X such that C(X) does not have the fixed-point property
was obtained via such a homeomorphism. The cone K(X) over a
continuum X has a projection function p : K(X)—>[0,1] defined by
p(x9t) = t; hence p measures height in the cone. The corresponding
role in the hyperspace C(X) is played by the Whitney function μ. The
projection function p has the property that p'\t) is a continuum
homeomorphic to X, for 0 ^ t < 1. Investigating the class of continua
{μ~ι(t)}, we will find that very rarely is μ" !(ί) homeomorphic to X, for
0 g t < 1. Even in the case that C(X) is homeomorphic to K(X), we
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find that often μ ~\t) is not homeomorphic to X. We will see, however,
that μ~\t) is homeomorphic to X, 0 ^ t < 1, if X is an arc, a circle, a
pseudo-arc, or a pseudo-solenoid. Let us note here the curious result
[12] that in case X is a pseudo-arc or a pseudo-solenoid, C{X) is not
homeomorphic to K(X), even though μ~\t) is homeomorphic to X for
each t between 0 and 1.

After a few preliminary remarks and definitions in Section One, we
develop some functorial properties of hyperspaces in the second
section. The main theorems of the paper appear in the third and fourth
sections. In the last section we give some results and examples about
some continua that are neither arc-like nor circle-like.

1. Basic facts about hyperspaces. A continuum is a
compact, connected, nonvoid, metric space. C(X), the hyperspace of
subcontinua of a continuum X, is the space of all subcontinua of X with
the topology induced by the Hausdorff metric p, where ρ(A,B) = g.l.b.
{e}, for all e such that A is contained in the 6-neighborhood of B and B
is contained in the e-neighborhood of A. We write X for the point in
C(X) corresponding to the continuum X. We note that the subspace
X' of C(X) consisting of the degenerate subcontinua of X is isometric
toX.

An arc is a continuum homeomorphic to the closed interval
[0,1]. A circle or simple closed curve is a continuum homeomorphic to
S\ A continuum is arc-like if it is homeomorphic to the inverse limit
of an inverse sequence {X,,jfj} of arcs with surjective bonding
maps. The definition of circle-like continuum is similar. We know
from [14, Lemma 10] that without loss of generality a circle-like
continuum X has an inverse limit representation that satisfies one of the
following:

(1) deg/ΓI = 0, for all n.
(2) deg/ : + l =l, for all n
(3) deg/; + I >l, for all n.

These three cases correspond, respectively, to (1) the class of circle-like
continua that are also arc-like, hence planar, (2) the class of planar
circle-like continua that separate the plane, and (3) the class of
nonplanar, circle-like continua. If we let Hn(X) be the nth Cech
cohomology group of X, then we find that these three cases correspond,
respectively, to (1) H1(X) = 0, (2) Hι(X) = Z and (3) H\X)j*0 and

\

A continuum is acyclic if Hn(X) = 0, for n S 1. Otherwise, it is
cyclic.



572 JAMES R. ROGERS, JR.

A map is a continuous function. We will call any map
μ: C(X)-*I satisfying conditions (1), (2), and (3) of the introductory
paragraph a Whitney function.

2. The hyperspace functor. Let K denote the category
the objects of which are continua and the morphisms of which are
continuous functions. Then there is a hyperspace functor C: K-+K
that assigns to each object X of K the continuum C(X) and to each
morphism / : X - > y of K the morphism C(f): C(X)^C(Y) of K
defined by C(f) (A) = f{A), for A belonging to C(X). If (X,, /,) is an
inverse sequence of continua with bonding maps / +l: Xi+ί-+Xh then C
induces another inverse sequence (C(Xi),C(/i)) with bonding maps
C(/!+l): C(Xl+1)-» C(X,). Jack Segal [15] has proved that the functor C
is continuous with respect to inverse limits, that is, if X = lim(Xj,/i),
then C(X) is homeomorphic to lim(C(Xi), C(/)).

Whenever one has a functorially-induced inverse sequence, one
must check to see whether or not the induced bonding maps are
surjective. Consider the following definition, due to M. K. Fort, Jr.
and J. Segal [7].

DEFINITION 2.1. A continuum X is said to have a hyper-onto
representation if there is an inverse sequence (Xj,/), where each X, is a
polyhedron, such that X is homeomorphic to lim(Xh fi) and each
induced map C(/ί+1): C(Xl+1)->C(Xi) is surjective.

Clearly, as remarked by Fort and Segal, each arc-like continuum
has a hyper-onto representation. We shall show next that each circle-
like continuum also has such a representation.

PROPOSITION 2.2. Each circle-like continuum has a hyper-onto
representation.

Proof, Let X be a circle-like continuum. If H\X) = 0, then X,
being arc-like, has a hyper-onto representation as an inverse limit of
arcs. If H\X) Φ 0, then let (X,, /,) be an inverse limit representation of
X such that each factor space X, is a circle and each bonding map
/}+1: Xi+i-> Xi is essential. Suppose that for some i, A is an element of
C(Xi) and that no subcontinuum B of Xi+X has the property that
f\+ι(B) = A. We shall show that this leads to a contradiction by
defining a homotopy between / +1 and a null-homotopic map.

Since / +l is a surjective function, A must be a nondegenerate
subcontinuum of Xh Let ax and α2 be the endpoints of A. Let D be a
component of (f\+ί)~ι(A). Then D = [d,, d2]. Without loss of general-
ity, suppose that /'+I(df) = έii. Then f\+ι(d2) = au for otherwise
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f\+ι(D) = A. The homotopy H will be defined on D to have the
following properties:

(1) H0(x) = f\+\x)
(2) Hι(x) = aι

(3) Ht(dι) = Ht(d2) = au for each t.

Define H similarly on the other components of (f\+ί)~ι(A). If /!+1(JC) is
not an element of A, then define H(JC,0 = /;+1Qc), for all t, O ^ ί ^
1. Then H^X+i) contains no point of (α b α 2 ), so Hi is
nullhomotopic. This contradicts the fact that /j+1 = Ho is essential.

Notice the important distinction between the manner of proof of
the preceding proposition for cyclic and acyclic circle-like
continua. Each acyclic, circle-like continuum has a hyper-onto rep-
resentation as an inverse limit of arcs, but such a representation may not
be obtainable from an inverse sequence of circles; indeed this is the
crux of the matter when some later theorems that hold for cyclic,
circle-like continua are false for acyclic circle-like continua.

If A and B are elements of C(X) and ACB, then there is a
maximal collection {At: 0 ̂  t S 1} of subcontinua of X such that

(1) A0 = A
(2) A, = B
(3) if 0 g s g t g 1, then As C A,

and such that {AJ forms an arc in C(X) from A to B, provided
A^B. Such a set is called a segment from A to B and is denoted
[A,JB]. There may be many distinct segments between A and B.

The question naturally arises as to whether the image C(fi)([P, Q])
of a segment in C(X) is a segment in C(X). The following proposition
gives an affirmative answer.

PROPOSITION 2.3. If [P,Q] is a segment in C(X), then C(fi)

([P,Q]) is a segment in

Proof. Suppose that R and S are points of [P, Q] and that
RDS. Then fiR) DfXS) in Xh If C(/ ί)(«) = C(/,)(S), then/,(«) =
f(S) and hence C(/)([5,l?]) = /,(jR), where [S,R] is the subsegment of
[P,Q] with endpoints R and S. Therefore, C(/)([P,ζ)]) is the
monotone image of an arc and hence is an arc or a point.

Suppose that M and N are distinct points of C(fi)([P,Q]). Let
M' and N' be a pair of points in [P, Q] that are mapped by C(/i) onto M
and N, respectively. Assume that M' is a proper subcontinuum of
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Nf. Then /(AT) C/,(ΛP); that is, MCN. So with proper parametriza-
tion, C(/i)([P,ζ)]) is a segment in

3. Finding arcs in μ~ι(t). In this section, we develop a
technique for recognizing arcs and circles in μ~\t). This technique
provides a very simple proof of the fact that if X is an arc (a circle), then
μ~\t) is an arc (a circle). This fact was originally proved by Krasin-
kiewicz [10] through considerably more complicated means. The
section culminates in a proof of the theorem that if X is arc wise-
connected, so is μ~\t).

A point a in a space X is said to be accessible from a subset B of X
if for each point b in B, there exists an arc A in X with endpoints a and
b such that A - a CB. If C is a subset of X and if each point of C is
arcwise accessible from B, then C is said to be arcwise accessible from
B. Arcwise accessibility provides the following useful criterion for
recognizing simple closed curves in S2.

PROPOSITION 3.1. [17, p. 67]. A necessary and sufficient condition
that a subset Mof S2 should beanS1 is that it be a common boundary of
two disjoint domains, from each of which M is arcwise accessible.

We shall use two variations of the preceding proposition in dealing
with hyperspaces.

PROPOSITION 3.2. Let A be a continuum that lies in the interior of a
2-cell D. Suppose that D - A consists of two components and that A is
arcwise accessible from each. Then A is a simple closed curve.

PROPOSITION 3.3. Let A be a subcontinuum of a 2-cell D such that
A Π 3D contains at least two points. Suppose that A separates D into
two components, each containing some point of 3D, and that A is
arcwise accessible from each. Then A is an arc with endpoints a and b
belonging to dD.

Now we apply Propositions 3.2 and 3.3 to determine the structure
of the continuum μ~\t), for X an arc or a simple closed curve. Note
that if X = S\ then C(X) is homeomorphic to the disk D in the plane
defined by D = {(r, θ): r ^ 1}. The homeomorphism H: C{X)->D is
given by mapping a positively oriented arc [φuφ2] in 5 ι to the point
(r,φ) = (l-(φ 2~φ 1)/2τr,φ 1) in D, a point [φι,φι] in S1 to the point
(1, φi) in D, and S1 itself to the origin.

THEOREM 3.4. IfXis a simple closed curve, then μ~\t), 0 S t < 1,
is a simple closed curve.
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Proof. If t = 0, then μ~ι(0) is the set of singleton continua in X
and hence is homeomorphic to X If 0 < f < l , then μ~\t) is a
continuum in the interior of the 2-cell C(X), for the boundary points of
the 2-cell are precisely the singleton subcontinua of X. Furthermore,
C{X) - μ~\t) consists of 2 components, μ~\t, 1] and μ~ι[0, ί) We see
from the structure of segments that μ~\t) is arcwise accessible from
μ~\t, 1]. Also μ~\t) is arcwise accessible from μ~ι[0,t), since
μ~\0) = 5 1 is arcwise connected. Therefore, by Proposition 3.2, A is a
simple closed curve.

If X = [0,1], then C(X) is again a 2-cell. Let D be the triangular
disk in the plane with vertices at (0,0), (0,1), and (1,1). Then there is a
homeomorphism G: C(X)-^D defined by letting G map a subcon-
tinuum [α,b] of C to the point (α,b) in D.

THEOREM 3.5. If X is an arc, then μ~\t), 0 ^ t < 1, w an arc.

The proof of this theorem is similar to that of Theorem 3.4, using
Proposition 3.3 in place of Proposition 3.2. Hence we omit it.

Next we use Propositions 3.3 to find arcs in μ~\t).

THEOREM 3.6. Suppose that P and Q are distinct points of C(X)
such that μ(P) = μ(Q) = t and such that P and Q are not disjoint
subcontinua of X. Then there is an arc in μ~\t) with endpoints P and

Q.

Proof Let A be a component of P Π Q. Let SP be a segment in
C(P) from A to P, and let SQ be a segment in C(ζ>) from A to Q. Let
D be the set of all subcontinua of X that can be expressed as the union
of two subcontinua of X, one belonging to SP and one belonging to
SQ. D is represented in Diagram 1. Then each point of D may be
assigned a pair of coordinates from the segments SP and SQ, and one
may use these coordinates to prove that D is a 2-cell.

We shall show that μ~\t)ΠD is an arc with endpoints P and
Q. The points P,Q,A, and P U Q belong to 3D. Since A^P and
P ^ P U Q , it follows from the structure of segments that μ~ι(t)ΠD
separates D into two arc components, one containing A and one
containing P U Q. Each point of μ ~ι(t) Π D is accessible by a segment
from both A and P U Q . Hence the hypotheses of Proposition 3.3 are
satisfied, and P and Q are the endpoints of the arc μ~\t)ΠD.

THEOREM 3.7. Suppose that P and Q are points of C(X) such that
μ(P) = μ(Q) = ί and such that P and Q are disjoint subcontinua of
X. If there exists an arc in X that intersects both P and Q, then there
exists an arc in μ~\t) with endpoints P and Q.
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P u Q

Q

Proof. Let A be an arc in X irreducible from P to Q with end
points p and q. Let SP be a segment in C(P) from p to P, and let SQ be
a segment in C(ζ)) from q to Q. We will identify a 2-cell D in C(X)
that is the union of four 2-cells, DUD2,D3 and D4.

Dί is C(A). D2 is the set of all subcontinua of P U A that can be
expressed as the union of a subcontinuum of A and a subcontinuum of
P that is a point of SP. Each point of D2 may be assigned two
coordinates, and D2 is clearly a disk. Similarly Γ>3 is the set of all
subcontinua of Q U A that can be expressed as the union of a
subcontinuum of A and a subcontinuum of Q that is a point of
SQ. Finally, let TP be the segment in D2 from A to P U A, and let ΓQ be
the segment in D 3 from A to Q U A . Define D4 to be the set of all
subcontinua of X that can be expressed as the union of two continua,
one a point of TP and the other a point of TQ.

As indicated in Diagram 2, D = Dx U D 2 U D4 U D4 is a 2-cell. The
existence of an arc from P to Q now follows from reasoning similar to
that of the proof of the previous theorem; we omit the details.

The next theorem is an immediate corollary of the previous two
theorems.

THEOREM 3.8. // X is an arcwise-connected continuum, so is
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Pu A « Q,

DIAGRAM 2

4. Continuum-valued maps and a cohomological
equivalence for circle-like continua. In this section we define
for an arbitrary continuum X an upper semi-continuous, continuum-
valued map γt of X onto μ~\t) and an upper semi-continuous,
continuum-valued map σt of μ~\t) onto X. We then apply techniques
of Howard Cook [4] to show that these maps yield a cohomological
equivalence between X and μ~\t) in the case that X is a circle-like
continuum. At the end of the section, various corollaries of this
theorem are derived.

Perhaps it is desirable, before defining the multivalued maps, to
give an example showing that the existence of single-valued maps
having these properties is out of the questtion.

EXAMPLE 4.1. Let X be the arc-like plane continuum defined by

y =sinl/x, 0<JC ^ l/2τr

- l ^ y ^ 3 , x=0

y = 2 + sinl/x, - 1 / 2 T Γ ^ Λ : ^ 0

X is pictured in Diagram 3. Let e be a small, positive number. Then
we may choose μ such that μ~\e) is homeomorphic to the arc-like
continuum pictured in Diagram 4, while μ~\\ — e) is an arc.

Then μ,~\\-e) cannot be mapped onto X, and X cannot be
mapped onto μ~\e).
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DIAGRAM 4

The next thing we will do is to define the continuum-valued
function yt: X-+μ~\t). For each point p in X, let Cp =

THEOREM 4.2. is an arcwise-connected continuum.

Proof. First we show that Cρ is closed. Let A be a limit point of
Cp. If p is not in A, let e = d(p, A). I f p E B E C ; , then p(A, B) ̂  e.

Finally we show that Cρ is arcwise-connected. Let A and B be
points of Cρ. Let D be the component of A ΠB containing p. Let J£
be a segment from D to A and J* a segment from D to 2?. Then /£
and ID span a disk E and μ ^ O Π E is an arc from A to B, by
arguments similar to those of the preceding section.

Define yt:X-*μ~Xt) by yt(p) = Cp.

THEOREM 4.3. The continuum-valued function yt:X-
upper semi-continuous.

>μ~\t) is

Proof. Let {pn} be a sequence of points of X converging to p, and
let Y be an element of lim sup CPn. Then, by taking a subsequence if
necessary, there exists a sequence {Yn} of continua such that Yn

converges to Y in C(X) and Yn E CPn. Since yn -• Y and pn -»p, we
have p E y and then Y E Cp.
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The γt functions yield the following interesting characterization of
hereditarily indecomposable continua.

THEOREM 4.4. The following statements are equivalent:
(1) X is hereditarily indecomposable.
(2) yt: X-*μ~x(t) is single-valued, for each t.
(3) μ~\t) contains no arc, for each t.

Proof (1) Φ (3). Kelley [9] has shown that if X is hereditarily
indecomposable, then so is each μ~\t). No hereditarily indecompos-
able continuum contains an arc.

(3) Φ (2). This is clear, since each C'p is arc wise-connected.
(2) φ (1). Suppose X contains the decomposable continuum A U

B. Let p be a point of A Π B, and let D be the component of A Π B
containing p. Proceed similarly to the proof of Theorem 3.6. to find an
arc in some μ~\t) that is contained in C\>. This contradicts the
assumption that yt is single-valued.

In order to apply the function yt to circle-like continua, we need to
know that the values of γ, are proper subcontinua of μ~ι(t)9 provided
t < 1. We accomplish this via the following proposition.

PROPOSITION 4.5. // p is a point of the non-arc-like, circle-like
continuum X, then for any e > 0, there exists a subcontinuum YofX\{p}
with the property that ρ( Y, X) < e.

This proposition is a consequence of Proposition 2.2. Perhaps it is
more easily seen by an appeal to chaining arguments rather than inverse
limits. We omit the details of the proof.

COROLLARY 4.6. IfXis a non-arc-like, circle-like continuum, then
Cp is a proper subcontinuum of μ~\t), for any point p of X and real
number t < 1.

Proof. Let e be the distance in C(X) between the sets μ'\t) and
{X}. By Proposition 4.5, there exists a continuum Y contained in
X\{p} with the property that ρ(X, Y) < e. Let Z be a subcontinuum of
Y that is an element of μ (t). Then Z does not belong to Cp.

Next we define the multi-valued map σt: μ~\t)-+X. For A E
μ~\t), define σt(A) = A. Clearly σt is an upper semi-continuous,
continuum-valued map. Furthermore, σt (A) is a proper subcontinuum
of X unless A = X.

We now are ready to state and prove the main theorem of this
section.
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THEOREM 4.7. // X is a non-arc-like, circle-like continuum, then
μ~\t) is a non-arc-like, circle-like continuum that has the same Oech
cohomology groups as X.

Proof. Krasinkiewicz [10] has proved that μ "!(ί) is a non-arc-like,
circle-like continuum. We have the upper semi-continuous mapping γ,
of X onto μ ~\t) satisfying the condition yt(x) is a proper subcontinuum
of μ~\t), for each x in X. We also have the upper semi-continuous
map σt of μ~\t) onto X, and each value of σt is a proper subcontinuum
of X. One can now show that X and μ~\t) are cohomologically
equivalent, using a proof similar to that of Theorem 9 of [4].

COROLLARY 4.8. // X is a nonplanar, circle-like continuum, so is
μ\t).

Proof. Results of Bing [1] as reformulated by McCord [11] state
that a circle-like continuum Y is planar if and only if H\X) = 0 or
H\X) = Z.

COROLLARY 4.9. If X is a nonplanar, circle-like continuum, then
μ~\t) is indecomposable.

Proof. Tom Ingram [8] has shown that each nonplanar, circle-like
continuum is indecomposable.

The next corollary answers a problem of J. Krasinkiewicz [10, p.
13].

COROLLARY 4.10. If X is a planar, circle-like continuum, then
μ~\t) is a planar continuum.

Proof. If X is also arc-like, then μ~\t) is arc-like [10] and hence
planar [2]. If X is not arc-like, then H\X) = Z and thus H\μ~\t)) =
Z, and so μ'\t) is a planar, circle-like continuum.

A pseudo-solenoid is a hereditarily indecomposable, circle-like
continuum that is not a pseudo-arc. A pseudo-circle is a planar
pseudo-solenoid.

COROLLARY 4.11. If X is a pseudo-solenoid, then μ~\t) is
homeomorphic to X. In particular, if X is a pseudo-circle, then μ~\t)
is a pseudo-circle.

Proof. Kelley [9] has shown that μ~\t) is hereditarily indecom-
posable whenever X is. From Theorem 4.7, we find that μ~\t) is a
circle-like continuum cohomologically equivalent to X. L. Fearnley [6]
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has shown that pseudo-solenoids are classified by cohomology, so
μ~\t) is homeomorphic to X.

Other continua having the property that X and μ~\t) are
homeomorphic are the arc, the circle, and the pseudo-arc.

COROLLARY 4.12. If X is a circle-like continuum, then μ'\t)
has the same Cech cohomology groups as X.

Proof. If X is arc-like, then so is μ~\t), so both continua have
trivial cohomology groups. Otherwise, the corollary follows im-
mediately from Theorem 4.7.

5. Some properties of X that are not inherited by
μ~\t). In this section, we first prove that if X is a decomposable,
circle-like continuum with trivial cohomology groups, then μ~\t) is not
circle-like, for some t. We also define a class of indecomposable,
circle-like continua X satisfying H\X) = Z such that μ~\t) is decom-
posable, for all t between 0 and 1. Therefore, neither the property of
being circle-like nor of being indecomposable is necessarily inherited
from X by μ~\t). We also give examples of a one-dimensional,
hereditarily unicoherent, tree-like continuum such that μ'\t) possesses
none of these properties and of an atriodic, unicoherent continuum such
that μ'\t) possesses neither of these properties.

Consider the class of circle-like continua X satisfying H\X) =
0. This is precisely the class of continua that are simultaneously
arc-like and circle-like. C. E. Burgess [3] has studied such continua
and divided them into two types. First, each indecomposable, arc-like
continuum is circle-like. Second, each decomposable, arc-like con-
tinuum that is also circle-like is the union of two indecomposable,
arc-like continua. We will find next that continua of the latter type
form a singularity; there always exists a real number t such that μ'\t)
is not circle-like.

THEOREM 5.1. Let X be a decomposable continuum that is both
arc-like and circle-like. Then there exists t0 in [0, 1) such that, for
t >fo, μ'\t) is not circle-like.

Proof. According to Burgess [3], X is 2-indecomposable; in
particular, X is the union of two indecomposable chainable continua Xx

and X2, and Xx Π X2 is a chainable continuum that is an end continuum
of both Xx and X2. Therefore there is a unique segment in C(Xi) from
XXΠX2 to Xh Thus, the subcontinua of C(X) that contain XXΠX2

form a 2-cell in C(X). By arguments similar to those previous, one
finds that for 1 >t > μ(Xx ΠX2), μ'\t) intersects this 2-cell in an
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arc. We know that μ~ι(t) intersects C(Xι) in a chainable continuum or
a point. Therefore, for 1 > t > μ (Xx Π X2), μ~\t) is an arc, a chainable
continuum formed by the union of an arc and another chainable
continuum, or a chainable continuum formed by the union of 2
chainable continua and an arc. In none of these cases is μ~\t)
circle-like. This proves the theorem.

Consider next certain quotient spaces of indecomposable continua.

THEOREM 5.2. // p and q are two points of the indecomposable
continuum X, then the continuum Y obtained from X by identifying p
and q is also indecomposable.

Proof. Y is irreducible between each two points of an uncount-
able set.

We are particularly interested in the structure of μ'\t) for those
circle-like continua that are obtained by identifying a pair of opposite
endpoints of an arc-like continuum. Recall that p and q are opposite
endpoints of an arc-like continuum X provided there is a representation
of X as an inverse limit of unit intervals such that p has coordinates all
zero and q has coordinates all one. This definition is equivalent to
Bing's definition that p and q are opposite endpoints of an arc-like
continuum X provided that for each positive number e, there is an
e- chain covering X such that only the first link contains p and only the
last link contains q.

We have the following theorem concerning such continua.

THEOREM 5.3. If Y is a circle-like continuum obtained by identify-
ing a pair of opposite endpoints of an arc-like continuum X, then μ'\t)
contains an arc with nonempty interior, for all t satisfying 0< t < 1.

Proof. Let px and p2 be the pair of opposite endpoints of X that
are identified to the point p of Y. According to Bing [2, p. 660], if each
of two subcontinua of X contain ph one of the subcontinua of X
contains the other. This implies that there is a unique segment [ph X]
in C{X) from p, to X. Since X is irreducible between px and p2, we
find that [p1? X] Π [p2, X] x {X}.

We shall show in this paragraph that the set CP(Y) of all subcon-
tinua of Y that contains p forms a 2-cell in C( Y). Each point of Cp (Y)
is of the form A, U Bs, where At G [p,, X] and Bs G [p2,X]. Consider
the function H: I x /-• CP(Y) that assigns to the ordered pair (ί, s) the
continuum A, UB s. Then H is a cellular map of Ixl onto
CP(Y). The only non-degenerate point-inverse is



WHITNEY CONTINUA IN THE HYPERSPACE C(X) 583

which is an arc on the boundary of / x /. Therefore, Cp (Y) is a 2-cell.
Finally, it is clear that if Z is any continum of CP(Y) and Z can be

expressed as At UBS, where At E(puX) and Bs E.{p2,X), then there
exists a neighborhood N of Z in C(X) such that N C
Cp(Y). Furthermore, one can use Proposition 3.3, as before, to show
that μ~\t) Π CP(X) is an arc. Therefore μ~\t) contains an arc with
nonempty interior, for 0<t < 1. In particular, μ~\t) is locally con-
nected at a continuum of points.

COROLLARY 5.4. // Yis as above, then μ~\t) is decomposable, for

P 5.5. Let X be a simple triod (a continuum homeomor-
phic to the capital letter Γ.) Then a little reflection shows us that the
set of all continua containing the junction point forms a 3-cell and that
C(X) is homeomorphic to a 3-cell with three 2-cell "fins". In particu-
lar, C(X) is 3-dimensional at the point X, so μ~\t) must be 2-
dimensional, for t near 1. As a matter of fact, it is simple to choose μ
so that μ~\t) is a 2-cell, for t near 1. Although X is one-dimensional
and hereditarily unicoherent, μ~\t) possesses neither of these
properties. Clearly μ~\t) is not tree-like.

EXAMPLE 5.6. Let X be the standard sin 1/x-continuum, and let Y
be the continuum obtained from X by identifying the points (0, - 1) and
(0,1) to a point p. Then Y is an atriodic, unicoherent continuum. For
t close to 0, however, μ~ι(t) is homeomorphic to the continuum Z
pictured in Diagram 5, a continuum that is neither atriodic nor
unicoherent.

DIAGRAM 5
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For t close to 1, μ~\t) is an arc. Hence all homology, cohomol-
ogy, and homotopy groups of μ~\t) are trivial. This is obviously not
the case for Y.

6. Question. We still have much to learn about the continua
μ~\t). We think the following questions have special interest.

Question 1. Which continua X have the property that X is
homeomorphic to μ~\t)Ί

Question 2. If the arc-like continuum X is indecomposable, is
μ ~\t) indecomposable? An affirmative answer to this question, together
with the results of this paper, would imply that if X is a circle-like
continuum, then μ~\t) is circle-like if and only if X is indecomposable
or

Question 3. How are the other properties of continua reflected in
the continua μ~\t)Ί
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