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TRANSITIVE AFFINE TRANSFORMATIONS ON GROUPS

DAVID JONAH AND BERTRAM M. SCHREIBER

An affine transformation T on a group G is an automor-
phism followed by a translation; T is transitive if for each
JC, y E. G there is an integer n such that Tn (x) = y. All groups
with transitive affine transformations are determined: the
infinite cyclic and infinite dihedral group are the only infinite
examples; while the finite examples are semi-direct products of
certain odd-order groups by a cyclic, dihedral or quaternion
2-group. The automorphism groups of the above groups are
described, and the automorphisms which occur as parts of
transitive affine transformations are given.

A bijective transformation Γ on a group G is called an affine
transformation if there are an element s in G and an automorphism σ
of G such that

(1) T(x) = sσ(x), for all x e G.

We are interested in determining those groups G on which there is
defined a transitive affine transformation T, i.e., for each pair x and y of
elements in G there is an integer n such that Tn(x) = y. Groups having
transitive affine transformations we shall call single orbit groups.

We shall first show, in §5, that there exist only two infinite single
orbit groups; namely, the infinite cyclic group and the infinite dihedral
group. The structure of all finite single orbit groups as semi-direct
products is then described in §6, and presentations of these groups in
terms of generators and relations are given in §7. We shall show that
any such group is the semi-direct product of an odd-order group whose
Sylow subgroups are cyclic by a 2-group which is cyclic, dihedral or a
generalized quaternion group. Moreover, the image of the action of
the 2-Sylow subgroup on the odd-order part must be a cyclic
group. All groups of the above type have transitive affine
transformations. In §8 the automorphism groups of the finite single
orbit groups are calculated; it is shown that, with two types of
exceptions, these automorphism groups can all be expressed in the same
simple form.

If T is an affine transformation given as in (1), the element s will be
called the initial value of T and σ the associated automorphism. Both
are uniquely determined by T: s = Γ(l) and σ(x) = (T(\))'ιT(x) for all
x in G. Given a single orbit group G, we shall determine in §9 all the
associated automorphisms of transitive affine transformations on G.
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It is easy to see (Lemma 1.1 below) that the set of all affine
transformations on a group G is a realization of the holomorph of
G. However, we shall continue to speak of affine transformations
since we are concerned here with elements of the holomorph that act
transitively on G.

The topological analogs of the transitive affine transformations are
continuous affine transformations on a locally compact topological
group which are ergodic with respect to Haar measure. Ergodic affine
transformations have been studied in a number of papers; see, for
example, [1; 2; 4; 10; 11], where necessary and sufficient conditions for
ergodicity are found for affine transformations on compact groups of
various types. Moreover, some effort has been put into determining
which locally compact groups have ergodic affine transformations
defined on them, and the discrete version of this very question repres-
ents one of the motivations for the study of single orbit groups. We
refer here in this regard to [5; 6; 7; 10], where some preliminary
observations are made and where it is shown that the only locally
compact, noncompact, abelian or connected group with an ergodic
affine transformation is the infinite cyclic group (see Corollary 3.6
below).

Theorem 5.2 below was announced in [4]. A proof of most of
Corollary 3.6 appears in [8], and Example 2.3(i) was noticed by Thomas
[10].

1. Affine transformations.

LEMMA 1.1. (i) The set Afϊ(G) of all affine transformations on a
group G forms a subgroup of the symmetric group Sym(G) of the set G,
namely the holomorph of G.

(ii) Let T in Aff(G) have associated automorphism σ and initial
value s. Then Tk has associated automorphism σk and initial value
Tk{\). Furthermore

(2) Tk(l) = sσ(s) -σk~\s) if

Tk(1) = σ-^s-V"2^"1) σ*^-1) if k <0.

Proof Let Tt have initial value st and associated automorphism σx

for / = 1,2. Then TXT2 has initial value Si<ri(s2) and associated au-
tomorphism σ,σ2, for

TιT2(x) = sισι[s2σ2(x)] = s ^

by the definition of Γ, and T2.
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The identity transformation on G is clearly an affine transforma-
tion, and the inverse Γ"1 of the affine transformation T is affine with
initial value σ~ι(s~ι) and associated automorphism σ~\

REMARKS 1.2. (i) Let T be transitive on a set X and let x be an
element of X Then Γ'(JC) = V(x) if and only if i - / mod |X | .

(ii) Let Γ in Aff(G) be left translation by an element s E
G. Then T is transitive on G if and only if G is a cyclic group with
generator s.

BASIC LEMMA 1.3. Let The an affine transformation on a group G
and let H be a nontrivial subgroup which is invariant under the
associated automorphism σ. The transformation T induces a transfor-
mation T on the set G = G/H of left cosets of H given by T(x) =
T(x). Then T is transitive on G if and only if T is transitive on GIH, the
subgroup H has finite index n in G, and Tn is transitive on the subgroup
H. If His normal in G, then T is an affine transformation on the group
GIH.

Proofs Let T be transitive on G. Then f is transitive on GIHλ

for Tk = Tk for every integer k. The set GIH must then be finite, for f
is transitive on GIH and there is a positive integer m satisfying
f m(ϊ) = ϊ ; this m exists as T is transitive on G and H has a nonidentity
element. The least positive integer n for which Tn (1) is in H must then
be the order of the set GIH, and if Tm(1) is also in H then n divides m
these statements are direct consequences of Remark 1.2(i). Tn is then
transitive on H as T is on G and as Tn(x) = Γn(l)σπ(jt) is in H
whenever JC is.

Let f and Tn be transitive on GIH and H, respectively, and let x
be an arbitrary element of G. Then, as T is transitive on G/H, Tk(ί)
and x determine the same left coset of H for some integer
k. Furthermore, as Tn is transitive on H and as σ~k[Tk(l)~ιx] is an
element of if, there is an integer h such that

But this just says (by Lemma 1.1) that

ΓΛ + n Λ(l)= Tk(l)σk[Tnh(l)] = x,

as needed to show T is transitive.

COROLLARY 1.4. Let Tξ be an affine transformation on the nontri-
vial group Gj, for i = 1,2. Then the affine transformation T = Γ, x T2 is
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transitive onGιxG2 if and only ifGu G2 are finite groups with relatively
prime orders.

Proof If T is transitive on G} x G2, then by Lemma 1.3 G, is finite
and Tι is transitive on G,. Furthermore

where m =lcm(|G 1 | , | G 2 | ) . Thus by Remark 1.2(i) we have m =
| G , x G 2 | = | G , | | G 2 | .

Let 71 be transitive on G, for i = 1,2, where G! and G2 are finite
groups with relatively prime orders. Then T is transitive, for Γm(l) =
1 means Γ? (1) = 1 for ί = 1,2, which implies that both | G, |, | G21, and so
their product |G, x G 2 | , divide m.

COROLLARY 1.5. An infinite nonabelian single orbit group is cen-
terless.

Proof Let G be a nonabelian single orbit group with nontrivial
center. The center would have finite index by Lemma 1.3, and the
commutator subgroup would be finite by a theorem of Schur [9, p. 443]
and would be of finite index by Lemma 1.3. Thus G would be finite.

2. Fixed points. For any endomorphism σ of a group G the
set Fσ ={x G G \σ(x) = x} of fixed points of G is a subgroup of
G. The endomorphism σ is called fixed point free if 1 is the only fixed
point.

LEMMA 2.1. Let T be a transitive affine transformation on a
nontrivial finite group G. Then the fixed point group Fσ of the as-
sociated automorphism σ is a nontrivial cyclic subgroup of G with
generator Γm(l), where m is the index of Fσ in G.

Proof Let T be a transitive affine transformation on the finite
group G, and suppose the associated automorphism σ is fixed point
free. The initial value s must then be of the form y~V(y) for some y
as the function x -*x~ισ(x) is a one-to-one, and so onto, function on the
finite set G. The formula (2) telescopes to give Γ*(l) = y"ισk(y) for all
positive integers k. But as y"1 = Γn(l) for some positive n, the element
y, and so s = y'ισ(y), equals the identity of G. Hence G = {1} for T is
transitive on G. The group Fσ is cyclic with generator Γm(l), m =
[G: F σ ], by Remark 1.2(ii) and Lemma 1.3.

COROLLARY 2.2. Let G be a noncyclic group of order 4. Then an
automorphism σ of G is the associated automorphism of a transitive
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affine transformation on G if and only ifσ is not the square of an element
in the automorphism group Aut(G).

Proof The automorphism group Aut(G) is isomorphic to Sym(3),
the symmetric group on three letters (the three nonidentity elements of
G). The automorphisms of order 2 — the nonsquares — are the only
automorphisms whose fixed point subgroup is cyclic of order 2.

Let σ be of order 2 and let s be a nonfixed point of σ. The product
sσ(s) is a nontrivial fixed point of σ; the affine transformation with
initial value s and automorphism σ is transitive on G.

EXAMPLES 2.3. The following groups have transitive affine trans-
formations.

(i) the infinite dihedral group Dx

(ii) the finite dihedral groups Dm

(iii) the dicyclic groups DCm

Proof (i) The infinite dihedral group is generated by two ele-
ments JC, y satisfying y 2 = l and xy = y~ιxy = x~\ and there is an
automorphism a on Dx which takes y to yx and leaves x fixed. The
fixed point set Fa has index 2 and generator ya(y) = x. The affine
transformation with automorphism a and initial value y is transitive by
Remark 1.2(ii) and Lemma 1.3.

(ii) Each finite dihedral group Dm is a single orbit group for it is
the factor group of the single orbit group D* by the characteristic
subgroup generated by xm.

(iii) The dicyclic groups DCm are generated by two elements x, y
satisfying x2m = 1, y2 = jcm, and xy =x~\ Arguing as in (i), with a
replaced by α m + \ we see that DCm is a single orbit group.

REMARK 2.4. Let T be transitive on the set X and let 5 by any
element of Sym(X). Then Γ s = SXTS is also transitive on X.

LEMMA 2.5. Let The a transitive affine transformation on a group
G and let T have initial value s and associated automorphism σ. Let Cs

denote conjugation by s: Cs(x) = sxs~\ Then the affine transformation
with initial value s' = s~ι and associated automorphism σf = Csσ is also
transitive on G. Furthermore, if G is finite, then

and
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Proof. Let θ be the inversion function: θ(x) = x~ι. Then Tθ is
transitive as T is, and

r (x) = [T(x'ι)Γ = [sσ(χ-ι)yι = σ(x)s'1

for all x in G. Furthermore

σ(x)s'1 = s

so that the affine transformation with initial value sf = s~ι and as-
sociated automorphism σ' = Csσ is transitive on G.

Let n = I σ I. Then

σΓfc(l) = σ-(s) σk-\s)s = s'Γ*(1)5

whenever n divides the positive integer k (see 1.2(i)). Conversely, if
σTk(l) = s~ιTk(ί)s where /c is positive, then σk(s) = s which, by the
transitivity of Γ, implies that σk = 1. Thus | σ | divides k if and only if
Tk (1) is in F σ where σ' = Csσ. Set m = | Fσ. |. As T is transitive there
must be exactly m multiples of | σ \ which lie in the range 1 ̂  k ̂  | G \
that is [G:Fσ.] = | G | / | F σ , | = | σ | .

Because Tθθ = Γ the roles of (s, or) and (s ;,σ') may be inter-
changed to deduce [G: Fσ] = |σ' \.

EXAMPLE 2.6. Let D* be the infinite dihedral group. Then D«, has
a fixed point free automorphism of order 2 which is part of a transitive
affine transformation on D*.

Proof. Let x, y and a be as in the proof of Example 2.3 (i) and let
β be the automorphism on D*, which takes x to JC1 and leaves y
fixed. The composition βa = Cya is part of a transitive affine transfor-
mation by Example 2.3 (i) and Lemma 2.5. Furthermore, βa is of
order 2 and is fixed point free. The latter follows as βa takes JC to JC"1

and yxι to yx'ι'x.

3. P -Groups. We shall determine the finite abelian single
orbit groups and use the Burnside Basis Theorem for p-groups to
determine all finite single orbit p-groups.

LEMMA 3.1. ([5, Lemma 2.3]) Single orbit groups are finitely
generated.

Proof. Let the affine transformation T with initial value s and
associated automorphism σ be transitive on a noncyclic group G. In
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order to show that G is finitely generated we need only produce a
finitely generated subgroup H which is invariant under σ, i.e. σ(H) = H,
and which contains s by the transitivity of Γ it follows that H = G.

As G is noncyclic and as T is transitive there is an integer k φ 0 or 1
such that Tk(l) = σ(s). If k ^ 2 , then from formula (2) we see that
H = (s,σ(s),-- ,σk~2(s)) is invariant under σ and contains 5. If
k = - m, with m g 1 then from formula (2) we see that

which implies that H = (5, σ(s), -,σm(s)) is invariant under σ and
contains 5.

COROLLARY 3.2. Abelian single orbit groups are either finite or
finitely generated free.

Proof. An abelian single orbit group G is of the form G =
ί ( G ) φ F where t(G) is the torsion subgroup of G and F is finitely
generated free. If t(G) is nontrivial, then G = f (G) is finite, for F is
the factor group of G by a nontrivial characteristic subgroup, so the free
group F is finite by Lemma 1.3.

REMARK 3.3. Let G be an abelian single orbit group, written
additively, and let p be a prime. Then the group GIpG is both a vector
space over the integers mod p and a single orbit group.

We will denote a cyclic group of order n by C(n).

LEMMA 3.4. Let G be a nontrivial abelian single orbit group,
written additively, which satisfies pG = {0} for some prime p. Then

(i) G = C(p) if p is odd,
(ii) G = C(2) o r C ( 2 ) x C ( 2 ) i / p = 2 .

Proof. Let T be a transitive affine transformation on the group G
where pG = {0} for some prime p. The affine transformation is of the
form T(x) = s 4- σ(x) for JC in G. By Corollary 3.2 G is of finite order
q = pd as Γ is transitive, the integer <? is the least positive integer such
that

Γ«(0) = 5 + σ(s) + + σ«- !(s) = 0.

In fact q is the least positive integer such that the endomorphism
T<, = 1G + 0" "̂  + σ r l is zero, as τqT = στq since τ<,(s) = 0, and as T is
transitive on G. Thus the minimum polynomial m(x) of σ divides
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1 + x + + x V (1 x)
1 -x v '

over the integers mod p for q is a power of the prime p. Hence the
minimum polynomial is of the form m(JC) = (1 - x ) h furthermore h^d
by the Cayley-Hamilton theorem.

The dimension d of G cannot satisfy

(3) d<p<-\

for otherwise m(x) would divide

(l-x)q'-ι= l + jc + +Jt« f-\

where q' = pd'\ which in turn implies that

Tq'(0) = s + σ(s) + + σq'-\s) = 0,

in contradiction to T being transitive on a group of order q. Thus d
must be 1 if p is odd and 1 or 2 if p = 2, for otherwise equation (3) would
be satisfied.

THEOREM 3.5. Let G be a finite, single orbit p-group where p is a
prime. Then

(i) G is cyclic whenever p is odd, and
(ii) G is a cyclic, dihedral, or quaternion group if p =

2. Furthermore, all such p-groups are single orbit groups.

Proof. Let T(x) = sσ(x), x in G, be a transitive affine transforma-
tion on a finite p -group G. By the Burnside basis theorem there is a
characteristic subgroup Fr(G) of G such that G/Fr(G) is a vector space
over the integers mod p whose dimension is equal to the number of
elements in a minimal generating set of G. Thus when p is odd, G is
cyclic by Lemmas 1.3 and 3.4.

When p is 2, we shall first show that a subgroup H of G is cyclic if
it is both proper and invariant under σ. By two applications of Lemma
1.3 the factor group HIFτ(H) has an automorphism whose square is the
associated automorphism of a transitive affine transformation. By
Lemma 3.4, Corollary 2.2 and the Burnside basis theorem, the groups
HIFτ(H) and H must be cyclic.

If the 2-grouρ G is noncyclic, then G has a cyclic subgroup H of
index 2 which is invariant under σ. For σ induces an automorphism σ
on GIFr(G) ^ C(2) x C(2) which has a fixed point set Fά of index 2 by
Lemmas 1.3 and 2.1. The inverse image of Fά under the natural
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homomorphism from G to G/Fr(G) is the desired subgroup H of index
2. This group H is then cyclic by the preceding paragraph.

A 2-group with a cyclic subgroup of index 2 is known to either have
a characteristic subgroup of type C(2) x C(2) or to be a cyclic, dihedral,
semi-dihedral, or quaternion group; see for instance [3, p. 68]. The
squares of the elements of a semi-dihedral group generate a characteris-
tic subgroup isomorphic to a dihedral group. Such groups are, there-
fore, not single orbit groups.

The p -groups listed in the theorem are single orbit groups by
Remark 1.2(ii) and Examples 2.3.

COROLLARY 3.6. An abelian single orbit group is either cyclic or of
the form C(n) x C(2) x C(2) where n is odd. All such groups are single
orbit groups.

Proof. Such groups are single orbit by Remark 1.2(ii), Example
2.3(ii), and Corollary 1.4.

Let G be an abelian single orbit group written additively. G is
either finitely generated free or finite by Corollary 3.2. If G were free
with rank d and if p were a prime then GIpG would be a vector space
of dimension d over the integers mod p. When p is odd, the dimension
d is one by Lemmas 1.3 and 3.4. Hence the infinite cyclic group is the
only infinite abelian single orbit group.

Each p -primary component of a finite abelian single orbit group G
is either cyclic or of the form C(2)xC(2) by Lemmas 1.3 and
3.4. Such a group G is either cyclic or of the form C(n)x C(2) x C(2)
where n is odd.

4. Z -Groups. Finite groups whose p-Sylow subgroups are
cyclic were shown by Burnside to be generated by two elements x and y
which satisfy xm = 1, yn = 1, and xy = xr where n ( r - 1) is relatively
prime to m see for instance [3, pp. 104-107] where such groups are
called Z-groups. Thus a Z-group is a semi-direct product A*ΘB of
two cyclic groups A, B of relatively prime orders where the structural
homomorphism θ from A to Aut(B) takes a generator of A to a fixed
point free automorphism of B.

THEOREM 4.1. Let G be a finite group. Then there is a transitive
affine transformation T on G of the form

(4) T(x) = axb for all x in G

if and only if G is a Z-group.
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An affine transformation of the form (4) is one whose associated
automorphism is inner.

Proof Let T be of the form (4). Then T is transitive on G only
if the order of G is the least common multiple of the orders of a and
b. If this is the case and q is any prime power dividing the order of G,
then q divides the order of either a or b. Thus all p -Sylow subgroups
of G are cyclic.

Conversely, if G is a Z-group, let a and b be elements of G having
relatively prime orders such that the order of G is the product of the
orders of a and b. Then T, given by (4), is transitive.

The following lemma will be needed in §6.

LEMMA 4.2. The outer automorphism group of a Z-group is
abelian.

Proof Let G be a Z-group, and let x and y be generators of G as
above. It is easy to see that the commutator subgroup G' is just (x)
since r - 1 is relatively prime to m. Thus G' and GIG' are cyclic, so
their automorphism groups are abelian. The kernel of the map

Aut(G) -> Aut(G') x Aut(G \G')

consists of maps of the form σ(x) = JC, σ{y) — yxk, and such a map σ is
conjugation by a power of JC.

5. Infinite groups. We now determine the infinite single
orbit groups.

LEMMA 5.1. A single orbit group G is isomorphic to a normal
subgroup of a group H which is a product of two cyclic subgroups A and
B. If G is finite, the cyclic group A has the same order as G, while the
order of B divides the order of G.

Proof The set of all left translations of G by elements of G forms
a normal subgroup of the group Aff(G) of all affine transformations on
G this subgroup is isomorphic to G. When T is an affine transforma-
tion on G with associated automorphism σ, let H be the subgroup of
Aff(G) generated by the translations and Γ. This subgroup H consists
of all affine transformations whose associated automorphism is a power
of σ.

The transformation T is transitive on G if and only if the group A
generated by T is a transitive permutation group on G. When this is
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the case, the above group H is a product AB where B is the subgroup
of elements of H leaving invariant a fixed element of G; see for
instance [3, p. 25]. Choosing the fixed element of G to be the identity
element of G makes B the subgroup generated by the automorphism
σ. If G is finite the order of B divides that of G by Lemma 2.5.

THEOREM 5.2. Let G be an infinite single orbit group. Then G is
either the infinite cyclic group or the infinite dihedral group Dx.

Proof. By Corollary 3.6 we may restrict our attention to an infinite
nonabelian single orbit group G. The commutator subgroup G'of G is
abelian, for by Lemma 5.1 G is a subgroup of a group H which is a
product AB of abelian subgroups, so H" = {1} by a theorem of N. Ito [9,
p. 384]. The commutator subgroup G' is then infinite cyclic by Lemma
1.3 and Corollary 3.6.

The standard normalizer/centralizer theorem [9, p. 50] tells us there
is a monomorphism GIC -* Aut(G')^ C(2) where C is the centralizer
of G' in G. This characteristic subgroup C is a single orbit group, by
Lemma 1.3, which has an infinite center. Hence C is infinite cyclic by
Corollary 1.5 and G\C — C(2). Thus G must be isomorphic to D* for
Doo is the only nonabelian extension of an infinite cyclic group by the
group C(2).

6. Finite groups: characterization. We shall show that
each finite single orbit group is a semidirect product of an odd-order
Z-group by a 2-group which is a cyclic, dihedral, or quaternion group.

LEMMA 6.1. Finite single orbit groups are supersolvable.

Proof. By Lemma 5.1 a single orbit group G is a subgroup of a
group H which is the product of two cyclic groups A and B. Such
groups H are known to be supersolvable when B is finite [9, p.
383]. The group G, being a subgroup of a supersolvable group, is itself
supersolvable.

THEOREM 6.2. Let G be a finite single orbit group. Then G is a
semi-direct product G0xθG2, where

(i) Go is a Z'group and is the unique maximal subgroup of G of
odd order;

(ii) G2 is a 2-group which is either cyclic, dihedral, or a quatern-
ion group



494 DAVID JONAH AND BERTRAM M. SCHREIBER

(iii) the image of the action θ: G2—> Aut(G0) ofG2 on Go is a cyclic
group and

(iv) if θ is nontriυial, then ker0 is cyclic.
Conversely, all such semi-direct products are single orbit groups.

Proof Let G be a finite single orbit group; it is supersolvable by
Lemma 6.1 and so has a Sylow tower

of characteristic subgroups of G such that each factor group NilNi+ι is
isomorphic to a p,-Sylow subgroup of G where p, < p2 < * < pn. (See
for instance [9, p. 158]). By Lemma 1.3 each Nt and each p -Sylow
subgroup of G is a single orbit group. Thus when p is odd each
p-Sylow subgroup of G is cyclic by Theorem 3.5; when the order of G
is even, then NΊ is a Z-group.

In any case, G is isomorphic to a semi-direct product NxθP where
N, a Z-group, is a characteristic subgroup and P is a 2-group which is a
cyclic, dihedral, or quaternion group by Theorem 3.5.

Let σ be the associated automorphism of a transitive affine
transformation on G. Set r = σ | N, let p be the automorphism on
P — GIN induced by σ via the natural homomorphism from G to GIN,
and let η be the natural homomoprhism from Aut(N) to Out(N) =
Aut(N)/Inn(N). The diagram

Out(JV)

,Aut(ΛΓ) 3> Out(iV)

is commutative, where γ is induced by conjugation by r. As P is a
2-group and as JV, and so Inn(N), is of odd order it follows that
ker θ = ker ηθ. The image of θ is then a single orbit group by Lemma
1.3, for the kernel of θ is a p-invariant subgroup of P. But Out(iV) is
abelian — and so γ is the identity — as N is a Z-group (see Lemma
4.2). Thus σ on G induces the identity on Im θ via the natural
epimorphism G ~> P -> Im θ with σ-invariant kernel. Hence Im θ
must be cyclic by Remark 1.2(ii) and Lemma 1.3. Finally, if θ is
nontrivial, then ker θ is cyclic by the proof of Theorem 3.5.

The remainder of this section is primarily devoted to several
diagram-chasing lemmas which will be used to give a noncomputational
proof that groups of the type just exhibited are single orbit groups.
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6.3. Recall that in a category a commutative diagram

(5)

is called a pull-back of

(6)

>B

if for each pair of morphisms f:X-*A and g:X-*C satisfying
«/ = ΎS there is a unique morphism ft: X—>D such that γ'ft = / and
α'ft = g. We shall also say D is a pull-back of (6). For both sets and
groups D can be taken as

{(a,c)EAxC\a(a) =

where γ' and a' are induced by the projections. For groups γ ' induces
an isomorphism from ker a' to ker α, and | D | = ( |A| | C | ) / | B | when a
and γ are epimorphims and A and C are finite.

LEMMA 6.4. Lef 0 be the composition χa where a is a
homomorphism from A to B and χ from B to Aut(N). Then

B

is a pull-back diagram, where the vertical homomorphisms are the
obvious projections and the other unlabeled homomorphism is induced
by a and the identity on N.

Proof Follows from the definitions and some diagram chasing.
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6.5. Let a be a homomorphism from A to A' and let T and Tf be
affine transformations on A and A', respectively. Then T'a = aT if
and only if a(s) = s' and aσ = σ'a when s and s' are the initial values
and σ and σ' the associated automorphisms of T and Γ',
respectively. The map a being fixed, we shall say T and Tr are
compatible iί aT = T'a.

LEMMA 6.6. Consider a pull-back (5) w/iere A and C are finite and
a and y are epimorphisms. Let TA and Tc be affine transformations on
A and C, respectively, which are compatible with an affine transforma-
tion TB on B. Then there is a unique affine transformation TD compati-
ble with both TA and Tc. TD is transitive on D if and only if TA and Tc

are transitive and the order of B is the greatest common divisor of the
orders of A and C.

Proof The existence and uniqueness of TD follow from the basic
properties of the pull-back. As Tn

D(\) = 1 if only if both Π ( l ) = 1 and
Tc (1) = 1 and as the order of D is (| A | | C |)/1B |, the transformation
TΌ is transitive if and only if

w h i c h h a p p e n s if a n d only if \B\ = g c d ( | A | , | C | ) .

Proof of Theorem 6.2 {Completion). Let NxθA be a semi-direct
product where N is an odd order Z-group, A is a 2-group which is
cyclic, dihedral or quaternion, and θ has a cyclic image and has a cyclic
kernel if it is nontrivial. We need to show that N*ΘA is a single orbit
group.

If A is cyclic, then we are done for NxθA is a Z-group and so is
single orbit by Theorem 4.1. If the 2-group A is dihedral or quaternion,
then Im0, a cyclic group by assumption, is either trivial or C(2) as
AI A' — C(2) x C(2). In both cases θ can be written as a composition
χa where a takes A onto C(2) = B. The group NxχB is also a
Z-group as all of its Sylow subgroups are cyclic.

By the nature of A and its cyclic subgroups of index 2, there is a
transitive affine transformation TA on A which induces the identity on
B = C(2). (See Examples 2.3). Furthermore as N is a characteristic
subgroup of the Z-group NxχB = C there is also a transitive affine
transformation Tc on C which induces the identity o n ΰ = C(2). (See
Theorem 4.1 and Lemma 1.3). The semi-direct product NxθA is then
a single orbit group by Lemmas 6.4 and 6.6.

COROLLARY 6.7. Under the notation of Theorem 6.2, ker θ is a
characteristic subgroup of G.
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Proof. It is easy to see kerθ is the set of elements in the
centralizer CG(G0) of Go of order a power of two. For if x E Go and
y G G2 such that xy G CG(G0), then (xy)π = xny\ n = 1,2, . Since x
has odd order and y has order a power of two, it follows that
y E G2 Π CG(Go) = ker 0 and that for xy to have order a power of two
we must have x = 1.

7. Generators and relations. We shall show that all single
orbit groups are extensions of cyclic groups by cyclic groups. Recall
that an extension of C(m) by C(n) can be presented as

(7) G(m,n,r,s) = <x,y|xm = 1, xy = x\ yn = x'),

where the parameters m, n and r must satisfy rn == 1 and (r - l)s = 0
mod m.

We know by Theorem 6.2 that the 2-Sylow subgroup of a finite
single orbit group must be a cyclic, dihedral, or quaternion group; we
shall call such single orbit groups Z-groups, D-groups or Q-groups,
respectively.

THEOREM 7.1. (i) Z-groups can be described as G(m,n, r,0)
where m is relatively prime to n(r - 1); all such groups are Z-groups.

(ii) D-groups can be described as G(2km,2n, r,0) where m and n
are odd, k § 1, n(r - 1) is relatively prime to m, and r = - 1 mod 2k α//
such groups are D-groups.

(iii) Q'groups can be described as G(2*m,2n, r,2*"!m) wΛ r̂e m, n
and r satisfy the same conditions as in (ii) and where k S 2; a// such
groups are Q-groups.

Proof, (i) Follows from Theorem 6.2 and §4.
(ii) Let G be a D-group. Then by Theorem 6.2, G is a semi-

direct product NxθΛ where A is a dihedral 2-group, N an odd-order
Z-group, and θ from A to Aut(N) has image which is either trivial or
C(2); in the latter case ker θ is cyclic. Any semi-direct product
NxxC(2) is a Z-group. Hence by Lemma 6.4 G is the pull-back of

A = >C(2)

(8)

C

where A is a dihedral 2-grouρ and C is a Z-group. The dihedral
2-grouρ A has a presentation
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(9) (a,b\a2k = hb2=hab = a->)

where θ(a) = 1. The Z-group C has a presentation

(10) (x1,y1 |x7 = l,y?n = l,Jcί1 = JC?)

where m and n are odd and 2n(rι - 1) is relatively prime to m (in any
Z-group G(m',n',r ' ,0) the parameter m' must be odd).

By the Chinese Remainder Theorem there is an integer r satisfying
both r = rx mod m and r = - 1 mod 2\ A group G(2*m,2n, r,0)
exists. For r2n = {rnf = 1 mod m, as C was a Z-group, and r2n ==
( - i)2n = 1 mod 2\ which gives r2n = 1 mod 2km. Clearly this group
D = G(2*m,2n, r,0) is as described in (ii).

This group D also provides a pull-back of (8). For there is a
commutative diagram

0 > C(2k) > A > C(2) > 0

0 > C(2k) > D : > C > 0

with exact rows where γ'(x) = α, γ'(y) = fr, α'(jc) = Xi, and α'(y) = yi,
the notation being as in (7), (9) and (10). By the uniqueness of the
pull-back, the groups G and D are isomorphic.

Conversely, if G = G(2*m,2n, r,0) is as in (ii), then it is easily
checked that its 2-Sylow subgroup is a dihedral group and that it fits into
the commutative diagram (8), where C = G(m,2n, r,0) is a Z-
group. Thus G is a single orbit group, and so a D-group, by Lemma
6.6.

(iii) The proof for Q -groups is similar to that for D-groups and is
omitted.

8. Automorphism groups. We shall determine the au-
tomorphism groups of finite single orbit groups.

Let G be a finite single orbit group with noncyclic 2-Sylow
subgroup G2. As was shown in §6, we have a pull-back diagram.

(Π)
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where both a and γ are epimorphisms, Gx is a Z-group, ker γ = Go is
the maximal odd-order subgroup of G, and ker a is cyclic.

THEOREM 8.1. Let G be a finite single orbit group with noncylic
2-Sylow subgroup,

(i) When G2 is a direct summand of G, then

Aut(G)« Aut(Go) x Aut(G2) ~ Aut(G,) x Aut(G2).

(ii) When G2 is not a direct summand of G, then with two types of
exceptions

Aut(G) - Aut(G,) x Aut(G2).

The two exceptions occur when G2 is either D2 = C(2) x C(2) or the
classical quaternion group Q4.

(iii) When G2 is either D2 or Q4, then

or Aut(G,)xD4,

respectively.

8.2. Before proceeding with the proof let us introduce some
notation. When K is a subgroup of a group A, the group of all
automorphisms of A leaving K invariant (as a set) will be denoted by
Aut(A,X). When a: A —>B is an epimorphism, then for each σA in
Aut(A,kerα) there is a unique automorphism σB on B satisfying
ασ Λ =σ β α. The resulting homomorphism from Aut(A,kerα) to
Aut(JB) will be denoted by α*.

LEMMA 8.3. Let (5) be a pull-back where a and y are epimorph-
isms and the kernels of a' and y' are characteristic subgroups of
D. Then there is a pull-back diagram

Aut(A, ker a) > Aut(B)

Ύί

Aut(D) • Aut(C, ker γ)

Proof. As (5) is a pull-back and as γ and α are epimorphisms, so
are y' and a1. When σA and σD are automorphisms on A and D
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satisfying y'σD = σΛγ', then σD(kerα') = k e r α ' — meaning that γ*' is
as claimed. For since ker a' is characteristic and the pull-back satisfies
γ'(ker a') = ker α, we have

aσA (ker a) = aσAγ '(ker α')

= αγ'σD(ker a')

= γa'σD(kera') = {l};

and this same argument may be applied to both σ~v and σA\ Similarly
a' induces a homomorphism from Aut(D) to Aut(C, kerγ); further-
more γ * α i = a*y i .

Let σM σB and σc be automorphisms on A, B and C respectively
which satisfy σA E Aut(A, ker a), σc E Aut(C, ker γ) and

(12) γ*(crc) = σB= a*(σA).

Then two applications of (12) and the commutativity of (5) yield
a(σAγ

f) = σBaγ' = γ(σca
f). Since (5) is a pull-back, there is a unique

endomorphism — actually an automorphism — σD of D satisfying both
γ'σD=σAγ' and a'σD = σca

f; that is, yί(σD) = σΛ and a*(σD) = σc,
which makes the diagram involving the automorphism groups a pull-
back diagram.

Proof of Theorem 8.1. Since (i) is obvious we assume G2 is not a
direct summand of G. Referring to (11), we have ker γ ' = G0, a
characteristic subgroup of G, while ker a' is characteristic in G by
Corollary 6.7. Hence, since Aut(C(2)) = 1, Lemma 8.3 implies

(13) Aut(G) = Aut(G,, Go) x Aut(G2, ker a)

= Aut(G,) x Aut(G2, ker a).

If G2 is neither D2 nor Q4, then ker a is characteristic in G2, so (13)
gives (ii) of our theorem. If G2 = D2, then Aut(G2, ker a) =
Aut(D2, C(2)) = C(2). And if G2 = Q4, then ker a = C(4), and a
straightforward calculation shows Aut(Q4, C(4)) = D4. Indeed Q4 has a
presentation

(a,b\a4=l,a2=b\ ab = a~ι),

where (α) = ker a. And Aut(Q4, <α')) = (a, β_i), where α (a) = α,
= ba, β_,(α) = α"1, and β.x{b) = b.
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8.4. For each positive integer m define

H(m) = Hol(C(m)),

the holomorph of C(m), and

U(m)=U(ZlmZ),

the group of units in the ring of integers modulo m and for each
positive integer t dividing m let

U(n ί) = ker(l/(n)-> U(t)) = {i E U(n) | / s 1 mod f}.

These groups have orders mφ(m), φ(m), and φ(m)lφ(t), respectively,
and U(m) — Aut(C(m)). When rn = 1 mod m set C/(n ;r,m) =
U(n;t) where t is the multiplicative order of r mod m.

Observe that the groups H(m) are "multiplicative" in the sense
that H(mn) = H(m)x H(n) if m and n are relatively prime.

THEOREM 8.5. Let G be a finite single orbit group, so that G is of
the form G(m, n, r, s) where the four parameters satisfy the conditions of
one of the parts of Theorem 7.1. Then with two types of exceptions its
automorphism group is given by

Aut(G) - H(m) x U(n r, m).

The exceptions occur when the 2-Sylow subgroup of G is both a direct
summand of G and either D2 or Q4. In these two cases G can be
presented as G(2m0,2n0, r, 0) and G(4m0,2n0, r, 2m0), respectively, where
mQ and nQ are odd, and the respective automorphism groups are given by

Aut(G) - Sym(3) x H(mQ) x U(n0; r, m0)

and

Aut(G) =* Sym(4) x H(m0) x U(n0; r, m0).

In order to give the proof we need the following lemma.

LEMMA 8.6. Let G be a Z-group presented as G(m,n, r,0) with
generators x and y as in (7) and Theorem 7.1(i).

(i) There is an automorphism a on G such that α(jc) = jc and
α(y) = y* The order of a is m.
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(ii) There is an automorphism βb on G such that βb(x) = xb and
βb(y) = y if and only ifb is relatively prime to m. We have βbίβb2

 = βb^-
(iii) There is an automorphism yc on G such that yc{x) — x and

Ύc(y) = yc if and only if c is relatively prime to n and rc = r mod m. We
have γCιγC2 = γClC2.

Furthermore, every automorphism of G is of the form a aβbyc for
some suitable choices of a, b, and c which are unique modulo m, m and
n, respectively. The γc are in the center of Aut(G), and a and the βb

satisfy

(14) βba=abβb.

Thus Aut(G)-i f (m)x l/(n;r,m).

Proof (i), (ii) and (14) may be verified by straightforward
computations. It is also easy to see from the relation jcy = xr that a
map of the form yc is an endomorphism if and only if rc = r mod m and
that such a yc is an automorphism if and only if c is relatively prime to
n.

. Let σ E Aut(G). Since (x) is the commutator subgroup we must
have σ{x)-xb for some b relatively prime to m and σ(y) = ycxa

where c is relatively prime to n. The composition r = σβl1 a'a then
satisfies τ(x) = JC and τ(y) = y\ i.e., σβ'b a'a = γc. The asserted uni-
queness is clear.

That yc is in the center of Aut(G) follows from rc = r mod m and
(r - 1) being relatively prime to m. For clearly yc commutes with the
βb, while a computation yields

ayc = yca
c[r~]

where

(15) c [ r ] = l 4 - r + + rc-1.

And ( r - l ) c [ r ] = r c - l = r - l mod m, so c[r] = 1 mod m.
The formula for Aut(G) now follows easily.

Proof of Theorem 8.5. The Z-group case is proved in Lemma
8.6. Thus let G be a D-group, and write m = 2*m0 and n = 2n0 where
m0 and n0 are odd. Then as shown in §7 Go, G, and G2 can be presented
as G(m0, no,r,O), G(mo,n, r,0) and G(2\2, - 1,0) respectively.

Suppose first that G = G0xG2 and k ^ 2. By an argument similar
to the proof of Lemma 8.6 one obtains Aut(G2) — H(2k). Also, if t is
the multiplicative order of r mod m0, so that t divides n0, then it follows
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from the fact that r = - 1 mod 2k that the order of r mod m is
2ί. Since l/(n0; 0 =* £/(n It), we have by Theorem 8.1(i), Lemma 8.6
and the observation in 8.4

Aut(G) - Aut(Go) x Aut(G2)

- H(mQ) x U(n0; r, m0) x H(2k)

If G = Gox£>2, so that G can be presented as G(2mo,2no,r,0), then
since it is known that Aut(D2) — Sym(3) we have

Aut(G) - Aut(Go) x Aut(D2)

- H(m0) x t/(n0; r, m0) x Sym(3).

Now suppose G2 is not a direct summand of G and that k ^ 2. If ί
is the order of r mod m0, then as above it follows that the order of r mod
m is It. Since L/(n;O = U(n;2t) we have by Theorem 8.1(ii) that

Aut(G) - Aut(G,) x Aut(G2)

x l/(n r, m0) x k

x C/(n;r,m).

If G2 = D2, then as is easily seen the orders of r mod m0 and m are the
same. Since if (2) = C(2) we have by Theorem 8.1(iii)

Aut(G)-Aut(G,)xC(2)

- H(m0) x U(n r, m0) x C(2)

)x t/(n;r,m).

The Q-groups may be dealt with similarly. It is only necessary to
verify that for k g 3 Aut(G2) - H(2k); it is also known that Aut(Q4) *
Sym(4) [12, p. 148].

9. The set sd(G). In this final section we deal with the
problem of describing all transitive affine transformations on a single
orbit group. Though this can be done, we have chosen not to burden
the reader by carrying out these computations completely
here. Rather, we shall limit ourselves to the determination of all
associated automorphisms of such transformations. Thus, for G a
single orbit group, let s£{G) denote the set of all σ E Aut(G) such that σ
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is the associated automorphism of some transitive affine transformation
on G. Since the infinite case is easy, and in view of the results in §§6
and 8, it suffices to describe &(G) when G is either cyclic, dihedral, a
quaternion group or a Z-group. Let us preserve the notation estab-
lished in §8. In particular, if G = G(m,n,r,s) let a, βb and γc be as
defined in Lemma 8.6 if they exist. We begin with some general
properties of the set si{G).

LEMMA 9.1. Let G be a finite single orbit group of order n, and let
σ 6 i ( G ) .

(i) T-'CΓT E s#(G) for all τ E Aut(G).
(ii) σk E sί(G) if k is relatively prime to n.
(iii) // the affine transformation with initial value s and associated

automorphism σ is transitive, then Csσ E ̂ (G), where Cs denotes
conjugation by s.

(iv) If H is a normal subgroup of G invariant under σ and σ is the
induced automorphism of G/H, then σ E sί(GIH).

Proof. Let T(x) = sσ(x) be transitive on G.
(i) Let T E Aut(G). Then the affine transformation

S(x) = rιTτ(x) = τ-\s)τ-χστ{x)

is transitive by Remark 2.4.
(ii) If k is relatively prime to n and 5 = Γ\ then 5 has associated

automorphism σk by Lemma 1.1, and 5 is easily seen to be transitive.
(iii) and (iv) are implied by Lemmas 2.5 and 1.3, respectively.

We shall also need the following variant of Lemma 1.3.

LEMMA 9.2. Let G be a finite group and H a subgroup of G of
index n. Suppose that the affine transformation TonG with associated
automorphism σ satisfies the following conditions.

(i) σn(H) = H.
(ii) n is the least positive integer such that Tn(ί)EH.
(iii) The restriction of Tn to H is transitive on H.

Then T is transitive on G.

Proof. Recall that (iii) makes sense by (ii) of Lemma
1.1. Suppose Γ*(l) = 1 for some positive integer k. Write k = nq 4- r,
where 0 ̂  r < n. Then

1 = Γk(l) = Tnq(Tr(l)) = Tnq(l)σnq(Tr(l)).
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As Tnq(l) G H, (i) implies that ΓΓ(1) G H, whence r = 0 by (ii). But (iii)
then says | H | divides q, so | G | divides nq = k. Hence T is transitive
on G.

9.3. For each positive integer n, let ττ(n) denote the product of all
the distinct primes dividing n if n is not divisible by 4. If 4 divides n
let π(n) be twice the product of the primes dividing n. Recall that for c
and r positive integers, the symbol c[r] was defined in (15).

THEOREM 9.4. Let G = C(n). Γften ^/(G) = {βb G
Ξ 1 mod π(n)}.

Proof. In view of the observation in 8.4 and Corollary 1.4 it
suffices to consider the case n = pk where p is a prime. If βb G <s£(G),
then the automorphism & of C(p) is in <52/(C(p)) by (iv) of Lemma 9.1,
whence this automorphism must have a nontrivial fixed point group by
Lemma 2.1. It follows that b = 1 mod p. If p = 2, k > 1 and fc = 3
mod 4, then the automorphism βb of C(4) is not in s£(C(4)). Indeed, in
this case, for any s G C(4) sβb(s) = s4 = 1, so the affine transformation
with initial value s and associated automorphism βb is not
transitive. Thus βb Gsέ(G) implies that b = 1 mod π(n).

Conversely, if b = 1 mod ττ(n) and JC is a generator of G, let us
show that the map T{y) = xβb(y) is transitive by induction on k. If
k = 1, then Γ is clearly transitive since p [fe] = 0 mod p. And for k > 1
observe that, since / [fc ] = / mod p for all /, p is the least positive integer
such that Γ*(l) G (xp). Clearly βg(xp) = j M * p ) G <xp), fep = 1 mod p
and |<Jcp">| = p*"1. If p > 2 and fe = l + mp with m^O, then b p =
1 + mp2 mod p 3 . Thus

while (16) is obvious if p = 2 and b = 1 mod 4. Finally Γp(l) is a
generator of (JCP). Thus we may assume that the restriction of Tp to
(xp) is transitive. By Lemma 9.2 T is transitive on G, and the induction
is complete.

THEOREM 9.5. (i) s&(D2) = {σ G Aut(D2)|σ is no* α square}.
(ii) ^(Q4) = {σ G Aut(ζ)4)|σ- corresponds to a transposition or a

4-cycle}.

Proof, (i) a G ̂ (D 2 ) and α has order 2. Since all elements of
Sym(3) of order 2 are conjugate, by Lemma 9.1 they all correspond to
elements of ^(D 2 ) . On the other hand, the elements of order 3 in
Aut(D2) cannot be in s#(D2) since their order does not divide that of
D2. Finally, since D2 is not cyclic, the identity is not in d(D2).
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(ii) QJZ(Q4) — D2. Hence by (i) and Lemma 1.3 no element of
si(Q4) is a square. Hence no element of A(Q4) corresponds to a
permutation of order 3 or an even permutation of order 2 in Sym(4).

Now, a E sd(Q4) and has order 4, so by conjugation all elements of
Aut(Q4) of order 4 are in sd(Q4). And β-λa = Cya G d(Q4) by (iii) of
Lemma 9.1 and has order 2; hence it must correspond to an odd
permutation. Thus, by conjugation, all elements of Aut(ζ)4) corres-
ponding to odd permutations of order 2 in Sym(4) lie in

THEOREM 9.6. Let G = D? or Q2^, fcg2. Then s#(G) =
{βba

a\a is odd)

Proof. G has a presentation as in (7) as G(2\2, -1,5) where
s = 0 if G is dihedral and s = 2k~ι if G is a quaternion group. Factoring
out by the characteristic subgroup (x2) yields D2. If βha

a Estf(G) the
induced automorphism on D2, also denoted βba

a

9 is in d(D2). Since
βb = id = a2 on D2, we conclude that a must be odd.

If T is the affine transformation on G with initial value y and
associated automorphism βba

a with a odd, then direct calculation
yields for n = 1,2,

Γ2π(l) = χ^+'^b\ Γ2n+1(l) = y[Γ2π(l)f.

Now, since b must be odd for βb to be an automorphism, b2 = 1 mod 4,
so the affine transformation S(y) = 1 + b2y mod 2* is transitive on Z/2*Z
(Theorem 9.4) and satisfies Sn(0) = n[b2]. It follows that if Γm(l) = 1
then m is even and, since ab + s is odd, (m/2)[b2] = 0 mod 2\ whence
2k divides \m. Thus Γ is transitive on G.

The remainder of the section is devoted to the proof of the
following theorem.

THEOREM 9.7. Let Gbea Z-group presented as G (m, n, r, 0). The
automorphism aaβbyc is in sί{G) if and only if c = 1 mod π(n) and m
may be written as the product of two relatively prime positive integers m j
and m2 such that

(i) b = ri mod π{mx) for some j relatively prime to n,
(ii) b ΞΞ 1 mod 7τ(m2), and
(iii) a is relatively prime to m2.

LEMMA 9.8. Let G be as in Theorem 9.7. Then βbycEst(G) if
and only if

(i) c SΞ 1 mod τr(n), and
(ii) fc SΞΞ r' mod τr(m), w/iere
(iii) j is relatively prime to n.
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Proof. Let T be the affine transformation on G with initial value
y'x'1 and associated automorphism βbγc. Direct calculation shows that

Tk(l) = yk[c]iχk[r>>b\ fc = l , 2 , ,

where

k[a,b] = ak-χ + αfc'2b + + abk~2 + bk~ι

a-b '

Hence

By Lemma 1.3 T is transitive if and only if the induced affine
transformation Γ o n G / G ' = G/(x) and the restriction of Tn to (x) are
transitive. Whence Theorem 9.4 implies T is transitive if and only if (i)
and (iii) are satisfied as well as

(17) bn = 1 mod τr(m), and n[r'9b]i is relatively prime torn.

Thus if T is transitive, then
(iv) i is relatively prime to ra,

and (17) along with the fact that rn = 1 mod m gives

(r' - b)n[r\ b] = rin - bn = 0 mod ττ(m),

so (17) implies that (ii) follows. Conversely, if (i) —(iv) are satisfied,
then by (ii)

, b] = rViίr'", r j] = nr'n = n mod π(m).

Hence (17) holds and we conclude that T is transitive.

LEMMA 9.9. Let b, c and j be as in (i)-(iii) of Lemma 9.8. Then

aaβbΎc is conjugate to βbγc for all a = 1,2, , m - 1.

Proof First note that b - 1 is relatively prime to m. Indeed, if
r' = 1 mod p for some prime p dividing m, then since rn = 1 mod p and
j and n are relatively prime, we would have r = 1 mod p. But r - 1 is
relatively prime torn as G is a Z-group. Thus, for any choice of α, we
may choose a positive integer i such that (b - l)i = a mod m. Then

α'&γc = aib-l)iβbΎc = α-'αwftγ c = α -
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LEMMA 9.10. Let G be as above and suppose that
(i) a is relatively prime to m,
(ii) b = 1 mod 7r(m), and
(iii) c = 1 mod π(n).

Then a'βbΎc <Ξs£{G).

Proof. Set t = rkb for any fc relatively prime to n. Then t is
relatively prime to m and β,γc E d{G) by Lemma 9.8. In fact, the
affine transformation with associated automorphism βtyc and initial
value ykxι is transitive for any i relatively prime to m. Given a
relatively prime to ra, choose / such that a = ί(l — r) mod m, and set
s =xιyk = ykxir\ Observe that Cx = ar~ι and Cy=β~ι. Thus by
Lemma 9.1

tyc =Csβtycest(G).

LEMMA 9.11. Let G, b and c be as in Lemma 9.10, and suppose
aaβbyc E sέ{G). Then a must be relatively prime to m.

Proof. Suppose that the prime p divides both a and m. Since the
automorphism a on the group H = G/(xp) has order p and b = 1 mod
p, the automorphism on H induced by ααβf,γc is γc and is in sέ{H),
which is impossible by Lemma 9.8.

Proof of Theorem
diagram

9.7. Sufficiency. Consider the pull-back

where Gx =GI(xmi) = G(mhn,r,0), / = 1,2. For / = 1,2 let σf denote
the automorphism of the form aaβbγc on G, and let x, and y, be the
canonical generators of G, . Then σ-i E ^(Gj) by Lemmas 9.1, 9.8 and
9.9 and σ2^s£(G1) by Lemma 9.10. Moreover, inspection of the
proofs of these lemmas shows that if we take k in the proof of Lemma
9.10 such that k = - j mod n, then for ί = 1,2 σ, is the associated
automorphism of a transitive affine transformation T| on G« with initial
value of the form 5ι=y{jcfi. The details will be left to the
reader. Thus the images of sί and s2 in C(n) coincide, so there is an
element s = y'xk E G whose image in G, is sh i = 1,2. Hence if Γ is
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the affine transformation on G with initial value s and associated
automorphism a aβbyc, then T is compatible with both Γ, and T2 in the
sense of 6.5, whence T is transitive by Lemma 6.6.

Necessity. Since m is odd, we may write m =mxm2 such that
b - 1 is relatively prime to m, and b = 1 mod ττ(m2). Let Gu G2, σλ and
σ2 be as above with respect to this choice of mx and m2. Since
σ\Esί(Gι) and is conjugate to the automorphism βbγc of Gx by the
choice of m{ (see the proof of Lemma 9.9), condition (i) of the theorem
as well as the condition on c must hold by Lemmas 9.1 and
9.8. Condition (iii) follows from Lemma 9.11 applied to σ2.
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