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EXTENSION FUNCTIONS FOR RANK 2, TORSION
FREE ABELIAN GROUPS

Eric M. FRIEDLANDER

The set of isomorphism classes of rank 2, torsion free
abelian groups with a pure subgroup isomorphic to a given rank
1 group is shown to be in natural 1—1 correspondence with the
set of pairs consisting of a quotient type and a type of an
extension function. In terms of these invariants, necessary and
sufficient conditions are determined for such a group to be
homogeneous or to admit a pure cyclic subgroup. Moreover,
this 1—1 correspondence has an explicit inverse, so that examples
are readily obtained.

Our method is to combine the Korosh-Malcev-Derry matrix clas-
sification (see [2] for this and other well known aspects of the theory of
abelian groups which we employ) with some elementary observations
converning abelian extensions of rank 1, torsion free abelian
groups. We begin §1 by identifying Ext,(X, Y) for rank 1, torsion free
abelian groups X and Y in terms of ‘“‘extension functions.” A Korosh-
Malcev-Derry matrix sequence for the total group of such an extension
is readily given in terms of an extension function. Moreover, an
extension function explicitly determines a subgroup of Q Q. We
obtain an explicit necessary condition for two extension functions to
determine isomorphic total groups, as well as express the Korosh-
Malcev-Derry matrix conditions in terms of extension functions.

In §2, we explicate the 1 —1 correspondence asserted above. We
then “list” all homogeneous, rank 2, torsion free abelian groups of a
given type. We also determine in terms of our invariants whether or
not arank 2, torsion free abelian group admits a pure cyclic subgroup.

We gratefully acknowledge many helpful conversations with C.
Miller. Moreover, the referee’s suggestion of generalizing an eariler
version of this work proved most valuable. We refer the interested
reader to ([1]) for a detailed study of rank 2, torsion free abelian groups
up to quasi-isomorphism and to ([2]) for a survey of the literature on
torsion free abelian groups.

1. Extension functions. A sequence (4, -, a,, ) with
each a; an extended nonnegative integer, 0 =g, =, is called a
characteristic. Two characteristics, (a,: -+, au-") and

(by,* -, by, -*), are said to have the same type if and only if Z; (a; —
b:)*<~. If A is a torsion free abelian group, then the characteristic of
any nonzero element x in A, char(x)=(a,, -, a,, "), is defined by
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a; =char;(x) =sup{k: p7*x in A}, where p, denotes the ith
prime. Two torsion free, rank 1 abelian groups, X and Y, are isomor-
phic if and only if the type of char(x) equals the type of char(y) for any
nonzero elements x and y of X and Y respectively.

We first explicitly compute Extiy(X, Y) for any pair of rank 1,
torsion free abelian groups X and Y.

ProrosiTiIoN 1.1. Let X and Y be rank 1, torsion free abelian
groups and let x in X and y in Y be nonzero elements. Let
(a,**-,a, - *)=char(x)and (b,,: -+, b,,: - ) =char(y). Then thereex-
ists an isomorphism

(X, x;Y,y): ExtyX, Y)—>coker(§,: Y >II'Z/p{)

where T1' denotes the product over all i with b; <, where Z[p{ denotes
the p-adic integers Z, if a =», and where 6,(m[n-y)=
(m/n-pt,- - m/n-pt, ---). Moreover, (X, x;Y,y) is natural for
maps (X', x")— (X, x) and maps (Y',y')—(Y,y).

Proof. Let Y — Q be defined by sending y to 1. Since Q and
Q/Y are divisible abelian groups, Ext,(X, Y) is naturally isomorphic to
coker(Hom(X, Q) — Hom(X, Q/Y)). Applying the serpent lemma to
the following map of short exact sequences

0— Hom(X/Z- x, Q)— Hom(X, Q)—>Hom(Z-x, Q)—0
) 1) 2
0—»>Hom(X/Z-x,Q/Y)—Hom(X, Q/Y)—>Hom(Z-x,Q/Y)—0

we conclude that Ext,(X, Y) = coker(Y - Hom(X/Z - x, Q/Y)).
Let w(p, a) denote the cyclic subgroup of Q/Z generated by 1/p*
(let u(p,») =lim,u(p,n)). Then

XIZ-xS5Pup,a) and QIYSE p(p,®)

where the latter sum is taken over all i with b; <». Thus

Hom(X/Z - x, Q/Y)> Hom(® u (p, a;), @' p(p, =) > Z/p .

The map Y —->Hom(X/Z-x, Q/Y) is easily checked to send y to the
sequence {p?} under these identifications.

To check the naturality of ¢(X,x;Y,y) for a map
f: (X', x")—> (X, x), one must verify the commutativity of the following
square:
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ExtiX, Y) paiatl coker(6,: Y —>II'Z/p®)
‘lr EXtZ(f9 Z) l‘ ™

Ext, (X', Y) "2 coker(8,: Y —II'Z/p®)

where 7 is induced by the factor by factor projection map. This
verification, and the corresponding verification for naturality with
respect to maps g: (Y', y')— (Y, y), are routine.

For a given (Y, y), we call f in [I'’Z/p{* an “extension function” for
the corresponding extension ¢(X, x; Y, y)'(f) in Ext(X, Y), where f
is the image of f in coker(6,) and (X, x) is any torsion free, rank 1
abelian group X with nonzero element x satisfying char(x)=
@y, Gp ).

Observe that in the particular case that Y is free and y is a
generator, Proposition 1.1 asserts that

Ext(X, Z)— (f1Z/p )/ X(Z)

so that two extension functions determine isomorphic extensions if and
only if they differ by a constant.

We recall that if A is a finite rank, torsion free abelian group, then
AQZ, is a direct sum of Z,’s and Q,’s for every prime p, since
Extz(Q,,Z,) = 0 (where Z, denotes the p-adic integers and Q, denotes
the field of p-adic numbers). We say that {x,,---,x,} in A ®Z, is a
“basis” if A @Z, is the internal direct sum of the pure Z, modules
generated by the x;’s:

A®Zp:)zp .xh@.”@ZP * Xie @Qp 'xik«»n@“'@Qp * Xin

A “‘matrix sequence” for a finite rank, torsion free abelian group A
is a sequence of matrices {M;} expressing a given basis for A @ Q in
terms of bases for A ®Z, thus, if A is rank 2, {M.((l)) , M,((l))} is the
given basis for A @ Q expressed in terms of a basis for A ® Z,. Such
a matrix sequence determines the isomorphism class of A.

In the following proposition, we determine matrix sequences in
terms of extension functions.

PropoSITION 1.2. Let X and Y be rank 1, torsion free abelian
groups, let x in X and y in Y be nonzero elements, and let char(x)=
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(a;,**+,a, ) and char(y)=(by,---,b,,---). For a given extension
function f in WZ/p%, let

0->Y—->A->X—-0

be the extension ¢ (X, x; Y, y)\(f) in ExtY(X, Y). Then A,has a matrix

sequence
v
{( 0 p? )}

where 0= f, <p& with f(i)=f,in Z/p¥ if a;,, b, <o, where f, =0 and p
designates 1 if b, = o, and where f, = f(i) in Z,, and p{ designates 1 if

a; = o,

Proof. The extension ¢(X, x; Y, y)'(f) is obtained by pull-back
from 0— Y — Q — Q/Y — 0 via the composition X - X/Z-x 5 Q/Y.
For notational convenience, we view A; = Q X o,yX as a subgroup of
Q & X, containing (1,0)=y and (0, x) = x.

For each i with b, = 0, {y, pi*y} in A, is a basis for A; ®Z,. For
each i with b, a; <o, {pity, fpi“ ™y +piy} in A; is a basis for
A;®Z,. Foreachi with b, <®and a; = f,p7* ™"y +pi*y is in A; for
all k >0 where f; = f,, (mod p¥%), so that {p;®y, fip >y + x} is a basis for

b —
A; QZ,. Then (po‘ P f) is the matrix expressing the basis {y, x} of
A; Q@ Q in terms of the above basis for A; QR Z,.

We next determine in terms of generators a standard model for the

rank 2, torsion free abelian group A, defined by the extension function f.

ProrosiTION 1.3. Let X and Y be rank 1, torsion free abelian
groups, let x in X and y in Y be nonzero elements, and let char(x)=
(a;,**+,a,--) and char(y)=(b,,---,b,,--+). For a given extension
function f in I'Z/p %, the map

i(y,x): A; = QQ>/<YX—>Q€BQ

sending y to (1, 0) and x to (0, 1) is an isomorphism onto that subgroup
A(f) of Q P Q generated by (p?,0), (fpi™™, pr*) whenever a;, b; < «;
(pi*0), (0,p;* for all k >0, whenever a; <», b, =; (p3*,0), (0,p7*)
forall k >0, whenever a, = =b,. (p;™0),(fup7* ™ pi*) wheref,in Z
satisfies f,, = f; (mod p*) for all k >0, whenever a, = ©, b; <o,

Proof. Since A; is torsion free and {y,x} is a basis for A; @ Q,
i(y, x) is an isomorphism of A; onto its image i(A;). As checked in the
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proof of Proposition 1.2, A(f) Ci(A;). Moreover, one readily checks
that char(1, 0)) in A(f) equals (b, -+, b,,--) by determining the p-
divisibility of (1, 0) in A(f) ®Z, for all primes p. Therefore, A(f) N
(Q®0)=i(Y). Furthermore, the inclusion A(f) Ci(A;) determines
ANIAF)NQ GO0)Ci(X) with (0,1)=i(y,x)(x). This is also an
isomorphism, since char((0, 1)) in A (f)/A(f) N (Q @ 0) equals char(x)
in X. Thus, A(f) equals i(Af).

By employing the matrix classification for rank 2, torsion free
abelian groups, we give below necessary and sufficient conditions for
two extension functions f and g to determine isomorphic total groups A;
and A,. Because of the very ineffective nature of the Korosh-Malcev-
Derry matrix classification, the significance of Proposition 1.4 is the
explicit necessary condition it provides.

ProproSITION 1.4. Let X and Y be rank 1, torsion free abelian
grroups, let x in X and y in Y be nonzero elements, and let char(x) =
(ai,, +,a,+ ) and char(y)=(b,,- -+, b,,---). Two extension functions
f,gin I'Z/p{ determine isomorphic total groups A; and A, if and only if
there exists a matrix (z SB) in GL(Q & Q) and matrices (3' g-) in
GL(YRZ, D XEPZ,) satisfying

(1.4.1), (po'pi ;f><3 g)z(c; gi)'(pogl ;z%)

for all i. In particular, if A; is isomorphic to A,, then there exists
a,B,v,8 in Q satisfying ad —By#0 such that f and g satisfy the
following congruence condition for every i with b; < c:

(1.4.2); prB—f-8=g(fpy—a) (modp?

Proof. The conditions (1.4.1); express the relationship between
matrix sequences for bases {x,y} and {x',y'} of A, QQ=QDHQ=

A; ® Q related by (3 g ) in GL(Q 6 Q) in terms of bases {x; y;} and

{xi,yi} of Y®Z,DXQZ, related by (:l ?) in

GL(YR®Z, DX R®Z,). The necessity of conditions (1.4.1); is clear;
their sufficiency is well known (see [2]). If b, <® and (3‘ g‘) is in
GL(YRZ, DX RZ,) then B; is in Z,. With this in mind, conditions
(1.4.2); quickly follow from (1.4.1)..
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Since the 0 function, g =0, determines A, =Y @ X, conditions
(1.4.2); determine useful necessary conditions an extension function f
must satisfy for A; to be isomophic to Y P X.

The following definition formulizes the relationship between exten-
sion functions f and g which determine isomorphic total groups A; and
A,.

DEeFINITION 1.5. Let characteristics (ay, ", Qn-""") and
(by, -+, b, ---) be given and let f, g be elements of II'Z/p{ where II' is
the product over all i with b, <. Then f and g are said to be of the

same type with respect to (b, --,b,,---) if there exists (: g) in

GL(Q Q) and (:: g ') in GL(p*Z, @®p;i*Z,) such that each of the

equations (1.4.1); holds, where p;"Z, is either Z, or Q, depending on
whether m <o~ or m = o,

2. Applications. As afirst step toward classifying those rank
2, torsion free abelian groups A admitting a pure subgroup isomorphic
to a given rak 1 group Y, we verify that the isomorphism class of A/H is
independent of the choice of pure subgroup H isomorphic to Y. The
proof of the following proposition was given to us by the referee.

ProrosITION 2.1. Let Y be a rank 1, torsion free abelian group,
and let A be a rank 2, torsion free abelian group. For any two pure
subgroups H, H' of A isomorphic to Y, A/H is isomorphic to A/H'.

Proof. Let x and x' be nonzero elements of H and H’
respectively. If there exists nonzero m/n, m’/n' in Q with m/n - x +
m'[n’-x'=0in A, then H and H' are equal; namely, each is the pure
subgroup generated by n’'mx = —nm’'x’. Consequently, we may as-
sume {x,x'} span A ® Q.

Define Hy={r in Q |rx + sx' isin A for some s in Q}. Then the
map A — H, sending rx +sx’' to r is surjective with kernel
H'. Similarly, if Hy={s in Q|rx + sx' isin A for some r in Q}, then
A —> H; has kernel H. Therefore, it suffices to prove that H, is
isomorphic to Hj.

Consider the inclusions H CH, sending rx to r, and H' CHj
sending sx’ to s. Then H,— H{/H’ sending r to the class of some s
such that rx + sx’ is in A is well defined: if rx + s'x' is also in A, then
(s—s')x" is in H'. Clearly, this map induces an isomorphism
H,/H— Hy)H'. Since H, and H| are rank 1, torsion free with
isomorphic subgroups H and H' respectively and isomorphic quotient
groups Ho/H and H{/H', H, is isomorphic to Hj.
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The following theorem summarizes the discussion of §1 together
with Proposition 2.1.

THEOREM 2.2. Let Y be a rank 1, torsion free abelian group and let
y in Y be a nonzero element. Then there is a natural 1—1 correspon-
dence with explicit inverse

@(Y,y): E(Y)—=>T(Y,y)

between the set E(Y) of isomorphism classes of rank 2, torsion free
abelian groups with a pure subgroup isomorphic to Y and the set
T(Y,y) of pairs consisting of

(1) the type of some characteristic (a,," -, Q" ")

(if) the type with respect to char(y) of some extension function fin
II'Z/p &, which transforms to =p§---pe---fin WZ/pd*ifall ¢, =0
and T ¢, <o,

Proof. We define ®(Y, y)(A) for A in E(Y) as follows. Choose
arank 1, pure subgroup H of A with O# h in H such that char(h) =
char(y)=(b,, -+, b, --*). Letx in A/H be any nonzero element with
char(x)=(a,,* ", an-*). Let f in I'Z/p® be an extension function
representing ¢(A/H,x;H, h)(0—~H —-> A —-A/H —0) as in Proposi-
tion 1.1. Define ®(Y, y)(A) = {char(x), f}.

By Proposition 2.1, the type of char(x) is well defined, independent
of the choice of H or x. By Proposition 1.4, type of f depends at most
upon choices for A/H, x, H, h, since A is isomorphic to A, If H'is
another rank 1, pure subgroup of A with O# h' in H' such that
char(h') = char(y), if x’ in A/H' is chosen with char(x’) = char(x), and
if f"in ['Z/p{ represents

¢(A/H',x";H',h"Y(0>H'—- A —> A[H'—0),

then

LG P ()

are each matrix sequences for A by Proposition 1.2. Hence, by
Proposition 1.4, f and f’ have the same type. Finally, for a given rank
1, pure subgroup H of A with O # h in H such that char(h) = char(y),
let x'=mx be an integer nonzero multiple of x in A/H. As an
extension function for 0—>H —- A — A/H — 0, f may be viewed as a
classifying map f: (A/H)/Z - x — Q/H; this induces the classifying map
f'*(A/H)/Z-x'— Q/H. Under the identifications
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Hom((A/H)/Z-x,Q/H)=1I'Z/p¢,

Hom((A/H)/Z -x', Q/H) =II'Z/p#** with ¢; = max{c |p¢ divides m},
f'=tpir-py---f in WZlpe.

The naturality of ®(Y, y) with respect to Y and y follows from the
naturality of extension functions as given in Proposition 1.1. The fact
that ®(Y, y) is injective follows from the fact that A is isomorphic to A,
if ®(Y,y)A)={(a,,--a,, "), f}. The fact that &(Y, y) is surjective
follows from Proposition 1.2, since ®(Y,y)(A;) ={(ai,*--,aw "), f}
Finally, the explicit inverse of ®(Y, y) is given in Proposition 1.3.

We say that a torsion free abelian group A is homogeneous of type
(b, -+, by, -+ ) if for every nonzero x in A, the type of char(x) equals
the type of (b,,---,b,,-++). Using Theorem 2.2, we “list” all rank 2,
torsion free abelian groups which are homogeneous of type

(bl’ ce bn’ .o )

THEOREM 2.3. Let (b, -, b, -*) be a characteristic and let Y be
a rank 1, torsion free abelian group with O#y in Y such that
char(y) = (b, -+, b,,- ). Then the set of all rank 2, torsion free
abelian groups homogeneous of type (by,---,b,,---) is the subset of
E(Y) consisting of those A in E(Y) such that ®(Y,y)A)=
{(ay, -, au--°),fin II'Z[p?} satisfies

(i) if b, =, then a; = x;

(i) if b <o and a; = «, then f; in Z, is not rational ;

(iii) for all but finitely many i with b; <, a; = b; and p|f;;

(iv) for every nonzero pair of integers {m, n}, there are only finitely
many i with a; > b, p%|f, and m —nf.[p? divisible by p..

Proof. The set of isomorphism classes of rank 2, torsion free
abelian groups homogeneous of type (b, - -, b,, - - -) is clearly a subset
of E(Y). To prove the theorem, it suffices to prove the following for a
given pair {(a,, -, a,---),f in ['Z/p{}: the characteristic of every
nonzero element (m,n) in A(f)NZE Z as an element of A (f) has the
same type as (b,,- -, b,, ) iff conditions (i)—(iv) are satisfied (where
A(f) is given in Proposition 1.3.). We write

(m,n)=(mp?—nf)(p:", 0)+npfpi* " pi*

in A(f)QZ,, where p==1 and f, =0 if b, =. We observe for any
k >0 that (m, n) is divisible by p¥in A (f) iff (m, n) is divisible by p*% in
AN RZ,.

If b, = =, then every (m,n) in A(f) N ZE Z is infinitely p; divisible
(as an element of A(f)) iff a,=o. If b, <x, then (m,n) in
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A(f)NZ@PZ is not infinitely p; divisible iff either a; <« or a; = © and
mp?—nf,#0. Consequently, (i) and (ii) are equivalent to the condition
that one nonzero element of A (f) is infinitely p; divisible iff all nonzero
elements of A(f) are.

(m,n) in A(f)NZ &P Z is divisible by p! for all but finitely many i
with b; < iff n = 0 or for all but finitely many i with b; <, a; Z b, and
p2|f. (m,n) is not divisible by p?*' for all but finitely many i with
b, <« iff for all but finitely many i with a; > b,, mp " — nf; is not divisible
by p?*'. Consequently, (iii) and (iv) are equivalent to the condition
that the characteristic of any nonzero element of A(f) differs from
(b, -+, b, ) at only finitely many i with b..

To show how explicit Theorem 2.3 is, we provide the following
simple example.

ExampLE 2.4. Let (b,,---, b, ---) be a characteristic such that
b; < for infinitely many i. Let Y be a rank 1, torsion free abelian
group with nonzero element y with char(y) = (b, -+, b,,---). Then for

any positive integer k,
(Y, y)'(b+ k.- o b+ ko), f=i-plin IIZ[p?*Y)

is an indecomposable, rank 2, torsion free abelian group homogeneous
of type (b,,---,b,,*).

Proof. If A in E(Y) is homogeneous and decomposable, then
A=Y @Y so that the quotient type of A (i.e., the first invariant of
Theorem 2.2) must be the type of (b,,---,b,,---). Consequently, to
check the example it suffices to verify conditions (i)-(iv) of Theorem
23 for {(b,+k,---,b, +k,--+), f=1i-pPl}. Conditions (i), (ii), and (iii)
are immediate. To verify condition (iv), we observe that for suffi-
ciently large i 0<n -i —m <p; by the prime number theorem.

In particular, Example 2.4 gives examples of nonfree homogeneous
groups A, with type A =(0,---,0---), such that A QZ, is a free Z,
module for all primes p. These groups are called locally free.

As another application of Theorem 2.2, we determine the subset
E(Z)NE(Y) of E(Y).

ProrosITION 2.5. Let (b,---,b,,--*) be a characteristic and let Y
be a rank 1, torsion free abelian group with 0#y in Y such that
char(y)=(b,,- -+, b,,--+). Then the subset E(Z) N\ E(Y) of E(Y) con-
sists of those A in E(Y) such that ®(Y, y)(A)={(a;, - -,a, "), fin
I'ZIp ¢} satisfies: ‘

(1) if b, =, then a; < x»;

(i) for all but finitely many i with a;, b; >0, p; does not divide f;;
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(ili) there exists a nonzero pair of integers {m,n} such that
mp b — nf,#0 whenever a; =, and m — nf; is divisible by p; for only
finitely many i with b; =0 and a; > 0.

Proof. For Y cyclic, conditions (i), (ii), and (iii) are immediately
satisfied for any pair of invariants {(a;,**,a, - *),f}. We may thus
assume Y is not cyclic. As in the proof of Theorem 2.3, to prove the
proposition it suffices to prove that (m,n) in A(f) NZ&@ Z generates a
pure cyclic subgroup of A(f) iff (i) and (ii) are satisfied and {m,n}
satisfies (iii). Since Y is assumed not to be cyclic, we need only
consider (m,n) with n#0. We write

(m,n)=(mp?—nf)(p:* 0)+npMfp:*" p:*.

Now, (m, n) with n# 0 is not infinitely divisible in A (f) ® Z,, by p;
iff whenever b, =, then a; <w; and whenever a; =, then
mp?—nf;#0. Furthermore, (m,n) with n#0 is divisible by only
finitely many p; iff for only finitely many i with b, a; >0 f; is divisible by
pi; and for only finitely many i with b, =0, a; >0 m — nf; is divisible by
D
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