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ORTHOGONALLY ADDITIVE AND ORTHOGONALLY
INCREASING FUNCTIONS ON VECTOR SPACES

S. GUDDER AND D. STRAWTHER

A real-valued function f: X — R on an inner product space
X is orthogonally additive if f(x +y)=f(x)+ f(y) whenever
x1ly. We extend this concept to more general spaces called
orthogonality vector spaces. If X is an orthogonality vector
space and if there exists an orthogonally additive function on X
which satisfies certain natural conditions then there is an inner
product on X which is equivalent to the original orthogonality
and f(x) = = ||x| for all x € X. We next consider a normed
space X with James’ orthogonality. A function f: X - R is
orthogonally  increasing if f(x+y)=f(x) whenever
x Ly. Orthogonally increasing functions on normed spaces are
characterized.

1. Pythagoras’ theorem. Pythagoras’ theorem states that
the function f(x)=|x|* is orthogonally additive, that is f(x +y)=
f(x)+ f(y) whenever x Ly where x, y are vectors in the plane. One of
the concerns of this paper is a converse of Pythagoras’ theorem on an
inner product space X. That s, if f: X — R is orthogonally additive, is
f(x)=c||x|P for some ¢ € R? As it stands, the answer is no, since any
linear functional is orthogonally additive.

Some natural additional conditions on f are:

(1) f(x)=0, nonnegativity;

2) f(x)=f(—x), evenness;

(3) A — A implies f(A;x)— f(Ax) for all x € X, hemicontinuity.
We shall show that orthogonal additivity along with (1), or with (2) and
(3) imply f(x) = c||x |} for some ¢ €R.

2. Orthogonality vector spaces. In this paper, vector
spaces will be real and of dimension =2. In Theorem 2.2 we shall
prove that Pythagoras’ theorem characterizes inner product spaces in a
certain sense.

A vector space X is an orthogonality vector space if there is a
relation x Ly on X such that

01 x10,0Lx forall x e X;

(02) if x Ly and x, y#0, then x, y are linearly independent;

(03) if x Ly, then ax Lby for all a,b ER;

(04) if P is a two-dimensional subspace of X, then for every x € P
there exists 0 # y € P such that x 1L y;
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(05) if P is a two-dimensional subspace of X, then there exist
nonzero vectors u, v € P such that u Lv and u +v Lu —v.

Any vector space can be made into an orthogonality vector space if
we define x 1.0, 0 Lx for all x, and for nonzero vectors x, y define x 1y
iff x, y are linearly independent. Also an inner product space is such a
space; we shall see that a normed space is one also with James’
definition of orthogonality.

LemMA 2.1. Let (X, 1) be an orthogonality vector space and let
f: X = R be orthogonally additive and hemi-continuous. (a) If f is odd,
then fis linear. (b) If fis even, then f(a x) = a*f(x) foralla ER, x € X
and if x Ly and x +y Lx —y, then f(x)= f(y).

Proof. Same as in [2; Lemmas 2, 3].

ReMARK. The referee has pointed out to us that there is a mistake
in the proof of Lemma 2 [2]. In that proof it is incorrectly stated that
F(Q u)=2"F(u) for all rational r when, in fact, this is only proved for
integral r. However, it is easily seen that F(3"u)=3F(u) for all
integral . Indeed, in the notation of that proof

FBu)-Fw)=FQ@Bu—-v)=F(u+v+2u-—2v)
=Fu+v)+FQ(u—-v))=3F(u)—F().

Hence, by induction F(2° 37u)=2” 32 F(u) for all integral p and
q. Since these scalars 2° 3% are dense, continuity implies F(au)=
a F(u). _

An inner product (-,-) on (X, 1) is L-equivalent when x Ly iff
(x,y)=0.

THEOREM 2.2. If there exists an f: (X, L)— R which is orthogon-
ally additive, even, hemicontinuous, and not identically 0, then there is a
1-equivalent inner product (-,-) on (X,1). In fact, (x,y)=
f(x +y)=f(x —y)] and the induced norm sqtisfies | x |' = f(x) for all
x€X, or |x|P= —f(x) for all x € X. Moreover, if {-,-), is another
L-equivalent inner product on (X, L), then there is a nonzero ¢ € R such
that (-, =c(:,").

Proof. We first show that f has constant sign. Let0# x € X and
suppose f(x)>0. Let 0£y€EX. If y=ax, then f(y)=a’f(x)>
0. If y,x are linearly independent, let P be the generated 2-
dimensional subspace. Then there exist u, v € X satisfying (05) and
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(02). Hence y =au +bv, x =cu +dv for a,b,c,d €ER. By Lemma
2.1 (b), f(y)=(a’+ b)f(u), f(x) =(c*+ d?)f(u) so f(y)>0. Similarly,
f(x)<0 implies f(y)<0. For concreteness, suppose f(x)=0 for all
x € X. One can now show that f(x)"* is a norm on X which satisfies
the parallelogram law so X is an inner product space. If x Ly then
f(x+y)=f(x)+f(y) and so (x,y)=0. Conversely, suppose x, y# 0
and (x, y)=0. By (04) there is’a z# 0 in the span of {x, y} such that
x1lz. Hence (x,z)=0 and by (02) y=ax+bz for some
a,b €R. From (x,y)=0it follows that a =0so x Ly. Corollary 3.4
concludes the proof.

If X is a normed linear space, James [1] defines x Ly iff|[x +ky|=
[x || for all k € R. With this definition of L, (X, 1) is an orthogonality
vector space. Indeed, (01), (02), (03) follows easily, (04) follows from
[1; Corollary 2.3] and (05) follows from [2; Lemma 1].

The next result generalizes to inner product spaces a result of
Sundaresan [2] whose proof relies on the completeness of Hilbert space.

COROLLARY 2.3. Let X be a normed space and let f: X — R be an
orthogonally additive, even, hemicontinuous function. (a) If X is not an
inner product space, then f =0. (b) If X is an inner product space, then
there is a ¢ € R such that f(x)=c||x|} for all x € X.

We next prove a generalization of the Riesz representation
theorem.

CoRrROLLARY 2.4. Let X be an inner product space and letf: X — R
be orthogonally additive and satisfy |f(x)| = M| x| forallx € X. Then
f is a continuous linear functional and hence, if X is a Hilbert space,
f(x)=<(x, z) for some z € X.

Proof. We can assume M >0. Clearly f is continuous at 0. Let
x#0. We first show that B — 1 implies f(Bx)— f(x). Let B>1,
yLlx, |lyl=1 and wu=x+(8—-1)"||x]ly. Then (u—x)Lx and
(u—PBx)Lu. Thus f(u)—f(x)=f(u—-x) and f(Bx)—f(u)=
f(Bx —u). Hence

|f00) = F(BO)| = f(x) = f) | +|f(u) = f(Bx)]

=M|x|2(8 -D"+(@B - DI

Now let 0<B <1, yLx, ||lyll=1 and

u=px+(1-p)"p"x|y.
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Then (u —Bx)LBx and (x —u)Lu. Again f(u)—f(Bx)=f(u—Bx),
and f(x)—f(u) = f(x —u), so that

[f(x) = f(Bx)| =|f(x —u)|+|f(u — Bx)]
=M |x|[(1-B)+2(1-B)"”B"].

It follows that f(Bx)— f(x) as B — 1. We now show that f is norm
continuous. If x;—>x, there exist y,Lx such that x; =
a; x +y. Taking the inner product with x, we see that ; — 1 and hence
yi—0. Since f(x;) = f(a;x + y;) = f(a; x) + f(y), we have f(x;))— f(x)
as x;,—x and f is norm continuous. Applying Corollary 2.3 and
Lemma 2.1(a), there is a continuous linear functional f, such that
f(x)=cl||x|*+fxx). Hence |c|||x||=M +|f.|| for all x €X, which
implies ¢ = 0.

3. Orthogonally increasing functions. In this section
orthogonality on a normed space X will always be defined according to
James’ definition (see §2). A function f: X — R is orthogonally in-
creasing iff x Ly implies f(x +y)=f(x). We shall later define other
types of increasing functions.

In the last section we characterized orthogonally additive,
hemicontinuous functions. We saw that they formed a very restricted
class, being the sum of a linear functional and a constant times the norm
squared. The orthogonally increasing functions form a much larger
class. Indeed, if g: R*— R, where R*=nonnegative reals, is any
nondecreasing function then f(x)=g(||x||) is orthogonally increasing
since x Ly implies f(x +y)=g(|x +y|)=g(]|x|)=f(x). The main
result of this section characterizes orthogonally increasing functions on
a normed space and shows that they are essentially of this form.

Let X be a normed space. A function f: X— R is radially
increasing if a >1 implies f(ax)=f(x)Vx € X, and f is spherically
increasing if ||x|>|y | implies f(x) = f(y). It is clear that spherically
increasing implies radially increasing and simple examples show that the
converse need not hold. In a strictly convex (rotund) normed space,
spherically increasing implies orthogonally increasing. Indeed, let f be
a spherically increasing function on such a space and let x L y. Then
lx +yl=lx|l. Iflx +yl|>|lx|, then by spherical increasing

f(x+y)=f(x).
Now suppose ||x +y||=|/x|. Then

Ix +2y =120 +y) +ixl|=dx +y | +ilx]=]x].
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Since x Ly, |[x +iy||=|x|so|x +iy[=|x||. But a normed space is
strictly convex if and only if ||u|=|v| =|i(u + v)| implies u = v, and
sollx +y||=|lx]|=]|lx +1y| implies y =0. Hence f(x +y)=f(x) and f
is orthogonally increasing. It is well known that any uniformly convex
space is strictly convex, in particular an inner product space is strictly
convex.

In a general normed space, spherically increasing need not imply
orthogonally increasing. Indeed, let X =(R%]-|.); that is, X = R?
with  ||(x,, x;)|| = max(|x,|,|x.|). Note that X is not strictly
convex. Letf: X — R be defined as follows: f(x) =||x|if 0=|x|| <1,
f)=2|x||if |x||>1, f(x)=1if ||x||=1 and x # (1, 0), and f((1, 0)) =
2. Ttis easy to check that f is spherically increasing. If x =(1, 0) and
y =(0, 1) then x Ly but f(x +y)=f((1, 1)) =1<2=f(x). Hence f is
not orthogonally increasing. The next theorem shows that orthogon-
ally increasing implies spherically increasing.

THEOREM 3.1. Let X be a normed space with dim X =2 and let
f: X — R be orthogonally increasing. Then f is spherically increasing
and there exists a countable number of spheres S,, S, - - such that f is
norm continuous at wiff w& U S.. Furthermore, there exists a nondec -
reasing function g: R*— R such that f(w) = g(||w||) for every w& U S..

Proof. We first show that f is radially increasing. Let0#y € X
and let « > 1. By a modification of the proof of Lemma 1 [2] there
exists 0 # x € X such that y Lx and (y +x) L[(a« — 1)y —x]. Hence

flay)=fly+x+(a—-Dy—x1Zf(y +x)=f(y)

and f is radially increasing. We now show that f is norm continuous on
a dense subset of X. Let [[xo]=1 and let V ={Ax,: A ER*}. Then f
restricted to V is an increasing function and hence is continuous in V
on a dense subset B of V. We shall show that f is norm continuous on
B —{0}. Let0#x € B and let x; > x. Now there exists y; such that
x Ly and x; = a;x +y. Since

I = x{l= (e = Dx + yi | Z | — 1][| x|

we have a; — 1. By the Hahn-Banach theorem, there exist continuous
linear functionals f,, on X such that f, (x;) =||x; |?and ||f. || =||x:||. Now

‘fxa(xi)—fxi(x)l = lei(xi —X)| é"'xi " "x" _x"

so f.(x)—||x|* Letting k; = ||x;|"/f.(x) we see that k; — 1. Further-
more, for every @ € R we have
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”xi +a(k x —x‘-)llifx‘[(l —a)x; +ak,~x]/”f,, ”
=[(1-a)||x|f+ akif COVIfu | = | x: |-

Hence x; L(k;x —x;). Thus
flkx)=f(x; + kx —x;)) = f(x;) = f(aix +y;) = f(aix).

Since a;, ki =1 we have f(kx), f(ax)— f(x) so f(x;)— f(x) and f is
norm continuous on a dense subset of X. We next show that f is
spherically increasing. Let x,y € X and suppose [y[|>|x|. We
shall show there exists A > 1 and x = x,,x;,- -+, x, € X such that y = Ax,
and x;_, L(x; —x;_), i =1,---,n. It would then follow that

fO)=fAx) Zf(x,) = fXpoi + X0 = X0ot) Z f(X-) Z -+ - Z fx0) = f(x).

To show such A and x; exist we proceed as follows. We can assume
without loss of generality that |x||=1, that x and y are linearly
independent, and that the 2-dimensional subspace generated by {x, y} is
R?with x = (1, 0). Let S be the unit sphere in R? corresponding to the
unit sphere in X. Since the norm is a convex function, using polar
coordinates, we can assume that S is given by p = F(0) where F is a
continuous function on [0, 27], which is periodic of period =, the
right-hand derivative F' exists everywhere, and F' is bounded. Let S,
be a unit sphere obtained by reflecting S about the x-axis. Then, in
polar coordinates, S, is given by p,= Fy(0) where Fy(6)=
F(2m —0). Denote orthogonality with respect to S and S, by L and L,

respectively, and the norm with respect to S and S, by ||| and |- |ls
respectively. We now construct a polygonal path P starting at x and
sweeping twice around the origin with vertices xo, = x, X, X5, *, X, as

follows. The angle between x;_, and x; is 27w /n, x;_, L(x; — x;_;) for
i=1,2,---,n,and x;_, Lo(x; —x;_) fori=n+1,n+2,---,2n. Now

Xz o Z N xaniloZ - - Z [12%a fo = a2 M|x0s | 2 - -~ = -

Indeed, since X;, = X201+ (X2n — X20-1) We have || Xz, |l = || X2.-1]lo and the
others follow in a similar way. Furthermore, ||x, || Z||w | forany w € P
which precedes x,. Indeed, if w is on the edge with vertices x, and x,_,
then w=Ax, +(1—A)x,, for some 0=A=1 and hence |w|=
Ax |+ (A=) || xoi|| = || x.]]. A similar argument holds for other w €
P. Hence, if we can show that lim,_... || x,. [l, = 1 we will be finished with
this part of the proof. A simple calculation shows that the slope of S in
the forward direction at angle 6 is

[F(8)cos @+ F'(0)sin08]/[F'(@)cos 8 — F(8)sin6].
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Since x L (x,— x) it follows that the slope of x, — x equals the slope of S
in the forward direction at § = 0. Letting p, be the p coordinate of x,
we have

pisin (2 /n)/[p;cos Rm/n)— 1] =[F'(0)]™".
Hence

p=[cos(2m/n)— F'(0)sin( 2w /n)]™

and this formula holds even if F'(0) =0. In a similar way, a straightfor-
ward calculation gives

pi = pi-{cos 2w [n) — [F'2ni/n)[F(Q2i/n)]sin 2w /n)} ™,
i=23,---,n. A similar formula holds for p, i=n+l,
n+2,---,2n. Using the fact that Fy2mi/n)= F[2@(n—i)/n] and
FyQRmi/n)= — F'[2@(n —i)/n] we obtain

Pon = {cos’2m/n) — [F'(0))sin’(2w [n)}!
x{cos’Qm/n)—[F'Qw/[n)/FQRwm/[n)Psin*Qm/[n)}’

X -+« X {cos’2mn) — [F'((n — )2 /n)/F((n
— )27 /n)Psin’ Qe /n)} .

Letting M = sup[F'(8)/F(0))* we have
Li_{g Pom = !'i_{g [cos’Qm/[n) — M sin*QQm/[n)] ™.
But L’'Hospital’s rule shows that
Li_r}(} 27 /x)log[cos’x — M sin*x]=0
sO
lim p2s = 1. Hence lim || X [lh= 1.

We next show that f is norm continuous except on a countable set
of spheres. Let||xo]|=1. Then from the above, f is norm continuous
at 8x, except for countably many §&’s, say §8,,8,,---. Suppose f is
continuous at x = 8x, and ||y ||=|x|. If A >1 then f(Ax)=f(y), so
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letting A — 1 we have f(x)=f(y) and in a similar way we show that
f(x)=f(y) so f(x)=f(y). To show f is continuous at y, let
yi—y. As|y|=]|x|>0,itis possible, for i sufficiently large, to find a
sequence a; € R such that ¢, —>0, ;>0 and ||y||—-a >0. Let x; =
(|y:l+a)x/||y|l and z = (||y:|-a)x/|ly|l. Then |lx||>]y[|>]z] so
fz)=f(y)=f(x;)). Now x; = x, zz— x and since f is continuous at x
we have f(y;)— f(x)=f(y). Hence f is continuous at y. If S, =
{x e X;|x||=4}, it follows that f is continuous at w iff wg U
S.. Define g: R*— R by g(a) = f(ax,). Then g is a nondecreasing
function and if w& U S, we have f(w) = f(||w] x,)=g(|w]).

Using Theorem 3.1 we can prove a result similar to Corollary 2.3
concerning nonnegative orthogonally additive functions.

COROLLARY 3.2. Let X be a normed space with dim X = 2 and let
f: X = R" be orthogonally additive. (a) If X is not an inner product
space, then f =0. (b) If X is an inner product space, then there is a
¢ €ER" such that f(x)=c|x |} for all x € X.

In the rest of this section X will denote an inner product space with
dim X =2 and inner product (-, ).

CoroLLARY 3.3. Iff: X — R" is orthogonally additive, then there
is a c ER* with f(x)=c ||x|"

COROLLARY 3.4. Let (-,-) be another inner product on X. If
x Lyimplies x 1,y, then thereis a c >0 such that {u, v), = c{u, v) for all
u,v €X.

Proof. Let g(w)=|wl,. If xLly then xL1l,y so gX(x+y)=
g(x)+g*(y). Hence g?is orthogonally additive so there is a ¢ > 0 with
[wli=g(w)=c|w|. Hence

(o =[lu+vlf-llu—-vl)/a=clu+olf~|u-v|14

= c*u, v}.

CoroLLARY 3.5. If f: X — R is orthogonally additive and f(x) =
— M ||x | for all x € X for some M = 0, then there is an a € R such that
fx)=alx|

Proof. If g(x)=f(x)+M||x|?, then g: X — R"* is orthogonally
additive. Hence there is a ¢ =0 such that g(x)=c|x |’ Hence
f(x)=(c = M)|x|p.

In a similar way, Corollary 3.5 holds if f(x) = M ||x |}, forall x € X.
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Let x,€X, ¢, d ER" and define f(x)=c|x —x,|f+d. Then
f(x)=Z f(xo) and if x Ly we have
fx+y)=c|x=xof—2c(y, x)+c|ylf+d
= cflx —xolf+ ¢ ly = xoff — ¢ [[xo|f + @
=fx)+f(y)—d —c||x|* = f(x) + f(y) — f(0).

We now show that the converse holds.

COROLLARY 3.6. Let f: X — R satisfy: (a) there is an x, € X such
that f(x)= f(x,) for all x € X, (b) if x Ly then

f(x +y)=fx)+f(y)—£(0).

Then is a ¢ Z0 such that f(x)=c ||x —xo|f + f(xo) and if c#0, x, is
unique.

Proof. Let g(x)=f(x +x¢)—f(xo). Then g: X—>R*. Letxly
and write x = x, + x, + x; where x, is a multiple of x, x, is a multiple of y
and x; is orthogonal to x and y. Then g(x +y)=g(x)+g(y). Hence
g(x)=c|x|* for some ¢ =0 and f(x + x,)=c | x|F+f(xo). Hence
fx)=c|lx = xo|f+ f(xo). If c#0 and f(x)= f(y,) for all x €X then
f(yo) = f(xo) and f(yo) = ¢ || yo— X0} + f(xo). Thus [|yo—xo| =0 s0 yo=
Xo.

CorOLLARY 3.7. Let f: X — R be orthogonally additive. If there
is an x, € X such that f(x,) = | x,|* and |f(x)|=| x| ||x || for all x € X,
then f(x) = (x,x,) for all x € X.

Proof. Let g(x)=|x|*—2f(x)+]| x|’ Then
gx) Z|x [P =2 lx [ llxoll + [lxo] = Cllx | + [ xo]l)* = 0 = g (x0)-

Also x Ly implies g(x +y)=g(x)+g(y)—g(0). Hence by Corollary
3.6 there is a ¢ Z 0 such that g(x) = c ||x — xo|f. Therefore
2f(x) =[x [P+ [|x0lf — ¢ [|x = xolf = (1 = ) [|x |
+ (1= c¢)||xo|f + 2¢(x, Xo).

Since f(0) = 0 we have (1 —¢)||xo|f =0. Thuseitherc =1orx,=0. If
xo=0then |1—c||x|f=2]|f(x)| =0 for all x € X so again ¢ = 1. Hence

f(x) = (x, xo).
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