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A CHARACTERIZATION OF THE MAXIMAL MONOIDS
AND MAXIMAL GROUPS IN βx

D. J. HARTFIEL AND C. J. MAXSON

This paper gives a characterization of the maximal monoids
and maximal groups in βx, the semigroup of binary
relations. The characterization is applied to show that the
maximal group containing the partial order a is isomorphic to
the group of order automorphisms of (X, a).

Introduction. In establishing some background research in
which the setting of this current paper can be placed, one cites that
much work has been done on the semigroup βx, the binary relations on
the set X. In particular, the works of Montague and Plemmons [4],
Plemmons and Schein [5], Schwarz [6], as well as Clifford [3] appear
dominant in the study of the maximal groups contained in βx. The
basic result of these papers shows that the maximal group of βx

containing the partial order α, is isomorphic to Auto (X, α), the group of
order automorphisms of (X, a). Thus, as BirkhofFs Theorem provides
that every group is isomorphic to a group of automorphisms on some
partially ordered set (X, α), it follows that every group is isomorphic to
a maximal group in βx, for some X.

The work of this paper is concerned with maximal monoids as well
as maximal groups in βx. The work differs from previously published
papers in that the concern here is to provide a unified characterization
of these two algebraic systems of βx. The characterization then
provides a natural avenue to obtain the isomorphism theorems of
Montague and Plemmons [4], Plemmons and Schein [5], and Clifford
[3]. Further, by viewing the isomorphism theorems through our
characterization, the researcher obtains some measure of intuition as to
their validity.

As a convenient method of presentation, the paper is divided into
two parts, a section of genral results, followed by a section of
applications in which our general results are applied to βx for X infinite
and then X finite.

General results. Let a E βx. We associate with a a Boolean
matrix whose (JC, y)th entry is 1 if and only if (JC, y) E a. This corre-
spondence provides an isomorphism between the semigroup βx and the
semigroup Bx of X x X Boolean matrices. Thus, without loss of
generality, we characterize the maximal monoids and maximal group in
Bx.
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Let Vx be the collection o f X x l Boolean vectors. If A E Bx, A
x

denotes the xth column of A. By z = Σx(Ξτ A
x we mean the vector in

Vx with the property that the y th entry in z is 1 if and only if there is an
XGT such that Ax has yth entry 1. Set R(A) = {Ax \x E Vx}. By
End R(A) we mean all cone endomorphisms from JR(A) into R(A), i.e.
{ψ |i/r(ΣJcGταxz

JC) = ΣxeταJC^(zJC) where z*ei?(A) and axGB, B the
Boolean algebra, for all JCET, and index set}. Similarly, Aut R(A) =
{̂  E End 1? (A) | ψ is one-to-one and onto}.

It should be noted here that ψ(ax + by) = aψ(x) + bψ(y) for all
x,yER(A) and α, bEJS does not guarantee ψG EndJR(Λ). For
example, let X = {1,2, , n, •}. Define

(/f(jc) = jc if x has only finitely many nonzero entries, and
ψ(x) = e = (1,1, , 1, •)' if x has infinitely many nonzero entries.

T h u s φ(ax 4- by) = aψ(x) + bψ(y) f o r a l l x , y GVX a n d a , b G B . N o w
let e, E Vx be the vector with precisely one 1, which is in the /th
position. Set z = Σf=i e2i. Then ψ(z) = e, yet ΣΓ-i ψ(e2i) = ΣΓ=i e2i/ e,
and hence ι/ί̂  EndJR(/) where I is the identity matrix.

Finally, if / E Bx is an idempotent,

= {A(ΞBX\AI = IA=

and

= {units in M(/)}.

M(I) is the maximal monoid with identity / and of course, G(I) is the
maximal group in Bx which contains /.

For further background in this area, the reader is referred to [1].
Our initial results characterize M(/).

LEMMA 1. Set z = Σxeτz
x where zx E Vx for x E r. If A G Bx,

Az=ΣχξΞτAzx.

Proof For w E Vx, let wy denote the y th entry in w. Now zy = 1
if and only if zx = 1 for some x E.τ. By calculation,

Zy=\

Hence the lemma follows.
Our characterization of M(I) is contained in the next theorem.

THEOREM 1. End R(I) is isomorphic to M(I) for any idempotent
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Proof For each ψ G End R (/), consider the matrix Aφ whose x th
column is ψ(Γ). Pick σ G End R(I). Then Aφ Aσ has xth column
Σy [σ(Γ)]yψ(Γ) where [σ(/x)]y is the yth entry of σ(Γ). Now

Thus ΛψAσ = A
φoσ.

Now, if 1 is the identity endomorphism, Aλ = / and so A^J = IAΦ =
A* from which it follows that Aφ E Af(/).

Consider the map 7r(ι/0 = A* of End R (I) into M(/). Of course π
is a monomorphism. To show π is onto, pick A G M(/) and set
φ(z) = Az for each zGJR(I). Then by Lemma 1, ψE
End 1?(J). Since AI = A, the xth column of A is ψ(/x) and hence
A=AΦ.

COROLLARY 1. Aut JR (I) is isomorphic to G(I) for any idempotent
IEBX.

Proof The group of units of M(I) is G(I) while the group of units
of Endl?(/) is Auti?(/). Since a monoid isomorphism maps units to
units the result follows.

We say that a set if = {Sx | Sx G Vx for x G Γ, some index set} is
independent if and only if no Sx = 0 and

Σ 5 x = 5 y implies yEN.

Further, if w, z G V* we say w g z if and only if the xth entry of z being
1 implies the xth entry of w is 1. Note that Σ x € E N C τS* § 5X for each
JC G N and thus in independence proofs one needs only to check that
Sy = Σ,G N ς τ S

x implies Sy g Sx for some xEN. For S J C V X we say
that ψ is an order map from S to T if and only if for w ^ z in
5, ι/r(w)^ψ(z) in Γ.

With these definitions, our direction of research is now to refine the
characterization of M(I) and thereby to provide a link from Aut R(I) to
Auto (X, /). The instrument for this link is given in the next theorem.

THEOREM 2. Let S EBX and ίf - {Sx \ x E r, τ some index set} be
independent such that

(1) £(S) = {H>|H>=ΣxeNcrS*}U{0}.
(2) Σx G N C τ S

x ^ Sy implies some Sx ^S\ xE N.
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Then if ψ is an order map from Sf into R{S) there is a unique
ψ 6 End R(S) so that ψ = φ on Sf.

Proof. Define φ(S") = ψ(Sx) for each X £ T .

Σ ) Σ

To see that ψ is well defined, note that if Σ x e N ς τ S
x = Σ x e Mς τ S

x then for
each y EM there is an JC G AT so that Sx ^ S\ Thus ψ(Sx) = ψ(Sx)g
ψ(Sy) = ψ(Sy)_ and hence β(Σx(ENSx) ^J/(ΣxBMSx). Similarly,
ψ(ΣxeMSx)^φ(ΣxeNSx) and so ψ(ΣxENSx) = ψ(ΣxeMSx).

To see that ψ E EndI?(S) pick zx ER(S), xEN where N is some
index set. Suppose zx = Σ y e N x 5 y , Nx an index set. Consider

Σ ZX) = ( ? ( Σ S>) = Σ ^ ( 5 y ) = Σ Σ
xeN / \yGNx / yENx xf=N yeNx

Σ ) Σ
xeNx / xEN

Thus ιA^Endi?(5).
Finally, the uniqueness of ψ is clear as any σEEndjR(S) must

satisfy σ(ΣχξΞMQTS
x) = ΣxeMQTσ(Sx) and hence is uniquely determined

on the independent set.
We now apply the results of this section to illustrate the utility of

our characterization and to obtain the isomorphism theorem of Mon-
tague, Plemmons, Schein, and Clifford, as a consequence.

Applications. The organization of this section is to separate the
applications of the general results to Bx into two cases, i.e. X infinite
and X finite.

Case 1. X infinite. Our first lemma shows that a partial order
satisfies the hypotheses of Theorem 2.

LEMMA 2. //1 is a partial order, if = {Γ \ x E X} is independent
with ΣxfΞNcχIx ^ P implying some Γ ^ P for x E.N.

Proof. Let P E ϊf such that P = ΣxeNQX P. As (y, y) E /,
(y, x) E I for some x E.N. Now (z, y) E / implies (z, x) E I So F g
F and hence 5̂  is independent.

Now consider
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2 P =P for some y.
xGNCX

Then as in the above argument, there is some x E N so that P ^
P. Hence the result follows.

From this lemma, we can argue our first isomorphism theorem.

THEOREM 3. If I is a partial order, Aut 1?(J) is isomorphic to
Auto ( # ^ ) where 9> = {P | X E X}.

Proof. By Lemma 2, & satisfies the hypothesis of Theorem
2. Thus, any ψ E Auto (SP, ^ ) extends to a unique ψ E
Aut 1? (/). Conversely, any ψ E Aut R (/), when restricted to Sf, deter-
mines a ψεAuto(5^, ^ ) . Thus Auto(5?, ^ ) is isomorphic to
Aut«(I).

The Plemmons, Schein, Clifford result is an immediate application.

COROLLARY 3. If I is a partial order, G(I) is isomorphic to

Auto (X, I).

Proof From previous results, G(I) is isomorphic to Auto (Sf, ^ ) ,
<f = {Γ\xeX}. Finally, note that (Jc,y)El if and only if P S
P. Thus Auto (Sf, g ) is isomorphic to Auto (X, /).

To illustrate the utility of our characterization, we provide the
following example.

EXAMPLE. Let X = [0, 1] and let / be the natural partial order ^
on X. Clearly, { P | x E X } is independent. Further, R(I) =
{ P | x e X } = S ? and hence {ψ\ψ: Sr-+R{I), ψ an order map} =
{φ I ψ: y-^ &, ψ an order map}. Thus, it follows that M(I) is isomor-
phic to the semigroup of nondecreasing functions /: X - » X so that
/(0) = 0. Hence G(I) is the group of continuous strictly increasing
functions /: X-»X, so that /(0) = 0 and /(I) = 1.

Case 2. X finite. For this case we use the following result of
Schwarz [7].

Idempotent Theorem. If I is an idempotent then there is a
permutation matrix P so that
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A,

Λn

A..tΛ

ASΛ

0

A2

As.,2

As,2

0

... o

• Af_,

• AM_,

0

0

0

As where

(1) each Ak is composed entirely of Γs or Ak = (0), the 0-matrix of
order one,

(2) each Aki is composed entirely of Γs or entirely of 0's,

(3) if Aik > 0 and ak a column in

then ak ^ ah

0

0
Ak dj a column in

0

0

A

(4) if At = A, = (0), i > /, and Ao ^ (0) then there is a fe, ί > fc> / so
that Ak9AΛ and Aki are composed entirely of Γs.

Let / be a nonzero finite idempotent. Without loss of generality
we assume I has the form given in the Idempotent theorem. As a
consequence of this theorem we note that J has a nonzero main diagonal
element and, in fact the next theorem shows that this characterizes the
independent columns of I.

To show that the situation is different for infinite idempotents
consider the set X = [0, 1] and define / G Bx by (JC, y) GI if and only if
x > y. Then I is an idempotent with no set of independent columns
that generate R(I) and / has no nonzero diagonal elements.

THEOREM 4. Let I be a finite nonzero idempotent and ΐf the set of
distinct vectors Γ such that (x,x)El. Then & is an independent set
satisfying the conditions of Theorem 2.

Proof. From the remarks above, # y 0 . Clearly Sf is indepen-
dent and satisfies Condition 2. Thus, we need only prove !?(!) =
{w I w = Σj- e N c y Γ) U {0}. Let Γ be nonzero and not in if. Let Γ =
{Γ I (JC, x) G / and (JC, y) E /}. From (4) of the Idempotent Theorem,
TV 0 . We show ΣTΓ = P. It is seen from (3) of the Idempotent
Theorem that P^Γ for all I* G T. Thus pick any (z,y)G
/. Consider P. If (z, z) G J then P G Γ. If (z,z)£ J, then by (4) of
the Idempotent Theorem there is an P, y <x <z with (JC,X)G/ and
(z, JC) G I. Hence, (z, JC) G Σ T P and the result follows.
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We now give the finite analogue of Theorem 3. Note that in this
case, the partial order assumption is not required. Indeed the result
holds for any idempotent.

THEOREM 5. // I is a finite nonzero idempotent, AutR(I) is
isomorphic to Auto (5 ,̂ ^ ) where if is as given in Theorem 4.

The Montague, Plemmons result follows as a consequence.

COROLLARY 4. If I is a finite partial order, G(I) is isomorphic to
Auto(X,J).

In conclusion, we provide an example indicating how our charac-
terization theorem can be applied for the case X is finite.

EXAMPLE. Consider the idempotent

[i
1 0 Oi

= 1 1 0 0 .
.1 0 l l

Then

with

mv,

1 j , j 0 j independent and ί 1 j S ί 0 j .

Hence, using Theorem 2,

/ r l 0 I n r θ 0 On r l 0 O i r θ
M ( ί ) = J , [ 0 ] , 1 0 1 , 0 0 0 , 1 0 0 , 0

V Li o l j Li o l j Li o oj Li

and

Other such examples are easily constructed.
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