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A CONDITIONAL ENTROPY FOR THE SPACE
OF PSEUDO-MENGER MAPS

ALAN SALESKI

Let X be a set and T: X ~» X be a bi jection. Consider
the space ^ of pseudo-Menger maps on X which induce a
compact topology on X for which T is a homeomorphism.
The lattice properties of Λί are investigated and a bivariate
nonnegative function of -^ is defined which possesses certain
properties analogous to those of the usual conditional entropy
function defined on the space of measurable partitions of a
probability space.

l Introduction* A pseudo-Menger map on a set X is, roughly
speaking, an assignment of a distribution function to every pair of
points in X in a manner consistent with the axioms of a pseudo-
metric space. Each such map induces a topology on X as defined
by Schweizer and Sklar [9]. Let T be a bi jection of X onto itself.
Let ^£ denote the space of all pseudo-Menger maps which induce a
compact topology on X for which T is a homeomorphism. Jf θ e Λf
let h(T, θ) denote the topological entropy of T with respect to the
topology on X induced by θ. In [7] it was shown that h(T, •) is left-
continuous in the sense that if θ, θne^f, θn^>θ and θn(p, q)—+θ(p, q)
in distribution for all p, q e X then h(T, θn)~+h(T, θ). In an effort to
extend this result one is led to ask the question whether ^£ is closed
under the operations of Max and Min and, if so, what can one say
about the entropy of T acting on the topology engendered by the
maps obtained as a result of such operations. We now proceed to
provide precise definitions and notation.

2* Preliminaries* Let / denote the closed unit interval, R the
real numbers and Z+ the positive integers. Let <2ί be the set of all
left-continuous monotone increasing functions F: R~+1 satisfying
F(0) = 0 and sup,, F(x) = 1. Endowed with the Levy metric &r is a
complete metric space. If Fn, Fe& then F%^F will denote con-
vergence with respect to the Levy topology. It is well-known that
Fn -i F if and only if Fn(x) —> F(x) for each x e R at which F is con-
tinuous. If F, Ge 3ί then F ^ G will mean F(x) :> G(x) for all x e R.
Let He & be the function defined by: H(t) = 0 for t ^ 0 and H(t) = 1
for t > 0.

Let X be a fixed set. Let ^(X) denote the collection of all
functions θ: X x X—> £gr. For convenience we shall often write θpq

in place of θ(p, q). A statistical pseudo-metric space is an ordered
pair (X, θ) where θ e ̂  satisfies:
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(SM 1) θpq = θqp for all p, q e X

(SM 2) θpq(a + b) = 1 whenever θpr{a) = θrg(b) = 1 for some r e X

(SM 3) θpp = H for all p e l .

If, in addition, θ satisfies:

(SM 4) θpq = if only if p = q

then (X, θ) is a statistical metric space. Let ^ ( X ) denote the collec-
tion of all θ for which (X, θ) is a statistical pseudo-metric space.

A triangular norm is a function Δ: I x I—>/which is associative,
commutative, non-decreasing in each variable and satisfies Δ(y, 1) = y
for each y e I. A continuous Menger space [pseudo-Menger space] is
a statistical metric space [statistical pseudo-metric space] (X, θ) for
which there exists a continuous triangular norm Δ satisfying:

(SM 5) θpr(a + b) ^ Δ{βpq(a), θqr{b)) for all p, g, r 6 X and α, 6 ε i2 .

Let ^€(X) denote the set of all θ for which (X, θ) is a continuous
pseudo-Menger space. If θn, θ e Λ€(X) and θn(p, q) -^ <̂ (p, g) for all
p, qeX then we will write θn -̂> 61. Similarly, if θ, Γe ^f(X) and
^ g ^ Γpq for all p,qeX then we write 0 ^ Γ. Let Ξ e ^ f (X) be
defined by Ξpq = Jϊ for all p, qe X.

If θ e ^(X) let X be endowed with the topology, denoted τ(θ),
generated by all sets of the form N(p, e, λ, θ) = {g G X: 0pg(e) > 1 — λ}
where p e l , e > 0, λ > 0. Let T:X—>X be a bijection. Let
^^(X, Γ) = {θ e ^t(X): T is a self-homeomorphism of (X, τ(0)) and
τ(0) is compact}.

If #e^T(X, T) we will let h(T, θ) denote the topological entropy
of T with respect to the τ{θ) topology. We will follow the notation
and definitions of topological entropy developed in [1]. The only excep-
tion is the understanding that if T is a self-homeomorphism of (X, τ)
where τ is not a compact topology and ^ c r is a cover of X which
possesses a finite subcover then h(T, %S) = l i m ^ (l/k)£Γ(VJzί Γ ^ ) .
We let ^ ( X , Γ) - {0 G ̂ f (X, Γ): h(T, θ)< oo}.

Let |0 be a pseudo-metric on a set y and let % be an open
cover of (Yf p). Then |θ-diam <%S will mean the sup {p-diam A: Ae %f}.
Let τ^) denote the topology on Y determined by p. In addition, if
e > 0 and ae Y then let B(Y, a, p, ε) = {qe Y: ρ(q, a) < e}. If D is
another pseudo-metric on Y then p ^ D will mean p(ay b) ̂  Z)(α, 6)
for all a,beY. Finally, if X is a pseudo-metric space then X* will
denote the (unique up to uniform isomorphism) completion for which
X* ~ X is Hausdorff. Such an X* will be called the pseudo-metric
space completion of X.
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3 . L a t t i c e o p e r a t i o n s . I f θ, Ψe^(X,T) d e f i n e ΘVΨ =

Min (0, Ψ) and θ A Ψ = Max (θ, Ψ). It is easy to construct examples
in which θ Λ Ψ fails even to belong to S^(X). However, we will
show that θ V Ψ admits a canonical extension to a map belonging to
^T(X*, Tη w h e r e x* i s t h e completion of (X, τ(θ V ¥)) and T* is
the extension of Γ to P .

P R O P O S I T I O N 1 . If θ,Ψe ^t(X) then βvΨe ^//{X).

Proof. Let Δt and Δ2 be continuous triangular norms for θ and
Ψ respectively which satisfy:

0pq{a + b) ̂  ^ ( M α )

and

y pq(a + 6 ) ̂  Δ 2 ( Ψ p r ( a ) , Ψrq(b)) f o r a l l α , 6 G J B a n d a l l p,q,reX.

It is easy to check that Δz = Min (J l f J2) is a continuous triangular
norm. Using the monotonicity of Δ1 and Δ2 we verify the triangle
inequality for g V Ψ with respect to Δ%\

(θ V n , r ( α + 6) = Min (^r(α + 6), F,r(α + 6))
^ Min(Λ(^(α), θqr(b)), ΔlΨvq(a\ Ψqr{b)))
^ Min (Δlf J2)(Min (ίp f f(α), y M (α)) , Min (θqr(b), Ψqr(b)))

= J8((ff V f) f,(α) f (» V f

LEMMA 1. Assume θ,We^έf(X) determine compact topologies
τ(θ) and τ(Ψ) respectively. Let dλ and d2 be pseudo-metrics on X
which generate the topologies τ(θ) and τ(Ψ) respectively. Then the
pseudo-metric D = dx + d2 determines the topology τ(θ V Ψ).

Proof. As a consequence of Lemma 4 of [7] and the above pro-
position we know that τ{θ\/Ψ) => τ{θ) U τ{Ψ). Thus it suffices to show
that τ(ΘVΨ) is generated by {Af]C:Aeτ(θ) and Ceτ(Ψ)}. Let
peX, ε > 0 and λ > 0 be given. Let q e N(p, ε, λ, θ V Ψ). For each
neZ+ choose An = N(q91/n, 1/n, θ) and Cn = i%, 1/w, 1/w, ?Γ). Sup-
pose for each n there exists yne Anf] Cn such that ynί iV(p, ε,X,ΘVΨ).
Then θqyjl/n) > 1 - (1/n) and ΨgyJl/n) > 1 - (1M) from which
(θVΨ)qyn-+ H. Since (θ \J Ψ)pq is left-continuous and (0 V y)M(ε) >
1 - λ, there exists a δ > 0 for which (0 V y)pff(e - δ) > 1 - λ. Now
(0 V Γ )w#(e) ^ Δ((θ V ? U e - ί), (θ V f )„.(*)) - ( « V Γ U e - δ) > 1 - λ
from which one draws the contradiction that /̂̂  e N(p, ε,X, θ V Ψ)
for large n.

PROPOSITION 2. Lei 0, Ψ e ̂ £(X) and suppose τ(θ) and τ{Ψ) are
each compact. Then τ(θ V Ψ) is totally bounded.



528 ALAN SALESKI

Proof. Let dlf d2 be pseudo-metrics on X which determine τ(θ)
and τ(Ψ) respectively. Then D — dt + d2 is a pseudo-metric for
τ(β V Ψ). Let ε > 0 be given. Let pif qόeX, l^i^N, 1 ̂  j ^ Mf

be chosen such that Uf=i -B(^, P., ̂ , e/2) = Uf=i # ( ^ , ίi, d* β/2) = X.
Then it is easy to verify that, for each i and j, B(X, piy du e/2) n
B(X, qh d2, e/2) c £(X, *„, A e) for any ziS e B(X, pi9 du e/2) Π
i?(X, qh d2, e/2) provided this intersection is nonempty.

THEOREM 1. Let θ,We ̂ ( X , T) and let (X*, τ*) denote the
pseudo-metric space completion of (X, τ{θ V ¥)). Then:

1. T admits a unique extension to a self-homeomorphism T*
of (X*, τ ).

2. θ V Ψ admits a unique extension to a map (θ V W)*"*X* x

3. (0 V Ψ)* e ̂ TίJΓ11, Γ*)
4. τ* = r((0 V ?Γ)*)

Proof. Let D* denote the pseudo-metric on (X*, r*) which ex-
tends the pseudo-metric D on (X, τ(0 V f)). Since θ\/W:XxX->^r
is a uniformly continuous map [8] it can be extended (Cor. 6.2, Ch.
14 of [3]) to a continuous map (θ V ?0*: X* x X* - > ^ . The work of
Sherwood [11, 12] implies that {θ V 3F)* € .^f (X) and τ((θ V ?Γ)*) = τ*.
Since Γ is uniformly continuous on (X, D) there exists an extension
T* which is a self-homeomorphism of (X*, r*). Now since r* is com-
pact, (0 V 30* € ̂ T(X*, Γ*).

4* Entropy• We begin by investigating the relation among
h{T,θ\ί W), h{T, θ) and h(T, Ψ). Several lemmas are required.

LEMMA 2. Let (X, p) be a compact pseudo-metric space and
T:X—+Xbe a homeomorphism. Let {^n:neZ+} be a sequence of
open covers of X satisfying p-diam ^ n —> 0 as n —• ©o. Then

Proof. Let {^nj: j e Z+} be a subsequence of the {^J. Using
the Lebesgue covering lemma one can select a subsequence {mά} of
the {%} such that <2fm. < %fmj+1 for j ^ 1. Now applying the Corol-
lary on page 314 of [1] the desired result is obtained.

LEMMA 3. Suppose D and d are pseudo-metrics on X satisfying
D Ξ> d, τ(d) is compact and τ(D) is totally bounded. Assume T is
a self-homeomorphism of (X, d) and of (X, D). Let { Ψl: n e Z+} be
a sequence of τ(D)-open covers of X such that D-diam % ^ 0 as
% —-• oo and each Ψl possesses a finite subcover of X. Then sup
{h(T, ??): <& c τ(d)} ^ ϊίm.^0 h(T, Tn).
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Proof. Let *Wn be a sequence of r(ώ)-open covers of X such
that cZ-diam "Wl —> 0. Then for each n > 0 there exists an m :> w
such that <Wn< Tm. Thus limΛλ(Γ, 3^) ̂ Ίimwλ(!Γ,
sup {Λ(Γ, ̂ ) : ̂  c τ(d)} = lim, h(T,

LEMMA 4. Let θ, Ψ e ̂ €{X, T) and let Dbe a pseudo-metric on X
for which τ(D) = τ(θVΨ). For each ε>0 let ^ε=^{B(Xt p, D, ε): p e X}.
Then h{T*, {θ V ¥)*) = supe

Proo/. Let ^ e * = {S(X*, p, J9*, ε): p 6 X}. Then ^ £ = ( A Π X:
^e*} and h(T*, (θ V y)*) - sups Λ(Γ*f ^ * ) . It is easy to verify

that NWfT^ft^NO/fTVf.) for all K^O. Consequently
h(T*, %S*) = A(Γ, ^ . ) and the lemma is proven.

THEOREM 2. Let θ,Ψe ̂ f(X, T). Then:

Max (h(T, θ\ h{T, ¥)) S h(T*, (θ V ¥)*) ^ h(T, θ) + h(T, ¥) .

Proof. Let dx and ώ2 be pseudo-metrics on X which generate
τ(θ) and τ(¥) respectively. Then D = dx + d2 is a pseudo-metric for
r(0 V ?Γ). Let eH be a sequence of positive numbers such that εn —> 0.
Let 5*ς-{J?(X,p, D , e , ) : p 6 l } and TS = {^(X*, p, D*, e j : p e X}.
Applying lemma 3, we have λ(Γ*, (θ V f)*) = lim^^ h(T*, 7T) ^
ίίΐήn_ Λ(Γ, ^ς) ̂  sup {λ(Γ, ^ ) : ^ c r^)} - λ(Γ, θ).

Let ^ - {S(X, pf dlf 1/Λ): p e X}, ^ . = {£(X, p, d2,1/n): p e X}
and ^ = {β(X, p, D, 1/ )̂: p e l } . Since ^ w •< ^4n V K̂ we have
h(T, &n) ^ λ(Γ, ^n V ώl ) ̂  λ(Γ, ^U) + λ(Γ, ώ^). Lemma 4 yields
A(Γ*, (β V 50*)= lim^oo fc(Γ, ̂ ) ^ lim.^o h(T, ^n)
A(Γ, 0) + MΓ, ?").

EXAMPLE 1. Let Y = {0, 1, 2} and X = Γ z . Define the shift
T:X—>X by Γ({?/J) = {i/<+i}. Let dx and d2 be pseudo-metrics on X
given by:

where

_ JO if a = 2

(1 if a = 0, 1

and

00 I /v(oι \ r
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where

α(α)=f° i f α = °
11 if α = l , 2

for all {Ui} and {2J e X.
Define 0, y e ̂  (X, T) by:

Me) = #(* ~ din, z))

and

?Γtt,(e) = H(e - d2(u, z)) for all ε > 0 and all κ , ^ e l .

Then it follows that h(T*, (θ V ¥)*) = ϊrc 3, Max (Λ(Γ, 0), Λ(Γ, ?0) = In
2, and Λ(Γ, 0) + h(T, Ψ) = in 4.

DEFINITION. If ί, f* e ̂ €F(X, T) let λΓ(* I V) = M?7*, (0 V

PROPOSITION 3. Assume Θ,W, Γe ^£'F(X, T). Then:
( a ) 0£hτ(θ\Ψ)£h(T,θ)
( b) hτ{θ I θ) = 0
( c ) /^(0 V ?Γ I Γ) = M * | y v f ) + ΛΓ(y | Γ) provided ΘV

ΨVΓe^tF(X, T)

(d) M « | S )

Proof. Statement (a) is a corollary of Theorem 2. Statements
(b), (c) and (d) follow quickly from the definitions.

PROPOSITION 4. Let θ, Γe^?F(X, T). Suppose ΘVΓe^TF(X, T)
and that (X, Γ) is a Menger space. Then hτ(θ \ Γ) - 0.

Proof. This follows from the fact that any two compact metri-
zable topologies on X, each of which renders T a homeomorphism,
yield the same topological entropy for T.

PROPOSITION 5. Let θ,Ψe ^fF(X, T). Assume that θ v Ψ e
, T) and that θpq = H if and only if Ψpq = H. Then hτ(θ\Ψ) = 0.

Proof. For x,yeX, define x ~ y if and only if θxy = if. This
equivalence relation on X induces a self-homeomorphism T of X/~.
It is easy to verify that h(T) = MΓ). One can then apply Proposi-
tion 4.

PROPOSITION 6. Let θ, Ψ, Γ e ̂ €F(X, T) and suppose Ψ ̂  Γ.
Then hτ(Ψ \ θ) ̂  hτ(Γ \ θ).
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Proof. Lemma 4 of [7] yields τ{Γ) c τ(Ψ V θ). Since τ(θ) c
τ(W V θ) we have τ(Γ V θ) c r ( r V 0). Let (X?, rf) and (X?, r?)
denote the completions of (X, r(0 V Γ)) and (X, r(0 V ¥)) respectively,
and let T* and T* denote the extensions of T to X? and X? re-
spectively. One may assume that XfcX? and that Tt extends T*.
Then the relative topology on X* induced |!by τ* contains r*. Let
A and D2 denote pseudo-metrics on X* which generate τ* and r? |x*
(the topology induced on X? by r?) respectively. By replacing D2

with A + DZ9 if necessary, we may assume that Dι ^ D2. Let £)?
denote the extension of D2 to (X2*, r2*). Let ^ς* = {B(X?, p, D?, 1/n):
peXΐ} and Tn = {An Xΐ:Ae Tn*}. Applying Lemma 3 together
with the fact that fc(2?, Tn) = M27*, 3̂ *)» we have:

rs)

EXAMPLE 2. Two examples are given to show that, in general,
if θ, Ψ, Γ e ^ ( X , T) and f ^ Γ then ΛΓ(β | Ψ) may be less than or
greater than hτ(θ \ Γ).

First, note that Ψ S Ξ and hτ{θ \ Ξ) = λ(Γ, ί). Thus, if h(T, θ) > 0,
then 0 = hτ(θ \ θ) < hτ{θ \ Ξ).

We now provide an example in which Ψ ^ Γ and hτ(θ | Ψ) >
hτ(θ\Γ). Let Y = {1, 2, 3, 4, 5} and X = Yz. Define three pseudo-
metrics on X as follows:

where

c(α)= 1 i f α = 5

0 otherwise

where

β(α) =

'2 if α = 1 or 3

1 if a = 2 or 4

0 if α = 5
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where

1 if a = 1 or 2

(0 otherwise

for all {Vt}f{zt}eX.
Define θ, Ψ, Γ e ^£(X) as follows:

θpq(e) = JΓ(e - p(p, g))

Γ,g(ε) - H(ε - J5(p, g))

Ψpg(ε) = ff(e - <Z(p, g))

for all p, qe X.
Let T:X~*X be the shift given by T({yt}) = {yi+ι}. Then

0, Γ, f e ^ ( J , Γ), Γ ^ Γ, hτ(θ I ?r) = λ(Γ, 0 V F) - λ(Γf ?f) = ̂  5 -
^ 3 = In 5/3, and M# I Π = fc(Γ, θ V Γ) - h{T9 Γ) = in 3 - in 2 =
to 3/2.

THEOREM 3. Lei #„, y., ^,iFe ̂ 5 (Jf, T). Suppose θn^θ, Ψn

θn^θ,Ψn^Ψ and θyψe ^?{X, T). Then hτ(θn \ Ψn) -> hτ{θ \ Ψ) as
n—> oo.

The proof of this theorem is based upon the following lemma.

LEMMA 5. Assume Σe^{X,T), β e ^ ( I ) , τ{Ω) is totally
bounded, Ω ̂  Σ and T is a self-homeomorphism of (X, τ(Ω)). Then

, Γ).

Proof. We must show τ{Ω) is compact. Let X* be the com-
pletion of (X, τ(Ω)) and Γ* be the extension of T to X*. So 42* e
^"(X*, Γ*) Since X* is compact, Lemma 3 of [7] is applicable.
Thus, given g e l * , {N(q, ε, λ, £?*): ε, λ > 0} is a local basis for τ(fl*)
at g. If pe Xobserve that iSΓ(p, ε, λ, β * ) f l l = JV(p, ε, λ, 13). Hence,
for p e l , {iV(2>, ε, λ, β): ε, λ > 0} is a local basis for τ(£?) at p. Now
an argument analogous to that used in lemma 4 of [7] yields τ(Ω) c
τ(Σ).

Proof of Theorem 3. Since θnV Ψn^θ V We ^ C ( X , T) and

θ%VΨne^(X) the preceding lemma yields 0W V Ψ%s^{X, T).
Now, applying the main theorem of [7], h(T, θn V ΨJ->h(T, θ \J Ψ)
and Λ(T, Ψn)~+h(T, Ψ). The desired result now follows.

We conclude with a brief consideration of a special class of
pseudo-Menger maps.
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DEFINITION. The map Θ e ^f(X, T) is (X, T)-deterministie if
h(T, θ) = 0.

PROPOSITION 7. Let θ, Γ e ^ f (X, T) and suppose that Θ^Γ.
If Γ is (X, T)-deterministie then so is θ.

Proof. This follows at once from Lemma 4 of [7] where it is
shown that τ(θ) c τ{Γ).

The following two propositions are consequences of Theorem 2.

PROPOSITION 8. Let θ, Γe^f(X, T). Then θ and Γ are (X, 2>
deterministic if and only if θ V Γ is (X*, ϊ7*)--deterministic.

PROPOSITION 9. // Γ e ^ # ( X , T) is {X, Tydeterministic and
θ e ^TF(X, T) then hT{θ \ Γ) = h(T, θ).
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