## THE INDEX OF A TANGENT 2-FIELD

## MARK MAHOWALD

Thomas, using an obstruction theory approach, evaluated the index of a tangent 2-field on  $M^m$ ,  $m \equiv 1(4)$  if M is a spin manifold. Atiyah using the Atiyah-Singer index theorem evaluated the index for all orientable manifolds. The purpose here is to give a proof of Atiyah's result in the spirit of Thomas' work.

Let M be a connected closed smooth orientable manifold of dimension m. Let k be any integer and suppose M admits k vector fields which are linearly independent everywhere except possibly at a finite number of points. The obstruction to making the k vector field linearly independent everywhere is called the index of the k-field and it is an element of

$$H^{m}(M, \pi_{m-1}(V_{m,k})) \simeq \pi_{m-1}(V_{m,k}).$$

Suppose m = 2r + 1 and let

$$\hat{\chi}_2(M) = \left(\dim \bigoplus_{i=0}^r H^i(M, Z_2)\right) \mod 2$$
. In [5],

Thomas proved:

THEOREM. Let M be a closed connected spin manifold, m = 1(4), m > 1 with  $W_{m-1}(M) = 0$ . Then the index of any 2-field with singularities is

$$\hat{\chi}_2(M) \in Z_2 = \pi_{m-1}(V_{m,2}).$$

Thomas' method was to calculate the secondary obstruction to a cross section of the association  $V_{m,2}$  bundle to the tangent bundle. Atiyah [1] showed that if

$$b = \left(\dim \bigoplus_{i=0}^{r} H^{i}(M, \text{Reals})\right) \mod 2$$

then the index of a 2-field for any orientable manifold with  $W_{m-1}(M) = 0$  is b. Finally, Milnor, Lusztig, and Peterson [3] showed the relationship between these results by showing that

$$b + \hat{\chi}_2 = W_2 W_{m-2}.$$

It has always seemed that direct proof, in the spirit of Thomas, should be possible for the Atiyah result. In this paper we will provide such a proof, i.e., we will prove

THEOREM 1. Let M be a closed connected orientable manifold  $m \equiv 1(4)$ , m > 1 with  $W_{m-1}(M) = 0$ . Then the index of any 2-field with finite singularities is

$$(\hat{\chi}_2 + W_2 W_{m-2}) \in Z_2 = \pi_{m-1}(V_{m,2}).$$

2. Proof of the theorem. The proof has two key steps. The first is to show that a secondary operation on the Thom class involves the secondary obstruction; and the second step is to evaluate the cohomology operation.

Let  $m \equiv 1 \mod 4$ . Then

$$Sq^2Sq^{m-1} + Sq^mSq^1 = Sq^{m+1}$$

and, thus, on *m*-dimensional integral classes  $Sq^2Sq^{m-1}=0$ . Let *E* be the fiber of the map

$$K(Z,m) \xrightarrow{Sq^{m-1}} K(Z_2,2m-1).$$

Then the relation  $Sq^2Sq^{m-1}=0$  defines a class  $v \in H^{2m}(E, \mathbb{Z}_2)$  which is defined up to a primary operation on the generator of  $H^m(E, \mathbb{Z})$ .

THEOREM 2.1. Let T(M) be the Thom complex of  $\tau(M)$ , where M is a manifold as in Theorem 1. There exists a map  $f: T(M) \to E$  such that  $f^*$  in dimension m is an isomorphism and  $f^*(v) = U \cup (O_2 + W_2W_{m-2})$  where  $O_2$  is the index of the 2-field.

This is proved in [4].

THEOREM 2.2. For the data as in Theorem 2.1,  $f^*(v) = \hat{\chi}_2(U \cup \mu)$  where  $\mu$  generates  $H^m(M, \mathbb{Z}_2)$ .

This is the new result which we prove in §3. The main theorem is a direct consequence of these two results.

3. Proof of Theorem 2.2. Recall that the tangent bundle embeds in a natural way as a neighborhood of the diagonal in  $M \times M =$ 

 $M^2$ . Let  $j: M^2 \to T(\tau(M))$  be the obvious map. Let  $\{\alpha_i; i = 1, \dots, q\}$  a basis for

$$\bigoplus_{j=0}^{(m-1)/2} H^j(M, \mathbb{Z}_2) \quad \text{and} \quad \{\beta\}$$

be the dual basis, i.e.,

$$\alpha_i \cup \beta_i = \delta_{ii}\mu$$
.

Proposition 3.1 [Theorem 2.6 [5]].

- (a)  $j^*U = A + tA$  where  $A = \sum_{i=0}^q (\alpha_i \otimes \beta_i)$ .
- (b)  $A \cup tA = \hat{\chi}_2(M)\mu \otimes \mu$ .

Let  $\tilde{\Omega}_m$  be the secondary operation defined over  $K(Z_2, m)$  based on  $Sq^2Sq^{m-1} + Sq^1(Sq^{m-1}Sq^1) = 0$ .

PROPOSITION 3.2. [Thomas 2.6 [5]]. If  $Sq^{m-1}U = 0$  then  $Sq^{m-1}A = 0$ .

*Proof.* An easy application of the Cartan formula shows that  $Sq^{m-1}A \in H^{m-1}(M, \mathbb{Z}_2) \otimes H^m(M, \mathbb{Z}_2)$ . Thus,  $Sq^{m-1}A$  and  $Sq^{m-1}(tA)$  are in different graded subgroups of  $H^*(M^2)$  and so could add to zero only if each were zero separately.

PROPOSITION 3.3.  $Sq^{m-1}Sq^{1}A = \langle V_r \cup Sq^{1}V_r[M] \rangle \mu \times \mu$  for any choice of basis  $\alpha_i$  where  $V_r$  is the r dimensional Wu class.

*Proof.* Since  $Sq^{m-1}Sq^1A = Sq^{m-1}Sq^1(\Sigma\alpha_i \otimes \beta_i)$  (dim  $\alpha_i = r$ ) it suffices to verify that if  $H^r(M, Z_2)$  is a vector space of rank t and if N is a linear transformation taking the  $\alpha_i$  to the new basis  $\bar{\alpha}_i$  then

$$Sq^{m-1}Sq^{1}(\Sigma N\alpha_{j}\otimes N^{*}\beta_{j})=Sq^{m-1}Sq^{1}(\Sigma\alpha_{j}\otimes\beta_{j}).$$

Moreover, N can be written as a composite of permutations (which obviously leave it invariant) and transformations of the form

$$N_{ij}\alpha_k = \begin{cases} \alpha_k & k \neq j \\ \alpha_i + \alpha_j & k = j \end{cases}.$$

So the lemma is true if it is true for  $N_{ij}$ . Now  $N_{ij}^*\beta_k = \begin{cases} \beta_k & k \neq i \\ \beta_i + \beta_j & k = i \end{cases}$ . Thus the difference between the two sums is easily seen to be 0.

Now notice that  $Sq^{m-1}Sq^1(\alpha_i \otimes \beta_i) = V_rSq^1\alpha_i \otimes V_r\beta_i$  and since  $V_rSq^1\alpha_i = (Sq^1V_r)\alpha_i$ , if  $Sq^1V_r = 0$  then the lemma is true. Assume then  $Sq^1V_r \neq 0$ , and give a basis for  $H^r(M, Z_2)$  by choosing  $\alpha_1, \dots, \alpha_{t-1}$  to span  $\langle Sq^1V_r \rangle^1$  and filling out to a basis by requiring  $\alpha_t$  be dual to  $Sq^1V_r$ . Then

$$Sq^{m-1}Sq^{1}(\Sigma\alpha_{i}\otimes\beta_{i})=Sq^{1}V_{r}\alpha_{t}\otimes V_{r}Sq^{1}v_{r}$$

and the lemma follows.

PROPOSITION 3.4. Theorem 2.2 is true if  $Sq^{m-1}Sq^{1}A = 0$ , i.e., if  $V_r \cup Sq^{1}V_r = 0$ .

With the additional hypothesis that  $W_2 = 0$  this is exactly what Thomas proved in [5]. The proof which follows is the same as Thomas' up to the point where it is shown that the indeterminancy does not kill the argument.

Proof of 3.4. Let  $(E_1, u, v)$  be the universal example for  $\tilde{\Omega}_m$ , i.e.,  $E_1$  is a two stage Postnikov system with k-invariants  $Sq^{m-1}$  and  $Sq^{m-1}Sq^1$  over a  $K(Z_2, m)$ . The class u is the image of the fundamental class of  $H^m(K(Z_2, m))$  in  $H^m(E_1)$ . The class  $v \in H^{2m}(E_1)$  is defined by the relation  $Sq^2Sq^m + Sq^1(Sq^{m-1}Sq^1) = 0$ . The hypotheses imply that there is a commutative diagram



where  $A^*(\kappa) = A$  and  $\kappa_m$  is the fundamental class of  $K(Z_{2,m})$ . Let  $t\bar{A}$  be the composite  $M^2 \stackrel{t}{\to} M^2 \stackrel{A}{\to} E$ . Consider the diagram (not necessar-

ily commutative)



The argument which Thomas used goes as follows: First

$$\mu^*(v) = v \otimes 1 + p^*(\kappa \otimes \kappa) + 1 \otimes v,$$

since v is not primitive, (see [5] or [2]). Then, since  $(\bar{A}, t\bar{A})^*(v \otimes 1) = (\bar{A}, t\bar{A})^*(1 \otimes v)$ , we see that

$$(\mu(\bar{A}, t\bar{A}))^*v = A \cup tA = \hat{\chi}_2(M)(\mu \otimes \mu).$$

Now  $d(\mu(\bar{A}, t\bar{A}), \bar{U}j)$ , the difference class, is a map into

$$K(Z_2, 2m-2) \times K(Z_2, 2m-1)$$

and thus is a pair of cohomology classes, (a, b). It follows from the definition of the secondary operation that

$$(\bar{U}_i)^*v = (\mu(\bar{A}, t\bar{A}))^*v + Sq^2a + Sq^1b.$$

Since M is orientable  $Sq^1b = 0$  and since in Thomas' case  $Sq^2W_2(M) = 0$ ,  $Sq^2a = 0$ . What we need to show is that in the case of our diagram the same conclusion holds.

LEMMA 3.5. Let  $(a,b) \in H^{2m-2}(M^2,Z_2) \otimes H^{2m-1}(M^2,Z_2)$  be the pair of cohomology classes  $(a,b) = d(v(\bar{A},t\bar{A}),\bar{U}j)$ . The class a is invariant under  $t^*$ .

The proof is given in §4. We continue the proof of 3.4.

Thus if  $(a, b) = d(v(\bar{A}, t\bar{A}), j\bar{U})$  then a is a symmetric class, i.e.,

$$a = a_1 \otimes \mu + a_2 \otimes a_2 + \mu \otimes a_1.$$

Now  $Sq^2a = 0$  if a is symmetric; and, therefore, if we use the diagram \* with the maps as given we see that

$$(\bar{U}j)*v=\hat{\chi}_2(M)(\mu\otimes\mu).$$

This is 2.2 under the hypothesis of 3.4.

We now consider the case where  $V_r \cup Sq^1V_r \neq 0$ . Let  $A' = A - V_r \otimes Sq^1V_r$ . Then  $j^*U = A' + tA' + Sq^1(V_r \otimes V_r)$ . Let (E, u, v) be the universal example for the operation  $\Omega$  based on the relation  $Sq^2Sq^{m-1} = 0$  which holds on integral classes. The class  $u \in H^m(E, Z)$  is the fundamental class and  $v \in H^{2m}(E, Z_2)$  is based on the relation. Let  $f: M^2 \to E$  be such that  $f^*u = A' + tA'$  and suppose f = -tf. Then  $\Omega(A' + tA') = (\hat{\chi}(M) - 1)(\mu \otimes \mu)$ . Note that  $\Omega$  is also defined on  $Sq^1(V_r \otimes V_r)$ . Let  $E_2$  be the fiber of the map  $K(Z_2, m-1) \xrightarrow{\delta Sq^{m-3}} K(Z, 2m-3)$ . Let  $u_2$  be the fundamental class. Suppose a map defining  $\Omega$  on  $Sq^1(V_r \otimes V_r)$  factors  $M^2 \xrightarrow{k} E_2 \xrightarrow{k} E$  where  $g^*u = Sq^1u_2$  and  $k^*u_2 = V_r \otimes V_r$ . The indeterminancy of the value of  $\Omega$  via such factorization is  $k^*(Sq^2H^{2m-2}(E_2))$  but it is easy to see that  $H^{2m-2}(E_2)$  is generated by primary operations on  $u_2$  and primary operations on a

symmetric class are symmetric and thus  $k*(Sq^2H^{2m-2}(E_2)) = 0$ . Thus to complete the proof of 2.2 we need to show that k exists, (Lemma 3.6), and we need to evaluate  $\Omega$  on such a factorization (Lemma 3.7).

LEMMA 3.6. 
$$\delta Sq^{m-3}(V_r \otimes V_r) = 0$$

*Proof.* Since  $W_{m-1}(M) = 0$  and  $W_{m-2}(M)$  is the reduction of an integer class  $\delta_* W_{m-3}(M)$  we see that  $W_{2m-4}(M \otimes M) = W_{m-2}(M) \otimes W_{m-2}(M)$  is the restriction of an integer class and so  $\delta(W_{2m-4}(M \otimes M)) = 0$  but  $\delta(W_{2m-4}(M \otimes M)) = \delta Sq^{m-3}(V_r \otimes V_r)$ .

LEMMA 3.7. Let c be a class of dimension m-1 with  $\delta Sq^{m-3}c=0$ , where  $\delta$  is the Bockstein  $H^*(\ ,Z_2) \rightarrow H^{*+1}(\ ,Z)$ . Then (E,u,v) is defined on  $Sq^1c$  and equals  $Sq^{m-1}Sq^2c$  modulo a primary operation on  $Sq^1c$ .

This is proved in §5.

This finishes the proof since  $Sq^{m-1}Sq^2(V_r \otimes V_r) = Sq^rSq^1V_r \otimes Sq^rSq^1V_r$  and  $Sq^rSq^1V = Sq^2Sq^{r-1}V_r$ . Now  $Sq^rSq^1V \neq 0$  iff  $V_r \cup Sq^1V_r \neq 0$  and iff  $Sq^2Sq^{r-1}V_r = Sq^2W_{m-2} \neq 0$  but  $V_2 = W_2$  and if  $V_r \cup Sq^1V_r \neq 0$ ,  $Sq^{m-1}Sq^2(V_r \otimes V_r) \neq 0$  and  $W_2W_{m-2} \neq 0$ . This completes the proof.

**4.** Proof of 3.5. Let  $\bar{E}$  be the fiber of the map  $K(Z_2, m) \longrightarrow_{Sq^{m-1}} K(Z_2, 2m-1)$ . Let  $[X]^k$  be a  $Z_2$  homology skeleton of the space X, i.e.,  $i^* \colon H^i(X, Z_2) \to H^i([X]^k, Z_2)$  is an isomorphism for  $j \le k$  and  $H^i([X]^k, Z_2) = \text{for } j > k$ . Then

$$[[M^2/[M^2]^{m-1}]^{2m-1}, \bar{E}] \cong [\Sigma^{-2}([M^2/[M^2]^{m-1}]^{2m-2}), \Omega^2 \bar{E}]$$

and

$$[M^2/[M^2]^{m-1}, \bar{E}] \cong [[M^2/[M^2]^{m-1}]^{2m-2}, \bar{E}].$$

Therefore

$$\Sigma^{-2}[M^2/[M^2]^{m-1}]\Omega^2\bar{E} \cong [M^2/[M^2]^{m-1}, \bar{E}] = A.$$

This isomorphism is not canonical since it depends on the particular desuspension used. Suppose we choose one so that j desuspends to

$$j': \Sigma^{-2}([M^2/[M^2]^{m-1}])^{2m-2} \to \Sigma^{-2}([T(M)]^{2m-2}).$$

Since  $\Omega^2 \bar{E} = K(Z_2, m-2) \times K(Z_2, 2m-4)$  we see that A is isomorphic to some extension of  $H^m(M^2, Z_2)$  by  $H^{m-2}(M^2, Z_2)$ . The extension is determined by the loop multiplication in  $\Omega^2 \bar{E}$ .

The following lemma is an easy calculation.

LEMMA 4.1. For any class  $a \in A$  represented by  $(a_1, a_2)$  with  $a_1 \in H^m(M^2, Z_2)$ , 2a is represented by  $(0, Sq^{m-2}a_1)$ .

Since  $t^*$  on  $(Imj^*)$  is fixed and since  $t^*Sq^{m-2}a = Sq^{m-2}t^*a$ , the subset in  $(H^m(M^2, Z_2), H^{2m-2}(M, Z_2))$  consisting of classes which are invariant under  $t^*$  is subgroup. Let  $E_1 \stackrel{p}{\to} \bar{E}$  be the natural projection. Clearly  $j\bar{U}P$  and  $(\bar{A}+t\bar{A})P$  are maps in this subgroup and their difference is a where  $(a,b)=d(j\bar{U},\bar{A}+t\bar{A})$ . Hence,  $t^*a=a$ .

5. Proof of 3.7. We will need to study several two stage Postnikov systems simultaneously and so some additional notation is needed. Let  $\beta$  be a vector of primary operations and K(G) a generalized Eilenberg-MacLane space

$$K(G) = \prod K(G_i, i).$$

Let  $E_m(\beta, g)$  be the fiber of the map

$$K(Z_q, m) \xrightarrow{\beta} K(G).$$

For our purposes q is either 0 or 2. We will use  $u_m$  to represent the characteristic class in  $H^m(E_m)$ . If  $\alpha\beta=0$  is a relation on m-dimensional class then there is a class  $v(\alpha) \in H^*(E_m)$  based on this relation. The triple  $(E_m(\beta,q),u,v(\alpha))$ , thus, represents the universal example for a secondary operation defined on a class  $a \in H^m(X, Z_q)$  with  $\beta a=0$ . Note also that  $v(\alpha)$  could belong to different  $E(\beta,q)$ . For example  $Sq^2Sq^{m-1}=0$  and  $Sq^2Sq^{m-2}=0$  on m-1 dim integer classes so  $v(Sq^2) \in H^*(E(S_q^{m-1},0))$  and a different  $v(Sq^2) \in H^*(E(S_q^{m},0))$ . It is usually clear from the context.

The proof of 3.7 uses the following diagram



The maps are defined as follows:

$$j^*u_m = \delta u_{m-1}; \ j_1^*u_{2m-3} = \delta Sq^{m-3}; \ k^*u_{m-1} = u_{m-1}.$$

First we need to prove the existence of the diagram. The map j is the one induced from the diagram



The map  $j_1$  is induced rom the diagram



together with the observation that  $Sq^2\delta Sq^{m-3} = Sq^{m-1}Sq^1$  on m-1 dimensional classes,  $m \equiv 1(4)$ .

The map k exists because of the same relation. The map i is the double adjoint and since  $i*\delta Sq^{m-3}u=0$  the lifting  $\bar{\iota}$  exists.

Lemma 3.7 can be rephrased in this notation by the following.

PROPOSITION 5.4. The class  $v(Sq^2)$  can be chosen so that  $k*j*v(Sq^2) = Sq^{m-1}Sq^2u_{m-1}$ .

The first formula we need is

$$j*v(Sq^2) = j*(v(Sq^2) + p*(\gamma).$$

This follows directly from diagram 5.2 and 5.3. Indeed, either diagram allows one to define an operation in  $E_{m-1}(Sq^{m-1}Sq^1, 2)$  based on the relation  $Sq^2Sq^{m-1}Sq^1=0$ . These two differ by some class in the base.

The second formula we need is  $k*j^*(v(Sq^2)) = 0$  modulo the indetermanancy, i.e., there is a choice of k such that the formula is true. This implies that  $k*j*v(Sq^2) = k*p^*\gamma$ . We shall be finished when we evaluate

Proposition 5.5.  $\gamma = Sq^{m-1}Sq^2u_{m-1}$ .

*Proof.* The map  $K(Z, m-1) \rightarrow K(Z_2, m-1)$  lifts to a map  $\bar{k}: K(Z, m-1) \rightarrow E_{m-1}(Sq^{m-1}Sq^1, 2)$ . Clearly,  $\bar{k}*j*v(Sq^2) = 0$ . Thus,  $\bar{k}*j*v(Sq^2) = \gamma u_{m-1}$ . Note that anything which is lost in  $\gamma$  by evaluating it on an interger class is part of the ambiguity in defining  $v \in H^{2m}(E_m(Sq^{m-1}, 0))$ .

We have the following diagram



A direct check of the appropriate exact sequence shows that

$$i_1^*\kappa_{2m-2}=v(Sq^2).$$

It follows from [4] that  $i_1'^*(v(Sq^2)) = \sigma^2(\kappa \cup Sq^2\kappa)$ . Since  $\iota_2^*v(Sq^2) = Sq^2\kappa_{2m-2}$ , we see that

$$\iota_1^*(j_1 \circ \bar{k})^*v(Sq^2) = Sq^2[v(Sq^2)].$$

Since ker  $i'^* = \ker \iota_1^*$  in this dimension we have

$$i'^*(j_1 \circ \bar{k})^*v(Sq^2) = Sq^2(\sigma^2(\kappa \cup Sq^2\kappa))$$
$$= Sq^{m-1}Sq^2(\sigma^2\kappa).$$

Thus,  $(j_1 \circ \bar{k})^* v(Sq^2) = Sq^{m-1} Sq^2 \kappa_{m-1}$ . This proves the proposition and completes the proof of the theorem.

It is interesting to note that the above argument proves the following theorem.

THEOREM 5.6. In  $H^*(K(Z, m-1))$ ,  $m \equiv 1(4)$ ,  $\varphi_{1,1}(\delta Sq^{m-4}) = Sq^{m-1}Sq^2 \mod$  the indeterminancy where  $\varphi_{1,1}$  is the secondary operation defined on integer classes based on  $Sq^2Sq^2 = 0$ .

## REFERENCES

- 1. M. Atiyah, Vector fields on manifolds, Arberlsgemeinschaft für Fosschung des Landes Nordrhein Westfalen, Hept. 200.
- 2. E. Brown and F. Peterson, Whitehead products and chomology operations. Quart. J. Math., 15 (1964), 116-120.
- 3. G. Lusztig, J. Milnor, and F. Peterson, Semi-characteristic and cobordism, Topology, 8 (1969), 357-360.
- 4. M. Mahowald and F. Peterson, Secondary operations on the Thom class, Topology, 2 (1964), 367-377.
- 5. E. Thomas, The index of a tangent 2-field, Comment. Math. Helv., 42 (1967), 86-110.

Received December 24, 1973. This work was supported in part by the NSF GP 25335.

NORTHWESTERN UNIVERSITY