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DUAL MIXED VOLUMES

ERWIN LUTWAK

A concept dual to the mixed volumes of Minkowski is
introduced. Duals to the classical mixed volume inequalities of
Minkowski, Fenchel and Aleksandrov are presented. As an
application of this work a sharp isoperimetric inequality relating
the mean width of a convex body and the cross-sectional
measures of its polar body is obtained. This inequality implies
that of all convex bodies of a given mean width the n-ball
(centered at the origin) is the one whose polar body has minimal
cross-sectional measures of any index. It further gives a sharp
lower bound for the product of the mean widths of a convex body
and its polar body.

The setting for this paper will be Euclidean n-space Rn. Convex,
compact sets with nonempty interiors are called convex bodies. All
convex bodies are assumed to contain the origin in their interiors and
the space of all such convex bodies with the Hausdorff topology will be
denoted by 3ίΓn Convex bodies will be denoted by capital letters such
as A,B,K. Vectors in Rn are denoted by lower case letters such as
α, u, x. Scalars are denoted by lower case Greek letters such as α, μ, λ.

The unit n - 1 sphere and the unit n-ball are denoted by Ω and C/,
respectively. The volume of the unit n-ball is denoted by ωn. For a
convex body A the n-dimensional volume and surface area will be
denoted by V(A), and S(A), respectively. The diameter and mean
width of A will be denoted by D(A) and b(A), respectively. The
radial function of A ρA is defined on Ω by:

ρA(u)= Sup{λ>O|λwEΛ M E Ω } .

The polar body of A (with respect to the unit sphere centered at the
origin) will be denoted by A*.

Given n convex bodies Al9 9An their mixed volume will be
denoted by V(Al9- , An). For convex bodies A and B we use
Vi(A,B) to denote

V(A9--;A,B, -;B)
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and Wi(A) to denote V)(A, U). For reference see Bonnesen and
Fenchel [4].

We begin by defining the dual mixed volumes.

DEFINITION 1.

u ,An) = l- ί pAχu)- PΛΛ(u)dS(u)

where dS signifies the area element on Ω.

DEFINITION 2.

Vi{A, B) = V(Λ, sA,B, ,B) [A, B G X ] .

n - / ί

The dual cross-sectional measures are the special dual mixed volumes
defined by:

DEFINITION 3.

By definition 1, V is a map

n

We list some of its elementary properties.
(1) V is continuous;
(2) V(Au ,An)>0;
(3) V(λ,Λ,, , λnAn) = A1 λfi V(Λ,, ,An) [λ, > 0];
(4) If Ai CBh for all i, then V(Λ,, , A J ^ V(JΪ,, ,Bn) with

equality iff Λ, = β, for all /
(5) V(Λ, ,Λ)=V(A).

By definition 3, W; is a map

It is continuous, bounded, positive, rotation invariant, homogeneous of
degree n - ί and monotone under set inclusion.
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As defined in 2 and 3, V, and Wt have indices / restricted to integer
values between 0 and n. We now extend the definitions so that Vt and
Wi are defined for all real indices. The extended definitions will be
required to prove Theorem 4.

DEFINITION 2*.

[A,BEXn iER].
n JΩ

DEFINITION 3*.

Wi(A)=Vi(A, U) [A E%niER].

The following simple extension of Holder's Inequality will be
required to prove our main theorems.

LEMMA 1. /// 0,/i, * * ,fm are (strictly) positive continuous func-
tions defined on Ω and c*i, ,α m are positive constants the sum of
whose reciprocals is unity, then

ί
JΩ

with equality iff there exist positive constants λi,* ,λm such that

for all M E Ω .

The following general inequality between mixed volumes is due to
Aleksandrov [1] (or see [5]):

m - l

Π
ι=0

Π V(AU - - ;An-m9An-h , AB-f) ^ Vm(Au , An)

THEOREM 1.

Vm(Au , An) fk Π V(AU , Aπ_m, An-h , An.i) [Km^n]

with equality iff An-m+u An-m+2, -,An are all dilations of each other
(with the origin as the center of dilation).
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To prove this we use Lemma 1 with

α, =m [i = l, ,m],/o = PΛ1 pΛn-« (/ 0 =l if

and /, =PAM_I+1 [/ = l, ,m].

For m = n Theorem 1 becomes:

COROLLARY 1.1.

with equality iff the A, are all dilations of each other (with the origin as
the center of dilation).

We combine this with the aforementioned inequality of Aleksan-
drov (for m = n) and obtain:

COROLLARY 1.2.

with equality iff the A, are all dilations of each other (with the origin as
the center of dilation).

COROLLARY 1.3.

Vί(A9B)SVi(A9B)

with equality iff A is a dilation of B (with the origin as the center of
dilation).

COROLLARY 1.4.

with equality iff A is an n-ball (centered at the origin).

A special case of Corollary 1.1 are the
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DUAL MINKOWSKI INEQUALITIES.

COROLLARY 1.5.

V1(A9B)^VH'ι(A)V(B) and VU(A9B)^ V(A) Vn'ι(B)

with equality iff A is a dilation of B (with the origin as the center of
dilation).

Our principal inequality between the VVs is given in:

THEOREM 2.

VΪΛA, B)^ ΫrXA, B) V\ΓKA,B) [i <j<k i9j9keR]

with equality iff A is a dilation of B (with the origin as the center of
dilation).

To prove this we use Lemma 1 with m = 2,

fo = pΓpL / i= prpΓ, / 2 = 1 , αi = (fc-i)/0"-0

and α2 = (fc -/)

We note that if the indices i,j9k are restricted to integer values
between 0 and n, then the inequality of Theorem 2 is a special case of
Theorem 1. However, the more general inequality of Theorem 2 will
be required to prove Theorem 4.

The following are special cases of Theorem 2:

COROLLARY 2.1.

Vi(A9B)^ V(n-i)ln(A) Viln(B) [0<i<n iER]

with equality iff A is a dilation of B (with the origin as the center of
dilation).

COROLLARY 2.2.

W,(A) ^ V(n-i)/n(A)ωi

r!
n [0 < i < n iER]

with equality iff A is an n-ball (centered at the origin).
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Let Uo, be an n-ball (centered at the origin).

THEOREM 3.

[V(Λ)=V(Uo) 0<i<n i(ΞR]

with equality iff A = Uo.

Proof. Consider A E % such that V(A)= V(U0). From Corol-
lary 2.2 we deduce:

Wi(A)^Vin-i)ln(A)ωiJn = V(n-/)/n(ί/0)ωi/n = Wί

However, if A is not an n-ball (centered at the origin), then Corollary
2.2 states that

Wi(A)<V{n-i)ln{A)ωiJ\

The following relation between b(A) and Wn-X{A) is known
(Hadwiger [9]):

LEMMA 2.

wn+ι(A*)=wn-ι(A) [A earj.

Proof.

n+ι(A*) = ±l PΛu)dS{u) = - \ HA

where HA is the support function of A.

As an application of our work we present the following isoperimet-
ric inequality:

THEOREM 4.

with equality iff A is an n-ball (centered at the origin).
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Proof, From Theorem 2, with (ί,j, k) = (ί, n, n + 1) and B = £/, we
obtain:

(1) α ) Γ i + 1 = Ψ r i + 1 ( A * ) g ^ ( A * ) ^ ! ( A * )

with equality iff A is an n-ball (centered at the origin).
From Corollary 1.4 we have:

(2) #ί(A*)SWί(A*)

with equality if Λ is an n-ball (centered at the origin).
The desired result is obtained when we combine (1) and (2) and apply

Lemma 2.

If we let / = 0 in Theorem 4 we obtain the

DUAL URYSOHN INEQUALITY.

COROLLARY 4.1.

2nωnb(AΓ^V(A*) [AEXH]

with equality iff A is an n-ball (centered at the origin).

This immediately yields the

DUAL BIEBERBACH INEQUALITY.

COROLLARY 4.2.

2 χ D ( Λ Γ " g V ( Λ * ) [A6IJ

with equality iff A is an n-ball (centered at the origin).

Santalό [10] has shown that a convex body A can be repositioned in
Rn so that V(A) V(A*)^-ω2

n. This result can be combined with the
Dual Urysohn Inequality and the Dual Bieberbach Inequality to yield
the Urysohn Inequality [12] and the Bieberbach Inequality [3].

Steinhardt [11] showed that for plane convex bodies

) [A e%2].
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If we let i = n - 1 in Theorem 4 we see that an n -space generalization of
this is:

COROLLARY 4.3.

with equality iff A is an n-ball (centered at the origin).

This was obtained by Firey [7] for dimensions 2 and 3.

This inequality raises the question of finding

Inf Wi(A)Wi(A*)

for values of i other than n - 1. Contributions towards solving the
problem for i = 0 have been made by Dvoretzky and Rogers [6],
Bambah [2] and recently by Guggenheimer [8]. However, a complete
solution for i = 0 is not yet available. For 0 < / < n - 1 the problem is
open.
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