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THE HAAR INTEGRAL VIA NON-STANDARD
ANALYSIS

R. B. KIRK

Since its discovery by A. Robinson in 1961, nonstandard
analysis has been applied by an increasing number of authors to
various parts of mathematics with the result that new and often
more intuitively satisfying proofs for major theorems have been
discovered. It is the purpose of this note to give a proof of the
existence of a left invariant integral on a locally compact group
using the methods of nonstandard analysis.

In a recent paper [2J, M. Hausner indicated how some of the
complications in one of the standard approaches to the existence of
Haar measure can be streamlined using nonstandard analysis. The
approach which will be presented here, on the other hand, develops the
invariant integral from the beginning within the nonstandard
framework.

As is well known, if G is a discrete group, a left invariant integral
on G may be obtained by fixing a nonempty finite subset A0CG and
than defining Φ(/) = \ln(A0)ΣxeGf{x) for every real-valued function /
with compact (i.e. finite) support on G. (Of course, n{AQ) denotes the
cardinal number of Λo.) If G is not discrete, then in standard analysis
the summation above becomes meaningless and other methods must be
employed. However, it is not unreasonable to expect that in
framework of nonstandard analysis it is possible to place a fixed amount
of infinitesimal mass HΠ(AQ) at each point of a set A distributed
uniformly throughout the group such that Φ(/) = st(lln(A0)ΣχξΞA */(*))
is a left invariant integral. (Here Ao should be a fixed *finite set.) This
is basically the idea of the proof presented below. In the process of
developing this idea, it is necessary to define precisely what is meant by
a set being uniformly distributed. This is done by the notion of a
maximal d -scattered subset of G as defined below.

1. Topological groups. In this section several facts about
topological groups will be collected for later reference. Let Ne denote
the neighborhood system at the identity e of G. The left uniformity on
G is the uniform structure which has a base of entourages of the form
{(*, y): y~ιx E:U} for each U E Ne. A pseudometric d on G is said to
be compatible with the left uniformity if {(x,y): d(x,y)<e} is an
entourage of the left uniformity for every positive number €. The set
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of all pseudometrics on G which are compatible with the left uniformity
is denoted by Γ and is called the gauge of the uniformity.

For du d2 E Γ write dx < d2 if for every positive number β, there is a
positive number δ such that for all x ,yEG, dx{x,y)^e whenever
d2(x,y)^δ. An element d E Γ is left translation invariant if
d(zx,zy) = d(x,y) for all JC, y ,zEG. The set of all left translation
invariant elements of Γ will be denoted by Γo. A proof of the following
may be found in Hewitt and Ross [3] (Theorem 8.2, p. 68).

PROPOSITION 1.1. Let U ENe. Then there is a d EΓ0 such that
{JC EG: d{x,e)<\}CU.

As a corollary the following can be proved.

PROPOSITION 1.2. 1. Let dEΓ. Then there is a d0GΓ0 with
d<d0.

2. // du d2 E Γo, then d = suρ(d,, d2) E Γo where sup(dt, d2)(x, y) =
sup(d,(x, y), d2(x, y)) for all x, y E G.

Proof 1. Since d,, d2 E Γo, for every positive integer n, there is
£/„ EN, such that {(x,y): y~ιx E l7π}C{(x,y): d(x,y)< 1/n}. By
Proposition 1.1, there is dn E Γo such that {JC: dn(x, e) < 1} C £7Π. Since
dn is left translation invariant, it follows that {(x, y): dn(x, y)< 1}C
{(x, y): y-'x E Un}. Hence if dn(x, y) < 1, it follows that d(x, y) < 1/n.

For each x, y E G, define,

.,, x fdn(x, y), if dπ(x, y ) = l
U, otherwise.

It is easy to check that dή E Γo. Now for each x, y EG, define do(x, y) =
Σ:= 12nd:(x,y). Then d 0 EΓ 0 . Furthermore, if do(x,y)<2"n, then
dπ (x, y) = d f

n(x, y) < 1 so that d (x, y) < 1 In. Thus it follows that d ^ d0.

2. Since d,, d2 E Γo, it is not difficult to verify that d = sup(dl5 d2) is
a left translation invariant pseudometric. For e positive and i = 1,2,
there is Ui E Ne such that {(x, y): y-1x E C7JC{(x, y): d,(x, y) < e}.
Then U=UιΠU2ENe, and {(x,y): y"!x E [7}C{(x,y): d(x,y)<e}.
The proof is complete.

A real-valued function on G is uniformly continuous if for every
6 > 0, {(x, y): I f{x) - /(y) | < e} is an entourage of the left
uniformity. This is equivalent to df E Γ where df is the pseudometric
defined for all x , y E G by d/(x,y) = |/(x)-/(y) | . The following is
then an immediate corollary of Proposition 1.2.
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COROLLARY 1.3. Let f be a real-valued function on G. Then f is
uniformly continuous if and only if for every positive number a there is a
dEΓ0 such that for all JC, yEG, |/(jc)-/(y)| ^ α whenever d(x,y)^ I.

Proof ( Φ ) This is obvious.

( φ ) If / is uniformly continuous, then df E Γ. Hence by Proposi-
tion 1.2, there is a d' E Γo with ds<d'. Hence if a is a positive number,
there is a positive number δ such that for all J C J G G , |/0O ~/(y)| = OL

whenever d'(x,y)^ίδ. Now define d = δ~ιdf where d(x, y) =
b~ιd'{x, y) for all JC, y E G . Then clearly d E Γ 0 and satisfies the
requirements of the theorem. The proof is complete.

Let d be a pseudometric on a set S. A subset of A is said to be
d-scattered if d(x, y) > 1 for all JC, y E A with x^ y. The subset A is
maximally d-scattered if it is d-scattered and if n(B) ^ n(A) whenever
B is a d-scattered subset of S. (Of course, n(Y) denotes the cardinal
number of the set Y.) Recall that a subset 5 of the group G is bounded
if for every U E Nβ, there is a finite set Γ C S such that S C
U{xU: x E Γ}. (In particular, every compact subset of G is

bounded.) It follows easily from Propositions 1.1 and 1.2 that S is
bounded if and only if for every d E Γ and for every positive number
β, 5 contains a finite e-net relative to d. (That is, there is a finite set
T C S with the property that for every JC E 5, there is a y E Γ with

PROPOSITION 1.4. Let S be a non-empty bounded subset of G and
let d E Γ. Then there is a positive integer p such that n(A)^p for every
d-scattered subset ACS. In particular, S contains a finite maximally
d-scattered subset.

Proof. Let T be a finite e-net in S relative to d where e = \. Let
p=n(T). Assume that A C S is d-scattered. Then n(A)^
p. Indeed, assume that p <n(A). For each J C E A , take φ(jc)EΓ
with d(x, φ(x)) ^ €. Since p <n(A), there are JC, y E A with x^y and
φ(x) = φ(y). Hence d(x,y)>l since A is d-scattered. However,
since φ(x) = φ(y), d(x, y) ^ d(x, φ(x)) + d(φ(y), y) ^ 2β = 1. This is a
contradiction and the proof is complete.

2. The n o n - s t a n d a r d g r o u p * G . In this section proper-
ties of the nonstandard model *G of G which are needed to develop the
Haar integral will be discussed. For background the reader is referred
to the articles [4] and [5] by W. A. J. Luxemburg. Let *G be an
enlargement of the superstructure of G U R (where R is the set of real
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numbers) in the sense of A. Robinson [6]. This model will be fixed for
the remainder of the paper. If Cu denotes the set of real-valued,
uniformly continuous functions, then the following holds.

PROPOSITION 2.1. There is a positive infinitesimal a and there is a
de*(Γ0) such that for all Jt, y E*G, ifd(x, y) g 1, then \*f(x) - */(y)| ^ «
for all f E Cu.

Proof, Let $1 C(CU x 1?+) x (Γoxl?+) (where JR+ denotes the set of
positive real numbers) be the binary relation defined by ((/, e), (d, a)) E
0i if and only if (i) 0 < a < e and (ii) for all Jt, y EG, if d(x, y) ^ 1, then

It is not hard to see that 3ί is concurrent over its domain. Indeed,
let (fhβi) ECuxR+ for / = 1, , n. Let e = min^, ••-,€„) and take
0 < α < e . Also for each i = l, ,π, choose, by Corollary 1.3, a
d EΓo such that for all x,y EG, if d,(x,y)Sl, then |/I(JC) —/,(y)| ^
α. Then by Proposition 1.2, d = sup(d,, , dn) E Γo. It follows that
(ifiedΛd.a^e&t for i = l, ,n.

Since ί% is concurrent over its domain and since *G is an
enlargement, there is (d, a) E *(Γ0)x*(!?+) such that ((•/, ̂ )? (d,«)) e * ^
for every / E Ctt and every e E JR\ Thus 0 < a < € for all e E R+ so
that α is an infinitesimal. Furthermore, if x, y E *G and if d(x, y) ^ 1,
Jhen I */(JC) - */(y) | ^ α for all / E Cu. The proof is complete.

3. The marriage problem. The key to establishing transla-
tion invariance in the proof below is the solution to the so-called
marriage problem. (See P. Halmos and H. Vaughn, [1].) Let two sets
A and B (of boys and girls respectively) be given together with a
relation §1 (of acquaintance) between them. The marriage problem is
said to have a solution if it is possible to marry every boy to a girl of his
acquaintance. It is obvious that a necessary condition in order that the
marriage problem have a solution is that every set of k boys must have
at least k girls among their total acquaintance. The interesting fact is
that this condition is also sufficient. The precise statement of the result
is as follows. (For a proof the reader is referred to [1] or to [3], p. 248.)

PROPOSITION 3.1. Let A and B be two nonempty sets with A finite,
and let 2ϊCAxJ3. If S CΛ, then let Sl(S) =
{y E B: 3 x E 5, (x, y) E 31}. There is a one-one function φ from A into
B such that (JC, φ(x)) E SI for all x E A if and only ifn(S) ^ n(Sl(S)) for
every set S CA.

4. The Haar integral on a c o m p a c t group. Since the
proof of the existence of the Haar integral on a compact group contains
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all the essential ideas of the proof in the locally compact case and since
it avoids some of the techincal complications, the proof of this special
case will be given separately. Recall that a left invariant Haar integral
on G is a positive linear functional Φ defined on the space C(G) (of
continuous, real-valued functions) such that Φ(J) = Φ(/) for all
a EG. (Of course, J denotes the left translate off by a defined by
J(x) = f(a~ιx) for all xEG.)

Let d E *(Γ0) and let a be an infinitesimal such that for all x, y E *G
if d(x, y) g 1, then [*/(*)- *f(y)\ ^ a for all / E C(G). (Such a d and
a exist by Proposition 2.1 and the fact every / E C(G) is uniformly
continuous.) By Proposition 1.4 and the fundamental theorem of
nonstandard analysis, there is an internal, *finite d-scattered set A C*G
such that n(B)^n(Λ) for every internal d-scattered subset of G.

If / E C(G), then / is bounded. This implies that the nonstandard
number \ln(A)ΣxeA *f(x) is finite. It thus makes sense to define
Φ(/) = st(l/n(A)Σ,e Λ */(*)).

We can now prove the following.

THEOREM 4.1. Let A C*G be as above and for each fEC(G),
define Φ(/) = st(l/n(Λ)Σx e Λ */(*)). Then Φ is a left invariant integral
on G.

Proof It is obvious that Φ is a positive linear functional on
C(G). Hence all that needs to be shown is that Φ is left translation
invariant. To this end fix / E C(G) and a EG. Since d E *(Γ0) is left
translation invariant on *G, it follows that a'1 A ={a~ιx: x EA} is
d-scattered in G. Define VίCa~ιA xA by (y,x)E% if and only if
d(jc,y)Sl. If S is any internal subset of a~xA and if 9l(S) =
{x E A: 3 y E 5, (y, JC) E «}, then n(S) g n(Sί(5)). Otherwise,
n(2l(S))<n(S) and. B = S U(Λ -2l(S)) is an internal d-scattered
subset of G with n(A) < n{B). This is contrary to the fact that A is
maximally d-scattered. It now follows from the fundamental theorem
of nonstandard analysis applied to Proposition 3.1 and from the fact that
n(A) = n(a~ιA), that there is an internal, one-one function ψ from A
onto a~xA. Hence, it follows that:

[*f(x)-*fia-ιx)])
/
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since d(x, ψx) ^ 1 implies that |*/(*) - *f(φx)| S a. The proof is com-
plete.

5. The Haar integral on a locally compact group* In
this section G is assumed to be locally compact, and C0(G) is used to
denote the continuous functions of G with compact support. Recall
that C0(G) C Cu. A left invariant Haar integral on G is a positive linear
functional Φ on C0(G) such that Φ(J) = Φ(/) for all / G C0(G) and all
a EG.

DEFINITION. A function Ψ: C0(G)+-+R is a left Haar functional if
the following conditions hold:

(i) O^Ψ(/)forall/GCo(G) + .
(ii) Ψ(ξf) = ξψ(f) for all / G C0(G)+ and all ξe R+.
(iii) Ψ(f + g) = Ψ(f) + Ψ(g), for all f,gE C0(G)\
(iv) Ψ(J) = Ψ(f), for all / G C0(G)+ and all a EG.

PROPOSITION 5.1. Let Ψ be a left Haar functional on G and, for
f G Co(G), define Φ(/) = Ψ(/+) - Ψ(/~). Tften Φ is a left invariant Haar
integral on G.

Proof. The result is immediate from the identities, (/ + gY + /" +
g- = (f + gr + t + g\ Ur = a(Π and (jy = a(f-).

It will now be shown how to define a left Haar functional within the
context of the nonstandard group *G. By Proposition 2.1, take d G
*(Γ0) and an infinitesimal a such that for all x, y G *G, if d(x, y) ^ 1, then
I */(*) - */(y) I = « for all / G C0(G). Next fix a compact neighborhood
Go of the identity in G. Then by Proposition 1.4, there is an internal,
*finite maximally d-scattered subset Ao of *(G0). For each / G C0(G),
let 5/ = *(suρp /) where supp / denotes the support of / in G. Since
supp / is compact, again by Proposition 1.4 there is an internal, *finite
maximally d-scattered subset Af of 5/. Then the following holds.

LEMMA 5.2. For all f G C0(G), the nonstandard rational
n(Af)ln(Ao) is finite.

Proof. Since supp / is compact, there is a finite set {ab , αp} C
supp/ with supp/ C U fβ, α.Go. Hence, SfC Uf=, α,*(G0). Since d is
left translation invariant, (aV Af) Π *(G0) is a d-scattered subset of
*(G0). Hence, it follows that n(Af Π a^(G0)) = n(aV AfΠ
n(Ao) for all i = 1, ,p. Thus,

i = l
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Thus n(Af)ln(A0)^p where p is a standard natural number. The
proof is complete.

Now if / e C 0 ( G ) , then |/ | is bounded by some real number
M. Hence

n( A ) Σ */(*)
ny^rxo) xeAf

which is finite by the above lemma. It then makes sense to define for
each

THEOREM 5.3. The function Ψ: C0(G)+-*R is a left Haar func-
tional.

Proof. It is obvious that 0 g Ψ(f) and that Ψ(ξf) = ξΨ(f) for all
/ E C0(Gy and all ξGR+. It remains to show that Ψ(J) = Ψ(f) and
that Ψ(f + g) = Ψ(f) + Ψ(g) for all f,gG C0(G)+ and all a EG. The
remainder of the proof will be devoted to demonstrating these two
properties.

(I) ΨU) = Ψ(f) for all / G C0(GT and all a G G.
Since d is left translation invariant, a~ιAaf is an internal, dscattered

subset of Sf. Since Af is maximally d-scattered in S/? n{a~xAaf) ^
n(A;). Similarly, since Λα/ is maximally d-scattered in Saf,n(Af) =
n(aAf)^n(Aaf) = n(a~ιAaf). Hence n(Af) = n(a~ιAaf). By an appli-
cation of Proposition 3.1 similar to that in the proof of Theorem 4.1, it
follows that there is a one-one, internal function φ from Af into a'ιAaf

such that d(jc, φ(x))^a for all JC GAf. It then follows that,

by Lemma 5.2 and the fact that |*/Oc)-*f(y)| = ct whenever d(x, y)
g l . Hence (I) follows.
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(II) Ψ(f + g) = Ψ(f) + Ψ(g) for all f,gE C0(G)\
The proof of (II) is essentially combinatorial, but it is technically

rather complicated. For this reason, it will be broken into a number of
steps. Let / G CQ(G)+ be fixed, and for each 0 g δ G *!?, define S* =
{xeSf:δ£*f(x)}.

(a) Let g G C0(G)+ and let 0 g δ G *R. Then there is an internal,
one-one function φ from Af Π 5δ+2α into Af+g Π Sδ + α such that d(x, φx)
^ 1 for all x<=AfΠSδ+2a.

Let A = Af Π S^2α, B = A/+g Π Sδ+α and

21 = {(x,y): x G A, y G B and d(x,y)g 1}.

If T is an internal subset of A, then n(T)^n(Ά(T)) where Sl(Γ) =
{y G B : 3 JC G Γ,(jc,y)GSί}. Indeed, if this is not so, define D =
T U CA/+g - Sί(Γ)). Then D is an internal subset of Sf+g = SfUSg with
n(Af+g)<n(D). It will now be shown that D is d-scattered. Since
Af+g is maximally d-scattered in Sf+g9 it will then follow that n(D)^
n(Af+g) which is a contradiction.

In order to show that D is d-scattered, it is sufficient to show that if
x G T and y G A/+g - Sl(Γ), then d(jc, y) > 1. If y G 5θ+α, then since

rf(x, y ) > l by the definition of SI. Hence assume that
so that */(y)<δ + α. Since JcGΓCSθ + 2 α, δ + 2 α ^ * / ( * ) .

Thus */(x)-*/(y)>α. But if d(x,y)^l , then !*/(*)-*/(y) |^
α. Hence d{x, y)> 1 as claimed.

Since n(T) ^ n(?l(T)) for every internal subset T of A, it follows
from Proposition 3.1 and the fundamental theorem of nonstandard
analysis that there is an internal one-one function φ from A into B such
that (x, φx) G 2ϊ for all x G A. The verification of (a) is complete.

(b) Let g G Co(G)+ and let 0 ̂  δ G *£. Then n(Af Π 5a+2α) ^

The first inequality follows from (a). In order to see the second,
assume that n(AfΠSδ)< n(Af+g Π 5δ + α). Define B =
{Af+gnS'+α)U{Af-S*). If x G S δ + α and y £ S θ , then rf(x,y)>
1. (Indeed, */(x)Sδ + α and */(y)<δ implies that */(x)-*/(y)>
α. But if d (x, y) ^ 1, then | */(x) - */(y) | ^ α.) Hence B is an inter-
nal, d-scattered subset of Sf and so n(B)^n(Af). This contradicts
n(Af) <n(B) and (b) follows.

(c) There is an infinitesimal 0 ^ δ0 G *1? such that β =
n(Af n[S*- S*+7a])ln(Af) is infinitesimal.

First choose an infinitesimal 0 < e G *2? such that nα < 6 for every
standard positive integer n. (For instance, take e = Vα.) For 0 ^
δ G * £ , define n(δ).= n(Af Π [Sa - Sθ+2α]). The set P =
{n(δ): δ G [0, e]} is an internal, nonempty subset of the nonstandard
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natural numbers and, as such, contains a minimal element n(δ0) where
δ 0E [0, e]. (Thus δ0 is infinitesimal.) One of the following holds:

(*) δ0 + na < e, for every standard positive integer n or
(**) δ0 - na > 0, for every standard positive integer n. Indeed,

if neither (*) nor (**) holds, then there is a standard positive integer n0

with e g δ o + noa and 0 ^ noa - δ0. But then e ^
(δ0 + nQa) + (noa - δ0) = 2n0a which contradicts the fact that na <e for
every standard positive integer n.

It will now be shown that (c) holds for δ0. Indeed let p be a fixed
standard positive integer. If (*) holds, then since S^CS*1 if δi ^ δ2, it
follows that

r = 0
A,n[S* + 2 m -S* + a ( r + 1 ) e ])

/

g Σ n(Af Γ)[Sδ°+2ra- 5^ + 2 ( r + 1

r=0

since δo + 2ra <e for r = 1, ,p by (*) so that n ( δ 0 ) ^ n(δo + 2rα) for
r = 1, ,p. On the other hand, if (**) holds, then

n(Af) ^ n I U Λ Π [S
\ r=0

°-2ra-

r = 0

since δ o -2rα > 0 for r = 1, ,p by (**) so that n ( δ 0 ) ^ n(δ o -2rα) for
r = l, ,p.

In either case, it follows that n(Af Π [ S 5 0 - Sδo+2α])/n(A/) ^ 1/p for
every nonstandard positive integer p. Thus the verification of (c) is
complete.

(d) Let g E C0(G)\ Then there is an infinitesimal y such that
|Σ x e Λ / *f(x) ~ ΣyGΛ/+g */(y)I Si n(Af)y.

Let δ0 and β be infinitesimals as in (c) above. By (a) there is an
internal one-one function φ from Af Π S*+2β into Λ/+g Π S50^. For
notational convenience, let A = Af Π S*+2β, J3 = A; - S^2 0, C =
(Af+g n S^+β) - φ[Af n 5^+2a] and 0 = ^ 0 [Af+g - 5^+ α]. Note that
n ( C ) g n ( A / n [ S ^ - S ^ ] ) as a consequence of (b). Also n(D)^
n(Af) since D is d-scattered in Sf. Since A/ = A U B and since
Sf Π A/+g = φ[A/ Π 5^+2α] U C U D, the following holds.
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Σ */(*)- Σ */(y)
xεfi

Σ
yE.D

=§ n(Λ/)(2δ0 + 4α) + Mn(Af -

where γ = 2δ0 + 4α + Mβ is infinitesimal. Hence (d) is verified.
It is now possible to prove (II). Since (d) holds for an arbitrary

/ E C0(G)+, if f,g G C0(G)+, then there are infinitesimals γ, and y2 such
that,

(i) Σ */(*)- Σ */(y)

and

(2)

Thus it follows from (1) and (2) that,

- Σ *g(y)

- Σ

n(A0)

Σ
x€Ag

- Σ

- Σ
A

) r

since n(Af)ln(A0) and n(Ag)/n(A0) are finite by Lemma 5.2. Hence
+ g) = W ) + Ψ(g) The proof of Theorem 5.3 is complete.
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