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SEMIMODULARITY IN THE COMPLETION
OF A POSET

BARBARA JEFFCOTT AND WILLIAM T. SPEARS

M. D. MacLaren examined semimodularity in the comple-
tion by cuts of a lattice L, and showed that if L is semimodular,
atomic, and orthocomplemented then L is semimodular [Pacific
J. Math. 14 (1964)]. We study here semimodularity in an
orthomodular poset P and its completion by cuts P. In particu-
lar, we show that if P is semimodular and orthomodular and
contains no infinite chains, then P is semimodular if and only if P
is isomorphic to P. Hence, contrary to the result of MacLaren for
lattices, semimodularity is never preserved in the completion by
cuts of an orthomodular poset with no infinite chains which is not
a lattice. More generally, we show that if P is orthomodular,
atomic, and orthocomplete, then the covering condition in P is
carried over to P if and only if P is isomorphic to P. As a result,
MacLaren’s theorem cannot be generalized to posets.

We obtain these results by constructing a new, more convenient
way of viewing the completion by cuts of a poset. In §4 we use this
characterization of the completion by cuts to provide examples which
show that if either the condition that P is atomic, or the condition that P
is orthocomplete is removed, then the theorem fails; that is P may fail to
be a lattice but both P and P may satisfy the covering condition.

Let P be any partially ordered set. For each subset X C P define
X“ tobe {t €P:t =x for all x € X} and define X'={t € P: t =x for
all x € X}. Write X*' for (X*)'. Then the completion by cuts of P is
the complete lattice P ={X*': X C P, X # 0}, ordered by set inclusion
[5].

It is straightforward to show that if P— P: x —x' is an orthocom-
plement on P, then *: P — P: X*'—{x': x € X}'is an orthocomplement
on P [c.f. 4, MacLaren]. P. D. Finch extended this result by providing
necessary and sufficient conditions for the conpletion by cuts of an
orthocomplemented poset to be orthomodular [2, Proposition
3.2]. Our Theorem 3.6 also shows the relationship between or-
thomodularity and the covering condition in P.

2. Definitions. If a and b are elements of a partially
ordered set, write a < b to mean that b covers a. A lattice L with zero
is said to satisfy the covering condition if whenever a is an atom of L
and and b € L with aab =0, then b <avb. As a natural generaliza-
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tion of this definition, a poset P with zero will be said to satisfy the
covering condition if whenever a is an atom of P and b € P with aZ b,
then some upper bound of a covers b. A lattice L with zero having no
infinite chains is called upper semimodular or a Birkhoff lattice if it
satisfies the property that for all elements a and b, if anb <a and
aAb <b, then a <avb and b <avb. Birkhoff extended this defini-
tion to call a poset P with zero having no infinite chains upper
semimodular if it satisfies the condition that whenever a, b, c € P with
¢ <a and ¢ < b then there exists d € P with a <d and b <d.

If L is a lattice having no infinite chains, then upper semimodular-
ity is equivalent to the covering condition. Furthermore, a lattice
satisfying these properties is always M-symmetric. Conversely, every
M- symmetric lattice satisfies the covering condition. Hence a lattice L
(perhaps having infinite chains) is defined to be upper semimodular if
and only if it is M-symmetric. (All the above definitions and theorems
may be found in Birkhoff, [1]).

Haskins and Gudder have shown that a similar relationship be-
tween the definitions holds in posets with no infinite chains as does in
lattices [3, Theorem 3.8]. In particular, they show that if P is a
connected poset with zero having no infinite chains, then P is upper
semimodular if and only if whenever a,b € P with aZ b, and a covers a
lower bound of b, then some upper bound of a covers b. It is
straightforward to show that in any orthomodular poset, their second
condition is equivalent to the covering condition. Since we will be
dealing only with orthomodular posets P, we have, as in lattices, that if P
has no infinite chains, then P is upper semimodular if and only if it
satisfies the covering condition. On the other hand, since M-symmetry
is not defined in a poset, we content ourselves with studying the
covering condition in posets having infinite chains.

Lower semimodularity and the dual covering condition are defined
dual to upper semimodularity and the covering condition in both posets
and lattices. P or L is called semimodular if it is both upper
semimodular and lower semimodular. Note that if P or L is or-
thocomplemented, then it is semimodular if and only if it is either upper
semimodular or lower semimodular, and it satisfies the covering condi-
tion, if and only if it satisfies the dual covering condition, if and only if it
satisfies both of them.

3. The completion by cuts. We begin by characterizing
the completion by cuts of an arbitrary poset. If L is a complete lattice
and P is any subset of L containing 0 and 1, then for each subset X C L
we will write X* for {pEP:p=x for all x€X} and X'=
{pEP:p=xforall x € X}. Write X*' for (X*)!, etc. Note that no
confusion arises here by using the same notation as in the completion by
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cuts of a poset, for if P is given the induced ordering from L and X C P,
then X*' is the same set under either definition.

THEOREM 3.1. Let L be a complete lattice, and let P be a subset of
L containing 0 and 1. Provide P with the induced ordering. Define
¢:P— L by ¢(X*")=v(X""). Then ¢ is an isomorphism if and only if
foralla€L,a=nra"=va'.

Proof. Assume first that ¢ is an isomorphism. Leta € L. Then
there exists X C P with ¢(X“)=a =vX*. Then X“'Ca', so a=
vX“"=va'=a. Hence a=va'. Nowletm =ra“ € L. There ex-
ists subsets X,Y C P satisfying the conditions a = ¢(X*') and m =
d(Y*™). But X*'=v,cxx"!, as computed in P, and ¢ is an isomorph-
ism, s0 a = (X") = P(Veexx“) = Viexd(x*). But XCP, so x€X
implies x =vx'=vx"' =¢(x*"). Hence a=vX Similarly, m =
vY. Hence a“= X" and m“=Y"“ But a“=m" since m = ra"“, so
X“'=Y"" and it follows that a = m. Thus a = ra®“

Conversely, assume that for all a € L,a = ra“ = va'. First note
thatif a € L thena'=a"*'. To see this, let x € a*'. Thensince x =t
for all t € a*, it follows that x = Ara“ =a,so x Ea'. Clearly a'Ca",
so we have equality. We next note that if &J# X CL, then vX"'=
v(ivX)'=vX. Too see this, observe first that since X* = (vX)" it
follows that X*' = (vX)“". Since vX € L, by the first argument, X*' =
(vX)“=(vX)', and hence vX“' = v[(vX)']. Butby hypothesis, vX =
vi(vX)'].

The map ¢ is clearly well defined and isotone. To show it is a
surjection, fix b € L. Then @# b'C L, so by the above argument,
v(b™)=vb'. Hence by hypothesis, ¢[(b")*']=b, and ¢ is
surjection. Now fix nonempty subsets X,Y C P with vX*“'=vY*in
L. If x€X* then x =vX*'=vY", so it again follows from the
arguments of the last paragraph that x =vY, and thus x €(vY)'=
Y“. Hence X“'=Y*“ in P. Thus ¢ and ¢ ' are isotone and ¢ is a
bijection; that is, ¢ is an isomorphism.

The above theorem makes it much easier to work with the
completion by cuts. To simplify our work further, we make the
following definition:

DEerFINITION 3.2. Let P be a poset withOand 1. A completion for
P is a pair (L,o) where L is a complete lattice and o: P— L is an
isotone map satisfying the following properties:

(1) o is an injection and o', restricted to o (P), is isotone.

(2) o preserves existing suprema and infima. ‘

(3) For each a€L,a=v{oc(p):pEP and o(p)=a} and a =
Mo(p):p €EP and o(p) = a}.
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Clearly if P C L, satisfies the conditions of the theorem, then L
together with the inclusion map is a completion for P. Similarly, if we
define w: P— P: p —p', then (P,u) is a completion for P. It follows
immediately from the theorem that if (L,o,) and (L,,0,) are both
completions for P, then there exists a unique isomorphism : L,— L,,
such that 6o, = o,.

Now assume that ‘P — P is an orthocomplement en P and that
(L,o) is a completion for P. Note that a unique orthocomplement
#: L — L can be defined which satisfies the condition that o(p)* =
o(p') for all p € P. Furthermore, if (L,,o0,) and (L,,0,) are comple-
tions for P,and *: L,— L,and #: L,— L, are these induced orthocom-
plements, then the unique isomorphism 6: L,— L, satisfying o, = o, is
an or tho-isomorphism; that is, 8(a*)=60(a)* for all a EL,.

Clearly the easiest completion to work with is one of the form
(L,i), where i is an inclusion. To summaize when we say that L D P is
a completion for P, we mean that P is a subposet of L, that given any
subset of P its supremem or infimum (if it exists in P) is the same
whether computed in P or L, that foranya € L,a=v{x EP: x =a}=
AMx-€ P: x = a}, and that if P is orthocomplemented then L is or-
thocomplemented and the restriction of the orthocomplement of L to P
is that of P. Then by the preceding remarks, any properties which hold
for such a completion L D P, hold for the standard completion by cuts,
P, as defined earlier.

LeEmMmA 3.3. Let L D P be a completion for P. Assume further
that P is an orthomodular poset (in its own right) and that L satisfies the
covering condition. Then if x,y EP and x <y in P, then x <y in L.

Proof. Fix x,y € P withx <y in P. Thenclearly yAx'isanatom
of P. To show itis an atom of L, suppose there exists b € L with b # 0
and b =yax'. Then b=vb'=v{p €P:p =b}. Since b#0, there
exists a nonzero p € P with p =b = yax’. But yax'isan atom of P,
so there exists exactly one such p, namely yax’. Hence b =
yax'. Hence yax' is an atom of L. By the covering condition in
L,yax"Zx implies that (yax’)vx >x in L. But x,y €EP and P
orthomodular implies that y = (yAx’)vx, so x <y in L.

LeEmMA 3.4. Same hypotheses as Lemma 3.3. Assume further
that P satisfies the covering condition. Then avy € P for every atom a
in P and for every y € P.

Proof. Let a be an atom of P and y € P. We may assume that
aZy. Then there exists x EP with a=x and y <x. Since
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x€L,avy=x. Butysz anay=uxandby thelastlemmay <xinL,so
avy=x€P.

LEmMA 3.5. Let L D P be a completion for P. Assume further
that Pis orthomodular, orthocomplete and atomic, and that avy € P for
every atom a € P and for every y EP. Then P = L.

Proof. Foreachc €L let A, ={x €P: x =c, x isanatom}. Itis
straightforward to show that P is atomistic, and hence p = v A, for all
pEP. Now fix be€L. Then U,, A, CA, so b=vb'=
Vyer(VA,) = VA, But clearly vA, =b, so b = vA,. Now let C de-
note a maximal L subset of A,. Then vC € P and vC =b. Weclaim
that b € P, and in fact that b = vC. Suppose that b& P. Then
vC#b. Since b =vA, there exists x €A, with xZvC. By
hypothesis, x v(vC) € P. Now P is orthomodular,and vC £ x v(v C),
so [x v(vC)Ia(vC) #0. Call this element z. Then z# 0 implies that
A #, so let yEA, Then y=z=(vC) implies that y Lc for all
¢ €C. So by the maximality of C,y#Z A,. Hence yZ b, which is a
contradiction.

We are now ready to prove our main theorem.

THEOREM 3.6. Let P be an atomic, orthomodular, orthocomplete
poset with the covering condition. Then the following five conditions
are equivalent :

(1) P satisfies the covering condition.

(2) Pis a lattice.

(3) P is a complete lattice.

(4) P is orthoisomorphic to P.

(5) P is orthomodular.

Furthermore, if P has no infinite chains, then the above conditions and
the conditions listed below are all equivalent.

(6) P is modular.

(7) Pis M-symmetric.

The proof that (1) - (4) are equivalent follows immediately from
Theorem 3.1, Lemma 3.3, Lemma 3.4 and the preceding
remarks. Clearly (4) implies (5). Now let L 2 P be a completion for
P, and assume that P, and hence L, is orthomodular. Suppose there
exists y € L with y& P. Let C be a maximal L subset of atoms in P
under y. Then vC€P,vC=y and ya(vC)=v{pEP|p=
yA(vC)}#0. So there exists an atom p €EP with p =ya(vC),
which contradicts the maximality of C. The remainder of the proof
follows from well known properties of lattices [c.f.1, Birkhoff p. 41].
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4. Examples. We show here that the conditions of Theorem
3.6 may not be weakened. That is, we provide examples of nonatomic,
orthomodular, orthocomplete posets with the covering condition for
which the theorem fails, and examples of atomic, orthomodular posets
with the covering condition which fail to be orthocomplete and for
which the theorem fails.

ExaMprLE 4.1. Let Q be any finite orthomodular poset which is
not a lattice. Let R be an infinite product of Q; that is, let R =
{f N>Q:f is a function}, where N denotes the natural
numbers. Define an equivalence relation on R by f =g if and only if
{n € N: f(n) # g(n)}is finite. For f € R, write [f] for the equivalence
class containing f, and let P ={[f]: fE R}=R/=. Define a partial
order on P by [fl=[g] if and only if {n EN:f(n)Zg(n)} is
finite. Note that [0], where 0(n) =0 for all n € N is effective as the
zero of P. Furthermore, f=0 if and only if {n € N: f(n) #0} is
finite. Similarly, [1], defined by 1(n) =1 for all n € N, is effective as
the one of P, and g =1 if and only of {n € N: g(n) # 1} is finite. Now
define ': P— P by [f]' =[g], where g(n) = f(n)’ for all n € N, where
f(n)" is the orthocomplement of f(n) in Q. It is straightforward to
show that ': P— P is well defined and that it is effective as an
orthocomplement on P. Note that [f]v[g] exists in P if and only if
{n €EN: f(n)vg(n) fails to exist in Q} is finite, and in this case
[flvigl=1h], for any h € R satisfying h(n) = f(n)vg(n) foralln €N
where f(n)vg(n) exists in Q. A similar result holds for
infimums. From the above comments it is straightforward to show that
P is an orthomodular poset.

We claim now that P is orthocomplete. To see this, note first that
since Q is finite, every maximal orthogonal family of elements of Q is
finite. Assume that the largest family of pairwise orthogonal elements
in Q contains k elements. Now suppose that {[k]:i=1,2,...,k +1}
is a pairwise orthogonal family of elements in P. Now for each
i=1,....,k+1,{n €EN: h(n)£Lhj(n)} is finite for each j=1,---, k +1
with j#i. Hence

U U {neN: hmahm}

j#i

is a finite set. Hence there exists m € N — in fact an infinite number of
m € N — such that m is not in this set; thatis {h;(m): i =1,...,k + 1}is
a pairwise orthogonal family of elements of Q. But the largest family
of pairwise orthogonal elements in Q contains k elements, which is a
contradiction. Hence there are at most a finite number, and in fact at
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most k elements in any family of pairwise orthogonal elements of
P. Hence P is orthocomplete, vacuously.

Now suppose that [f] is an atom of P. Then {n € N: f(n) # 0} is
an infinite set, so there exist disjoint infinite sets A and B satisfying the
condition that A UB ={n € N: f(n) #0}. Define g €R by g(n)=0
for n € B, and g(n)= f(n), otherwise. Then [g]#[0],[g]=I[f],but
[f1#[g], which is a contradiction. Hence P has no atoms.

We have constructed an example of a nonatomic orthocomplete,
orthomodular poset P for which both P and P satisfy the covering
condition. Furthermore, since Q is not a lattice neither is P. Since
the covering conditions are satisfied here vacuously, we now construct a
less trivial example, which illustrates the same thing.

ExaMmpLE 4.2. Let P be any orthocomplete, orthomodular poset,
having no atoms, which is not a lattice. (Such posets exist by the
previous example.) Let L, be any complete lattice which is atomic and
orthomodular and satisfies the covering condition. (Even a finite
Boolean algebra will do.) Then clearly P X L, is an orthomodular,
orthocomplete poset, which is not a lattice. We claim further that it is
nonatomic (but does have some atoms), satisfies the covering condition,
and that P X L, also satisfies the covering condition.

Let L, D P be acompletion for P. Thenclearly L, X L,DP X L,is
a completion for PXx L, (In fact, it follows immediately from
Theorem 3.1 that if P and Q are partially ordered sets then P x Q and
P X Q are isomorphic.) Now (x,y) is an atom of L, X L, if and only if
x=0 and y is an atom of L,, if and only if (x,y) is an atom of
PxL, So let y be an atom of L, and let (a,b)€ L,xX L, with
0,y)Z(a,b). Then yZb, and L, has the covering property, so
yvb >b in L,. Hence (a,b)<(a,yvb)=(0,y)v(a,b) in
L, XL, Hence L,XL, and thus P XL, satisfies the covering
condition. Note that if a € P then again (a,b) < (0,y)v(a,b) in P X L,,
so P X L, also satisfies the covering condition.

We have demonstrated in the last paragraph that P X L, does have
some atoms. We observe, however, that it is not atomic, forif p € P
with p # 0, then (p,0) does not dominate an atom.

ExampLE 4.3. Let X be any uncountable set. Fix subsets
D,, D, C X satisfying the conditions that D;\ (D, N D,) for i = 1,2 and
D, N D, are countably infinite. Let F denote the set of all finite subsets
of X, CF denote the set of all cofinite subsets of X, S denote the set of
all subsets of X whose symmetric difference with D; for i =1 or 2 is
finite, and let CS denote the set of all subsets of X whose symmetric
difference with D, fori = 1 or 2 is cofinite. Let P=FUCFUSUCS,
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ordered by set inclusion. Define an orthocomplement ': P — P to be
set theoretic complement.

It is straightforward to show that if p,q € P with p = q’ then pvq
exists in P. Hence P is an orthomodular poset, and has the covering
property, since p = q if and only if p Nq =@. Furthermore, since P
contains all singletons, it is atomic. Now D,UD,ZP, so
{{x}: x € D,UD,} is a pairwise orthogonal family of elements in P
whose  supremum  fails to exist. Hence P is not
orthocomplete. Again, since D,ND,Z P and D,, D,€ P, it follows
that P is not a lattice.

We have shown that P is an atomic, orthomodular poset with the
covering condition, which is not orthocomplete and is not a lattice. We
have left only to vertify that P satisfies the covering condition. We
will do so by verifying that the power set of X, ?(X), is a completion
for P. To this end, let Y € ?(X). Then clearly vip EP:p=Y}=
U{pEP:pCY}=Y. Now suppose Y#A{pEP:p=Y} Then
there exists a € N{p EP: p C Y} with ag Y. But X\{a}eCFCP
and X\{a} D Y and a& X\{a}, which is a contradiction. Hence P is
isomorphic to ?(X) and hence satisfies the covering condition.
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