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A CONDITIONAL ENTROPY FOR THE SPACE
OF PSEUDO-MENGER MAPS

ALAN SALESKI

Let X be a set and 7: X — X be a bijection. Consider
the space -7 of pseudo-Menger maps on X which induce a
compact topology on X for which 7 is a homeomorphism.
The lattice properties of . are investigated and a bivariate
nonnegative function of 7 is defined which possesses certain
properties analogous to those of the usual conditional entropy
function defined on the space of measurable partitions of a
probability space.

1. Introduction. A pseudo-Menger map on a set X is, roughly
speaking, an assignment of a distribution function to every pair of
points in X in a manner consistent with the axioms of a pseudo-
metric space. Each such map induces a topology on X as defined
by Schweizer and Sklar [9]. Let T be a bijection of X onto itself.
Let .+# denote the space of all pseudo-Menger maps which induce a
compact topology on X for which T is a homeomorphism. If e #
let #(T, 6) denote the topological entropy of T with respect to the
topology on X induced by 6. In [7] it was shown that h(T, -) is left-
continuous in the sense that if 6, ,¢ _#; 6,=6 and 6,(p, q¢) — 0(p, 9)
in distribution for all », g€ X then A(T, 6,)— h(T, ). In an effort to
extend this result one is led to ask the question whether _/# is closed
under the operations of Max and Min and, if so, what can one say
about the entropy of T acting on the topology engendered by the
maps obtained as a result of such operations. We now proceed to
provide precise definitions and notation.

2. Preliminaries. Let I denote the closed unit interval, R the
real numbers and Z* the positive integers. Let < be the set of all
left-continuous monotone increasing functions F: R — I satisfying
F(0) = 0 and sup, F(z) = 1. Endowed with the Lévy metric & is a
complete metric space. If F,, F'e & then F,2 F will denote con-
vergence with respect to the Lévy topology. It is well-known that
F, Z Fif and only if F,(x) — F(x) for each x€ R at which F'is con-
tinuous. If F, Ge &r then F = G will mean F(x) = G(x) for all z€ R.
Let He &7 be the function defined by: H(t) = 0 for ¢t < 0and H(t) =1
for t > 0.

Let X be a fixed set. Let # (X) denote the collection of all
functions 6: X x X— =. For convenience we shall often write 4,,
in place of 6(p, q). A statistical pseudo-metric space is an ordered
pair (X, 0) where ¢ & satisfies:
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(SM 1) 0, =10, forall pqgeX

(SM 2) 6,,(a + b) =1 whenever 8,,(a) = 6,,(b) = 1 for some rc X
(SM 3) 0, = H for all peX.

If, in addition, 6 satisfies:

(SM 4) 0, = H only if p=gq

then (X, 6) is a statistical metric space. Let .&7(X) denote the collec-
tion of all # for which (X, 6) is a statistical pseudo-metric space.

A triangular norm is a function 4: I x I— I which is associative,
commutative, non-decreasing in each variable and satisfies 4(y, 1) = v
for each ye I. A continuous Menger space [pseudo-Menger space] is
a statistical metric space [statistical pseudo-metric space] (X, 6) for
which there exists a continuous triangular norm 4 satisfying:

(SM 5) 6,(a + b) = 4(0,,a), 6,.(b)) for all p,q,rc X and a,bc R .

Let _#Z(X) denote the set of all 4 for which (X, ¢) is a continuous
pseudo-Menger space. If 6, 8 _#(X) and 6,(p, q) — 6(p, g¢) for all
p, g€ X then we will write 6, — 6. Similarly, if 6, I"'e .Z(X) and
Opg = Iy, for all p,ge X then we write § = I'. Let e _Z(X) be
defined by 5,, = H for all p, ge X.

If e #(X) let X be endowed with the topology, denoted 7(4),
generated by all sets of the form N(p, ¢, », §) = {ge X:0,,¢) > 1 — A}
where peX, ¢>0, »>0. Let T:X— X be a bijection. Let
(X, T)={0e #(X): T is a self-homeomorphism of (X, (d)) and
7(0) is compact}.

If 0e #Z(X, T) we will let W(T, 6) denote the topological entropy
of T with respect to the 7(f) topology. We will follow the notation
and definitions of topological entropy developed in [1]. The only excep-
tion is the understanding that if 7T is a self-homeomorphism of (X, 7)
where 7 is not a compact topology and Z C t is a cover of X which
possesses a finite subcover then W(T, %) = lim, .. (/k)H(V iz T%).
We let _7Z(X, T)={0e #Z(X, T): (T, 6) < co}.

Let o be a pseudo-metric on a set Y and let 2 be an open
cover of (Y, p). Then p-diam Z will mean the sup {o-diam A: A€ Z/}.
Let z(0) denote the topology on Y determined by po. In addition, if
¢>0and ac Y then let B(Y, a,0,¢) ={ge Y:0(q,a) <é¢}. If D is
another pseudo-metric on Y then o = D will mean p{a, b) = D(a, b)
for all a,be Y. Finally, if X is a pseudo-metric space then X* will
denote the (unique up to uniform isomorphism) completion for which
X* ~ X is Hausdorff. Such an X* will be called the pseudo-metric
space completion of X.
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3. Lattice operations. If ¢, Te #Z(X,T) define 0 V¥ =
Min (6, %) and 6 A ¥ = Max (6, ¥). It is easy to construct examples
in which 8 A ¥ fails even to belong to $°(X). However, we will
show that 6 v ¥ admits a canonical extension to a map belonging to
A (X*, T*) where X* is the completion of (X, (6 \V ¥)) and T* is
the extension of T to X*.

PrOPOSITION 1. If 0, e #Z(X) then 8 V ¥ e 7 (X).

Proof. Let 4, and 4, be continuous triangular norms for 6 and
¥ respectively which satisfy:

Or(@ + ) = 44(0,,(a), 0,,b))
and
U, (a + b) = 4,(F,(a), ¥T,(b)) for all a,be R and all p,q,reX.

It is easy to check that 4, = Min (4,, 4,) is a continuous triangular
norm. Using the monotonicity of 4, and 4, we verify the triangle
inequality for ¢ Vv ¥ with respect to 4,:

©@v 7, (a+b) = Min (6,.(a + b), ¥,.(a + b))
= Min (4,(6,4(a), 04:(0)), 4:(¥ sq(a), ¥ 4,(D)))
= Min (4,, 4,)(Min (6,4(a), ¥»4(@)), Min (6,,(b), ¥ ..(b)))
= As((e \Y% w)pq(a)y (0 \Y% w)qr(b)) .

LEMMA 1. Assume 0,¥ e _#(X) determine compact topologies
7(0) and T(¥) respectively. Let d, and d, be pseudo-metrics on X
which generate the topologies () and T(¥) respectively. Then the
pseudo-metric D = d, + d, determines the topology (6 \/ V).

Proof. As a consequence of Lemma 4 of [7] and the above pro-
position we know that z(6\Vv¥)D7z(6) Uz(¥). Thus it suffices to show
that 7(6 vV ¥) is generated by {ANC:Ae7z(@) and Cecz(@)}. Let
peX, e>0 and M > 0 be given. Let ge N(p, &, N, 6 V ¥). For each
ne Z* choose A, = N(q,1/n,1/n, 6) and C, = N(q, 1/n, 1/n, ¥). Sup-
pose for each n there exists y, € 4,N C, such that y, ¢ N(p, &, N\, 0V T).
Then 46,,(1/n)>1—(1/n) and ¥, (1/n)>1-— (1/n) from which
OVv¥®),,— H. Since (0 V ¥),, is left-continuous and (6 Vv ¥),(¢) >
1 — A, there exists a 6 > 0 for which (0 V ¥),(c — d)>1— . Now
(0 V W)pvn(e) = A((ﬁ Vv w)pq(e - 3), (0 V W)w”(ﬁ)) - (0 vV w‘)pq(a - 3) >1—x
from which one draws the contradiction that y,€ N(p, ¢ ), 0V T)
for large n.

PROPOSITION 2. Let 0, ¥ € #(X) and suppose 7(8) and ©(¥) are
each compact. Then (0 \V V) is totally bounded.
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Proof. Let d, d, be pseudo-metrics on X which determine ()
and 7(¥) respectively. Then D =d, + d, is a pseudo-metric for
(0 V¥). Lete>0begiven. Let p,¢;6X,1<t1<N,1<5j=<M,
be chosen such that UYL, B(X, p,, d,, ¢/2) = UL, B(X, ¢;, d., €/2) = X.
Then it is easy to verify that, for each 7 and j, B(X, p,, d,, €/2) N
B(X, q;, d,, ¢/2) c B(X, #;;, D,e) for any z;¢€B(X, p,d, ¢/2)N
B(X, q;, d,, €/2) provided this intersection is nonempty.

THEOREM 1. Let 6,¥ e #(X, T) and let (X* t*) denote the
pseudo-metric space completion of (X, (0 \V ¥)). Then:

1. T admits a unique extension to a self-homeomorphism T*
of (X*, T%).

2. VYU admits a unique extension to a map (0 V ¥T)*: X* X
X*— o

3. (VU e #Z(X* T

4. * =7((6 v T)*)

Proof. Let D* denote the pseudo-metric on (X*, r*) which ex-
tends the pseudo-metric D on (X, 7(6 V ¥)). Sinced V¥ X X X— &
is a uniformly continuous map [8] it can be extended (Cor. 6.2, Ch.
14 of [3]) to a continuous map (6 V ¥)*: X* X X*— . The work of
Sherwood [11, 12] implies that (6 VV ¥)*e . #(X) and (0 V ¥)*) = t*.
Since T is uniformly continuous on (X, D) there exists an extension
T* which is a self-homeomorphism of (X*, *). Now since 7* is com-
pact, (6 VvV ¥)* e Z(X*, T*).

4. Entropy. We begin by investigating the relation among
T, 0\ ¥), (T, 6) and W(T,¥). Several lemmas are required.

LEMMA 2. Let (X, p) be a compact pseudo-metric space and
T: X— X be a homeomorphism. Let {Z,:necZ*} be a sequence of
open covers of X satisfying p-diam Z,—0 as m— . Then
MT, Z7,) — h(T).

Proof. Let {Z,;: je Z*} be a subsequence of the {Z,}. Using
the Lebesgue covering lemma one can select a subsequence {m;} of
the {n;} such that Um; < WUn;y, for 7 2 1. Now applying the Corol-
lary on page 314 of [1] the desired result is obtained.

LemmA 3. Suppose D and d are pseudo-metrics on X satisfying
D =d, ©(d) is compact and (D) s totally bounded. Assume T is
a self-homeomorphism of (X, d) and of (X, D). Let {Z,:ne Z*} be
a sequence of t(D)-open covers of X such that D-diam %,—0 as
n— o and each ¥, possesses a finite subcover of X. Then sup
{MT, z): 2z Co(d)} < lim, ... (T, 73).
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Proof. Let %, be a sequence of z(d)-open covers of X such
that d-diam 97, —0. Then for each n > 0 there exists an m = n
such that %, < %,. Thus lim, (T, %;) <1lim, (T, 7;). Now
sup {MT, ). zz c=(d)} = lim, (T, #,).

LEMMA 4. Let 0, e _#(X, T) and let D be a pseudo-metric on X
for which t(D)=7(0\V¥). For each ¢>0 let ZZ.={B(X, p, D, ¢): p€ X}.
Then h(T*, (6 V ¥)*) = sup, k(T, %.).

Proof. Let Zz* = {B(X*, p, D*,¢): pe X}. Then Z,. ={ANX:
Aez/*} and W(T*, (0 V ¥)*) = sup, h(T*, ZZ*). It is easy to verify
that N(VE& T*zZ*) = N(V¥ T'%.) for all K=0. Consequently
WT*, Z£*) = T, Z.) and the lemma is proven.

THEOREM 2. Let 0, e #(X, T). Then:
Max ((T, 0), K(T, ¥)) = K(T*, (0 V ¥)*) < KT, 0) + KT, ¥) .

Proof. Let d, and d, be pseudo-metrics on X which generate
7(0) and 7(¥’) respectively. Then D = d, + d, is a pseudo-metric for
(0 vV ¥). Lete, be a sequence of positive numbers such that ¢, — 0.
Let 7, ={B(X, p, D,¢,):pec X} and 7,* = {B(X*, p, D*, ¢,): pc X}.
Applying lemma 3, we have A(T*, (0 Vv ¥)*) = lim,_.. k(T*, 7.%) =
Iim,_.. (T, 7;) = sup {MT, %): % < (d,)} = h(T, 6).

Let &#, ={BX, »,d,, 1/n). pe X}, &, ={BX, p,d,, 1/n): pe X}
and %, = {B(X, p, D,1/n): pe X}. Since FZ, < FH, V &, Wwe have
MT, #2,) = MT, Fin NV &) = KT, ) + KT, &,,). Lemma 4 yields
MT*, (0 T)*)=1lim,_, (T, 2, < lim,_.. (T, P.,)+lim,_.. (T, &.,)=
MT, 0) + (T, 7).

ExAMPLE 1. Let Y =1{0,1,2} and X = Y? Define the shift
T:X— X by T({y.}) = {¥:+.}. Let d, and d, be pseudo-metrics on X
given by:

o

dfu), fe) = 3 [0 — o)

£ 21
where
w(a) = 0 if a=2
1 if a=0,1
and

dz({ui}; {zl}) = igw |a(ui)2(_i‘ a(zi)l
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where

0 if a=0

a(a>={
1 if a=1,2

for all {u,} and {z;} e X.
Define 0, ¥ e . # (X, T) by:

0..¢) = H(e — d,(u, z))
and
V,.(e) = H( — dyu, 2)) for all ¢ >0 and all u,z€ X .

Then it follows that »(T*, (6 \VV ¥)*) = In 3, Max ((T, 6), (T, ¥)) = In
2, and (T, 0) + (T, ) =In 4.

DErFINITION. If 0, e #Z (X, T)let he(0 | ¥) = W(T*, (0 \V ¥)*) —
KT, T)

ProposiITION 3. Assume 0, ¥, 'c # (X, T). Then:

(a) 0=hi(01%)=MT,0)

(b) R (616)=0

(¢) he(0VT|)=he 0| NT)+ k(T |I) provided 6V 7,
vYvile z(X,T)

(d) h(0]5)=MT,0)

Proof. Statement (a) is a corollary of Theorem 2. Statements
(b), (c) and (d) follow quickly from the definitions.

PROPOSITION 4. Let 0, I'e #x(X, T). Suppose 8\ I'c _#/(X, T)
and that (X, I') ©s a Menger space. Then h.(0]1) = 0.

Proof. This follows from the fact that any two compact metri-
zable topologies on X, each of which renders T a homeomorphism,
yield the same topological entropy for T.

PROPOSITION 5. Let 0,%e #y(X, T). Assume that 6V ¥e
(X, T) and that 6,, = H if and only if ¥,, = H. Then h(0]7) = 0.

Proof. For z,ye X, define x ~ y if and only if 4,,= H. This
equivalence relation on X induces a self-homeomorphism T of X/~.
It is easy to verify that A(T) = i(T). One can then apply Proposi-
tion 4.

ProrosITION 6. Let 6,¥, I'e #:(X, T) and suppose ¥ = 1I'.
Then ho(¥ |6) = ho(I" | 6).
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Proof. Lemma 4 of [7] yields z(I')c (¥ V 6). Since 7(0)
(@ Vv 0) we have t(I' V) cz(¥ Vv ). Let (X¥, z¥) and (X7, 75)
denote the completions of (X, z(4 Vv I')) and (X, z(6 V ¥)) respectively,
and let T7F and 73y denote the extensions of 7T to X! and X} re-
spectively. One may assume that X*cX? and that T¥ extends T7.
Then the relative topology on Xy induced by 7 contains 7. Let
D, and D, denote pseudo-metrics on X which generate z¥ and 73 |5
(the topology induced on X} by 7¥) respectively. By replacing D,
with D, + D,, if necessary, we may assume that D, < D,. Let Df
denote the extension of D, to (X7, z¥). Let 7;* = {B(X%, p, D, 1/n):
peXy} and 7, ={AN X: Ae 7;*}. Applying Lemma 3 together
with the fact that w(T¥, 7;) = K(T¥, 7.*), we have:

R(TE, (6 v I)*) < Tim A(TF, 77)
< sup (T3, 72%)
= W(T, (6 V ¥)*).

ExAMPLE 2. Two examples are given to show that, in general,
if 0,%, I'e #:(X, T)and ¥ <" then hy(6|¥) may be less than or
greater than h (0| 1I).

First, note that ¥ < 5 and h.(0 | E) = h(T, 6). Thus, if w(T, §) > 0,
then 0 = h(0]6) < h(60] E).

We now provide an example in which ¥ < I and h(60|7) >
he(0|1). Let Y=1{1,28,4,5} and X = Y? Define three pseudo-
metrics on X as follows:

D({y}, {z.}) = chLy_):_c(i)_l

o1
where
C(a) — 1 if a = 5
0 otherwise
d({ys, () = 3 %{“lsuﬁ
where

2 if a=1 or 3
s(a)=41 if a=2 or 4
0 if a=5

olly, (2h) = 3 _IME-J(_Z)_I
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where

t(a) — 1 if a = 1 or 2
0 otherwise

for all {y;}, {z;}e X.
Define 6, ¥, I'e _#(X) as follows:

0,4(8) = H(e — p(p, q))
I',f(e) = H(e — D(p, 9))
wpq(s) = H(e — d(p, 7))

for all p, ge X.

Let T:X— X be the shift given by T({v.})) = {#:r}. Then
0, e # X, T), T, h0|T)=WT,0NVT)—WT,T)=1Inb5~—
In 3=1In 5/3, and h (0| =WT, 0NV T)—WT IN=1Iln3—1In 2=
In 3/2.

THEOREM 3. Let 4,,¥,,0,%e #+(X, T). Suppose 6,26, ¥ .=V,
0,0, 0,50 and 0NV T e #(X, T). Then ho(6,|¥,)— k(0| 7) as

n—> co.
The proof of this theorem is based upon the following lemma.

LeMMA 5. Assume Ye #(X, T), 2¢ #(X), ©(Q) is totally
bounded, 2 =3 and T is a self-homeomorphism of (X, 7(2). Then
Re #(X, T).

Proof. We must show 7(2) is compact. Let X* be the com-
pletion of (X, z(2)) and T* be the extension of T to X*. So Q2*e
A (X*, T*). Since X* is compact, Lemma 3 of [7] is applicable.
Thus, given g€ X*, {N(q, ¢, N, 2%): ¢, » > 0} is a local basis for 7(2*)
at q. If pe X observe that N(p, ¢, », 2*) N X = N(p, ¢, \, 2). Hence,
for pe X, {N(p, &, \, 2): ¢, x > 0} is a local basis for 7(2) at p. Now
an argument analogous to that used in lemma 4 of [7] yields z(2) c
7(2).

Proof of Theorem 3. Since 0,VV¥,=0V Ve #4((X,T) and
0,V ¥,e #(X) the preceding lemma yields 6, V¥, Z(X, T).
Now, applying the main theorem of [7], (T, 8, v ¥,) — k(T, 6 V ¥)
and A(T,7,)— h(T, ¥). The desired result now follows.

We conclude with a brief consideration of a special class of
pseudo-Menger maps.
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DEFINITION. The map e #Z(X, T) is (X, T)-deterministic if
mT, 6) = 0.

PROPOSITION 7. Let 0, e #(X, T) and suppose that 6 = I'.
If I is (X, T)-deterministic them so is 0.

Proof. This follows at once from Lemma 4 of [7] where it is
shown that ¢(6) cz(I").

The following two propositions are consequences of Theorem 2.

PRrOPOSITION 8. Let 0, 'e # (X, T). Then 0 and I" are (X, T)-
deterministic if and only if 0 vV I is (X*, T*)-deterministic.

PropOSITION 9. If I'e #(X, T) is (X, T)-deterministic and
e #x(X, T) then hy(6|I") = (T, 6).
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