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ORTHOGONALLY ADDITIVE AND ORTHOGONALLY
INCREASING FUNCTIONS ON VECTOR SPACES

S. GϋDDER AND D. STRAWTHER

A real-valued function /: X—> R on an inner product space
X is orthogonally additive if f(x + y) = /(JC) + f(y) whenever
x l y . We extend this concept to more general spaces called
orthogonality vector spaces. If X is an orthogonality vector
space and if there exists an orthogonally additive function on X
which satisfies certain natural conditions then there is an inner
product on X which is equivalent to the original orthogonality
and /(JC) = ±\\x f for all JC E X. We next consider a normed
space X with James' orthogonality. A function f: X-^R is
orthogonally increasing if f(x + y)^f(x) whenever
JC 1 y. Orthogonally increasing functions on normed spaces are
characterized.

1. Pythagoras' theorem. Pythagoras' theorem states that
the function /(JC) = ||JC ||2 is orthogonally additive, that is /(x + y) =
f(x) + f(y) whenever x 1 y where JC, y are vectors in the plane. One of
the concerns of this paper is a converse of Pythagoras' theorem on an
inner product space X. That is, if /: X-+R is orthogonally additive, is
f(x) = c ||JC ||2 for some c G JR ? As it stands, the answer is no, since any
linear functional is orthogonally additive.

Some natural additional conditions on / are:
(1) /(x)gθ, nonnegativity
(2) f(x) = / ( - x), evenness
(3) λ {->λ implies /(A,JC) -> f(λx) for all JC GX, hemicontinuity.

We shall show that orthogonal additivity along with (1), or with (2) and
(3) imply f(x) = c\\x ||2 for some c G #.

2. Orthogonality vector spaces. In this paper, vector
spaces will be real and of dimension ^ 2. In Theorem 2.2 we shall
prove that Pythagoras' theorem characterizes inner product spaces in a
certain sense.

A vector space X is an orthogonality vector space if there is a
relation x l y on X such that

(01) x lO, Olx for all x G X ;
(02) if JC l y and JC, y^ 0, then JC, y are linearly independent;
(03) if x 1 y, then ax 1 by for all a, b G R
(04) if P is a two-dimensional subspace of X, then for every x EP

there exists O ^ y E P such that x 1 y
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(05) if P is a two-dimensional subspace of X, then there exist
nonzero vectors u,vGP such that u Iv and M + D 1 « - D .

Any vector space can be made into an orthogonality vector space if
we define x 10, Olx for all JC, and for nonzero vectors JC, y define x l y
iff x, y are linearly independent. Also an inner product space is such a
space; we shall see that a normed space is one also with James'
definition of orthogonality.

LEMMA 2.1. Let (X, 1) be an orthogonality vector space and let
f: X->Rbe orthogonally additive and hemi-continuous. (a) /// is odd,
then f is linear, (b) /// is even, then f(ax) = a 2f(x) for all a E R, x E X
and if x -Ly and x + y Ix - y, then /(jc) = /(y).

Proof Same as in [2; Lemmas 2, 3].

REMARK. The referee has pointed out to us that there is a mistake
in the proof of Lemma 2 [2]. In that proof it is incorrectly stated that
F(2r u) = 2rF(u) for all rational r when, in fact, this is only proved for
integral r. However, it is easily seen that F(3ru) = 3ΓF(M) for all
integral r. Indeed, in the notation of that proof

F ( 3 n ) - F(v) = F(3u -v) = F(u + v+2u-2v)

= F(u +^) + F(2(iι - Ό)) = 3F(iι)-F(v).

Hence, by induction F(2P 3q u) = 2P VF(u) for all integral p and
q. Since these scalars 2P 3* are dense, continuity implies F(au) =
aF(u).

An inner product ( , ) on (X, 1) is ±-equivalent when x 1 y iff

THEOREM 2.2. // there exists an f: (X, ±)->l? w/iicA is orthogon-
ally additive, even, hemicontinuous, and not identically 0, then there is a
1-equivalent inner product ( , > on (X, 1). In fact, (x, y) =
ί[/(* + y) - / ( * ~ y)] flfld *fte induced norm satisfies \\x ||2 = /(JC) /or α//
x GX, or \\x\\2= - / ( J C ) /or α// x E X . Moreover, if ( , ")i is another
l-equivalent inner product on (X, 1), ίften ίΛere is α nonzero c ER such
that <.,.">I = c< , >.

Proo/. We first show that / has constant sign. Let 0 / x E X and
suppose / ( J C ) > 0 . Let O ^ y E X . If y = α x , then /(y) = <*2/(JC)>

0. If y,x are linearly independent, let P be the generated 2-
dimensional subspace. Then there exist u, v E X satisfying (05) and
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(02). Hence y = au + bv, x = cu + dv for a, b,c,d E JR. By Lemma
2.1 (b), /(y) = (α 2 + b2)f{u), f(x) = (c2 + d2)/(w) so/(y) >0. Similarly,
/ ( J C ) < 0 implies /(y)<0. For concreteness, suppose f(x)^0 for all
x E X One can now show that f(x)m is a norm on X which satisfies
the parallelogram law so X is an inner product space. If x 1 y then
f(x + y) = /(*) + /(y) and so (JC, y) = 0. Conversely, suppose x, y ̂  0
and (JC, y) = 0. By (04) there is a z ^ 0 in the span of {x, y} such that
x Iz. Hence (JC, z")_ = 0 and by (02) y = ax + bz for some
a,b ER. From (JC, y) = 0 it follows that a = 0 so x 1 y. Corollary 3.4
concludes the proof.

If X is a normed linear space, James [1] defines JC 1 y iff || JC +• k y || ^
|| JC || for all kER. With this definition of 1, (X, 1) is an orthogonality
vector space. Indeed, (01), (02), (03) follows easily, (04) follows from
[1; Corollary 2.3] and (05) follows from [2; Lemma 1].

The next result generalizes to inner product spaces a result of
Sundaresan [2] whose proof relies on the completeness of Hubert space.

COROLLARY 2.3. Let Xbe a normed space and let f: X->Rbe an
orthogonally additive, even, hemicontinuous function, (a) IfXis not an
inner product space, then f = 0. (b) IfXis an inner product space, then
there is a c ER such that f(x) = c\\x ||2 for all x EX

We next prove a generalization of the Riesz representation
theorem.

COROLLARY 2.4. Let X be an inner product space and letf: X-> JR

be orthogonally additive and satisfy | f(x) | g M || x || for all x EX. Then
f is a continuous linear functional and hence, if X is a Hilbert space,
/(JC) = (x, z) for some z EX.

Proof. We can assume M > 0. Clearly / is continuous at 0. Let
JC^O. We first show that j3-»l implies /(/3JC)-~>/(JC). Let β>ί,
y±jc, | | y | | = l and u =JC +(β - l)1/2||jc||y. Then (W-JC)IJC and
(u-βx)lu. Thus /(M)~/(JC) = / ( M ~ X ) and f(βx)~f(u) =
f(βx-u). Hence

\f(x)-f(βx)\^\f(x)-f(u)\

Now let 0 < β < l , y lx, | |y| |= 1 and

u =βx+(l- j3) 1
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Then (u-βx)lβx and (χ-u)±u. Again f(u)~ f(βx) = f(u - βx),
and f(x) - f(u) = f(x - u), so that

It follows that /(βx)-*/(x) as β -> 1. We now show that / is norm
continuous. If x,—>x, there exist y, -Lx such that xf =
α, x + y, . Taking the inner product with x, we see that α, —> 1 and hence
y,->0. Since /(x.) = /(α,x + yf)̂  = /(α,x) + /(y), we have f(Xi)->f(x)
as xt—>x and / is norm continuous. Applying Corollary 2.3 and
Lemma 2.1(a), there is a continuous linear functional f2 such that
/(x) = c||x||2 + /2(x). Hence \c | ||x | | ^ M + ||/2|| for all xGX, which
implies c = 0.

3. Orthogonally increasing functions. In this section
orthogonality on a normed space X will always be defined according to
James' definition (see §2). A function f: X-*R is orthogonally in-
creasing iff x l y implies f(x + y) S/(x). We shall later define other
types of increasing functions.

In the last section we characterized orthogonally additive,
hemicontinuous functions. We saw that they formed a very restricted
class, being the sum of a linear functional and a constant times the norm
squared. The orthogonally increasing functions form a much larger
class. Indeed, if g:R + -+R, where R+ = nonnegative reals, is any
nondecreasing function then /(x) = g(||x ||) is orthogonally increasing
since x l y implies /(x + y) = g(||x + y | | )Sg( | |x ||) = /(x). The main
result of this section characterizes orthogonally increasing functions on
a normed space and shows that they are essentially of this form.

Let X be a normed space. A function /:X->JR is radially
increasing if a > 1 implies /(αx)g/(x)Vx EX, and / is spherically
increasing if ||x || > || y || implies /(x) g /(y). It is clear that spherically
increasing implies radially increasing and simple examples show that the
converse need not hold. In a strictly convex (rotund) normed space,
spherically increasing implies orthogonally increasing. Indeed, let / be
a spherically increasing function on such a space and let x l y . Then
|| x + y || ^ || x ||. If ||x + y || > ||x ||, then by spherical increasing

Now suppose ||x + y || = ||x ||. Then
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Since x±y, ||JC +\y|| = ||x|| so ||JC + \y|| = ||JC||. But a normed space is
strictly convex if and only if ||u || = || v \\ = \\\(u 4- v)\\ implies u = v, and
so ||x + y || = ||JC || = ||x + \ y || implies y = 0. Hence /(x + y) g /(JC) and /
is orthogonally increasing. It is well known that any uniformly convex
space is strictly convex, in particular an inner product space is strictly
convex.

In a general normed space, spherically increasing need not imply
orthogonally increasing. Indeed, let X = (i?2,|| -H-); that is, X = R2

with ||(jCi,JC2)|| = max(|xi|,|jc2 |). Note that X is not strictly
convex. Let /: X-+ R be defined as follows: /(JC) = ||JC || if 0 ̂  ||x || < 1,
/(x) = 2||x|| if | |x | |> 1, / ( * ) = 1 if | | x | |= 1 and x ^ ( l , 0), and/((I, 0)) =
2. It is easy to check that / is spherically increasing. If x = (1, 0) and
y = (0, 1) then x 1 y but /(x + y) = /((I, 1)) = 1< 2 = /(JC). Hence / is
not orthogonally increasing. The next theorem shows that orthogon-
ally increasing implies spherically increasing.

THEOREM 3.1. Let X be a normed space with d i m X § 2 and let
/: X-*jR be orthogonally increasing. Then f is spherically increasing
and there exists a countable number of spheres Sί9S29

m" such that f is
norm continuous atwiffw^ U 5f. Furthermore, there exists a nondec -
reasing function g: R + -+R such that /(w) = g (|| w \\) for every w £ U S,.

Proof We first show that / is radially increasing. Let
and let a > 1. By a modification of the proof of Lemma 1 [2] there
exists 0 7̂  JC G X such that y l x and (y + x) 1 [(a - l)y - JC]. Hence

and / is radially increasing. We now show that / is norm continuous on
a dense subset of X. Let ||JCO|| = 1 and let V = {λx0: A G R+}. Then /
restricted to V is an increasing function and hence is continuous in V
on a dense subset B of V. We shall show that / is norm continuous on
B - {0}. Let OT^JCGB and let JC, -• JC. NOW there exists y, such that
x 1 y, and JC, = α, x + y,. Since

we have α, -> 1. By the Hahn-Banach theorem, there exist continuous
linear functionals fXi on X such that fxι (x,) = || x, ||2 and || fXi \\ = || x, ||. Now

so /X,(X)->||JC||2. Letting /c, =||jCi||2/Λι(*) we see that fcί-»l. Further-
more, for every « E J ? we have



432 S. GUDDER AND D. STRAWTHER

||x, +α(*,Jt -JC,)||£/e[(l -a)xt + akix]/\\fXi

Hence x, l(kiX - x,). Thus

fcx - x.) ^ f(Xi) = /(α,x + y, ) g

Since ai9 fc, -> 1 we have /(fc,x), /(α,x)-»/(x) so f(Xi)-*f(x) and / is
norm continuous on a dense subset of X. We next show that / is
spherically increasing. Let x, yEX and suppose | | y | | > | | * | | . We
shall show there exists λ > 1 and x = xθ9xί9- '9xnEX such that y = λxn

and X/_i ±(x, - JC/_I), i = 1, , n. It would then follow that

/(y) = /(λxn) ^ / ( x j = /(*„., + xn - *,_,) ^/(JC,, . ,) ^ ^/(xo) = f(x).

To show such A and x, exist we proceed as follows. We can assume
without loss of generality that | | x | | = l , that x and y are linearly
independent, and that the 2-dimensional subspace generated by {x, y} is
I?2 with x = (1, 0). Let S be the unit sphere in I?2 corresponding to the
unit sphere in X. Since the norm is a convex function, using polar
coordinates, we can assume that S is given by p = F(0) where F is a
continuous function on [0, 2ττ], which is periodic of period TΓ, the
right-hand derivative F' exists everywhere, and F' is bounded. Let So

be a unit sphere obtained by reflecting 5 about the x-axis. Then, in
polar coordinates, So is given by ρo = Fo(θ) where Fo(0) =
F(2ττ -θ). Denote orthogonality with respect to S and 50 by 1 and l 0

respectively, and the norm with respect to S and So by || || and || ||0
respectively. We now construct a polygonal path P starting at x and
sweeping twice around the origin with vertices XQ = X9XI,X29 ,JC2n as
follows. The angle between x^ and x, is 2ττ/n, X/.jlίx,-x,-,) for
i = 1,2, ,n, and x^loU, -x,-i) for i = n + l,n +2, ,2n. Now

||jtta Ho s HJC^-.IIO s - ̂  IIJC Ho = ||JCΛ II ̂  IIJT^-.H ^ — s ||x II.

Indeed, since x2π = jc2n_, + (JC2Π - x2n-i) we have ||x2n | | 0 S ||x2n-i||o and the
others follow in a similar way. Furthermore, ||xπ | | ^ ||w || for any w EP
which precedes xπ. Indeed, if w is on the edge with vertices xn and xπ_i
then w = λxπ + (1 - λ )xπ_i for some 0 ^ λ ^ 1 and hence || w \\ ^
λ || xn || + (1 - λ) || jcn_, || ^ II xn | |. A similar argument holds for other w E
P. Hence, if we can show that limn_oo || xln ||o = 1 we will be finished with
this part of the proof. A simple calculation shows that the slope of S in
the forward direction at angle θ is

[F(0) cos θ + F'(θ) sin θ]I[F'(0) cos θ - F(0) sin 0].
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Since x 1 (xx - x) it follows that the slope of JC, - x equals the slope of S
in the forward direction at θ = 0. Letting ρ{ be the p coordinate of xx

we have

p1sin(27r/n)/[p1cos(2τr/n)- 1] = [F'(0)Γ.

Hence

pI = [cos(2τr/n)-F/(0)sin(2τr/n)]-1

and this formula holds even if F'(0) = 0. In a similar way, a straightfor-
ward calculation gives

Pi = pι_1{cos(27r/n)-[F'(2πi/n)/F(27rι7n)]sin(27r/n)}-1,

i = 2,3, , n. A similar formula holds for ρOί, i = n + 1,
n + 2, , 2n. Using the fact that F0(2τri/n) = F[2ττ(n - i)M] and
FJ(2π/M) = ~ F'[2π(π - ί)/n] we obtain

Po2n = {cos2(2ττ/n) - [F'C

x {cos2(2τr/n) - [F'(2π/n)/F(27r/n)]2sin2(2τr/n)}-1

x x {cos2(2ττ/n) - [F'((n - l)2ττ/n )/F((n
-I)2τr/n)]2sin2(2π/n)}-1.

Letting M = sup[F'(0)/F(0)]2 we have

lim pO2n ^ lim [cos2(2ττ/n) - M sin2(2τr/n)]"n.

But LΉospitaΓs rule shows that

lim (2πlx) log [cos2x - M sin2x] = 0
x - -0

SO

lim p02n = 1. Hence lim ||x2« ||o = 1.

We next show that / is norm continuous except on a countable set
of spheres. Let ||JCO|| = 1. Then from the above, / is norm continuous
at δx0 except for countably many δ's, say δi,δ2,•••. Suppose / is
continuous at x = δx0 and ||y || = ||JC ||. If λ > 1 then f(λx) = /(y), so



434 S. GUDDER AND D. STRAWTHER

letting A -> 1 we have /(jc)S/(y) and in a similar way we show that
/(jc)g/(y) so /(jc) = /(y). To show / is continuous at y, let
y, -» y. As || y || = j|JC || > 0, it is possible, for / sufficiently large, to find a
sequence α, E R such that α, -» 0, α{ > 0 and || yf || - α, > 0. Let JC, =
(l|yί|| + flι)W||y||andzl=(||yl|hα,)x/||y||. Then | |x / | |> | |y / | |> | |z ί | | so
f(Zi) ^/(y, ) ^ /(jct). Now JC, —> JC, z, -» x and since / is continuous at JC
we have /(y,-)—>/(JC) = /(y). Hence / is continuous at y. If S, =
{JC E X ; | |x|| = δj, it follows that / is continuous at w iff wfέ U
S( . Define g: R + ->R by g(α) = /(αJC0) Then g is a nondecreasing
function and if vv£ US, we have /(w) = /(||H>||Xo) = g(\\w ID-

Using Theorem 3.1 we can prove a result similar to Corollary 2.3
concerning nonnegative orthogonally additive functions.

COROLLARY 3.2. Let Xbe a normed space with dim X ^ 2 and /eί
/: X—> JR+ be orthogonally additive, (a) // X w noί an inner product
space, then f = 0. (b) // X w an inner product space, then there is a
cGR+ such that /(JC) = c \\x \\2 for all x E X.

In the rest of this section X will denote an inner product space with
dim X ^ 2 and inner product ( , ).

COROLLARY 3.3. Iff:X-+R+ is orthogonally additive, then there
is a c E JR+ with /(JC) = c \\x ||2.

COROLLARY 3.4. Let ( , )i be another inner product on X. If

x 1 y implies x l t y, then there isac > 0 swc/i fftαί (u, v)ι = c(α, ι/> for all

u, v E X.

Proo/. Let g(u>) = || w ||,. If jc ly then jcliy so g2(x + y) =
g\x) + g2(y). Hence g2 is orthogonally additive so there is a c > 0 with
II w ||i = g(w) = c ||w||. Hence

COROLLARY 3.5. ///: X-+R is orthogonally additive and
- M || JC ||2 for all x E X for some M^O, then there is ana GR such that

= a\\x\\\

Proof If g(JC) = /(JC) + M||JC ||2, then g: X->R+ is orthogonally
additive. Hence there is a c SO such that g(x) = c \\x\\2. Hence

| | | |

In a similar way, Corollary 3.5 holds if f(x)^M\\x \\2, for all x E X.
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Let xo&X, c, dER+ and define f(x) = c\\x-x<j\\2 + d. Then
f(x)^f(xo) and if x ±y we have

f(x + y) = c ||jc-jco||2-2c<y,xo> + c ||y f+d

= c||x-jco||2+c||y-Jco||2-c||jco||2 +

We now show that the converse holds.

COROLLARY 3.6. Let f: X-+R satisfy: (a) there is anxo£X such
that /(JC) S /(JC0) for all x £ X, (b) if xly then

Then is a c SO such that f(x) = c\\x -JC0 | |2 + /(*O) and if c^O, x0 is
unique.

Proof. Let g(x) = /(JC + x0) - /(*o) Then g: X -+ R+. Let x 1 y
and write x = x, + x2 + Xi where JC, is a multiple of JC, JC2 is a multiple of y
and X) is orthogonal to x and y. Then g(x + y) = g(x) + g(y). Hence
g(x) = c\\x\\2 for some c S 0 and /(JC + JC0) = C ||JC ||2 + /(JCO) Hence
f(x) = c\\x- JColP + /(JCo). If c ^ 0 and /(JC) g/(y 0 ) for all x e X then
/(3Ό) = /(JCo) and /(y0) = c || y0 - JC0 ||

2 + /(JCO) Thus || y0 - JC0|| = 0 so y0 =

COROLLARY 3.7. Let f: X-^Rbe orthogonally additive. If there
is anx0EX such that /(JC0) = ||JCO||2 and \f(x)\ ^ | | χ o | | ||JC || for all xEX,
then f(x) = (x,Xo) for all x e X.

Proof. Letg(x) = ||x||2-2/(jc) + ||jc0||
2. Then

Also JCIy implies g(x + y) = g(jc) + g ( y ) - g ( 0 ) . Hence by Corollary
3.6 there i s a c ^ O such that g{x) = c \\x -xof. Therefore

Since /(0) = 0 we have ( l - c ) | | x o | | 2 = O. Thus either c = 1 or x0 = 0. If
Xo = 0 then [1 - c | ||JC ||2 = 2|/(x) | ^ 0 for all x € X so again c = 1. Hence

f(x) = (x,x0).
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