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SPAN AND STABLY TRIVIAL BUNDLES

K. VARADARAJAN

E. Thomas [19] introduced the notion of span of a differenti-
able manifold (or of a vector bundle). The notion of span can
be extended in an obvious way to PL- microbundles, topological
microbundles and spherical fibrations. In the case of a vector
bundle or a microbundle the dimension of the fibre will be
referred to as its rank. A spherical fibration with fibre homoto-
pically equivalent to S*~' will be said to be of rank k. In this
paper we study stably trivial objects of rank k over a CW-com-
plex of dimension = k from each of the above collections. Then
we determine the span of such stably trivial objects over
CW -complexes of a “special type” yielding generalizations of the
Bredon-Kosinski, Thomas theorem on the span of a closed
differentiable = -manifold [3], [19]. Though originally PL-
microbundles were defined only over simplicial complexes, in
this paper by a PL- microbundle of rank k over a CW -complex
X we mean an element of the set [X, BPL (k)] of homotopy
classes of maps of X into BPL (k).

Throughout this paper X will denote a CW-complex and X* will
denote the k-skeleton of X. We write £ € Vect(X) {PL mic(X), Top-
mic(X) or Sph(X)} to denote that ¢ is a vector bundle a PL-
microbundle, a topological microbundle or a spherical fibration over
X. We write £ to denote that ¢ is of rank k. We write R (X) for any
one of Vect(X), PL mic(X), Topmic(X) or Sph(X). The trivial object
of rank k in R(X) will be denoted by e€xx. We write £ € R.(X) to
denote that ¢ is orientable. We write O%, 6%, €% and kx respectively
for the trivial vector bundle, PL -microbundle, topological microbundle
and spherical fibration of rank k over X.

Section 2 is concerned with stably trivial elements £ € R(X) when
dim X = k. In Section 3 we introduce the notion of a Gauss map for a
EER(X). If ¢ € R(X) is stably trivial, dim X =k and R # Topmic
we prove the existence of a Gauss map for £. If R = Topmic the same
result is true whenever k # 4. In Section 4 we prove the main result of
this paper (Theorem 4.3). An an immediate consequence of this
theorem the analogue of Bredon-Kosinski, Thomas theorem could be
derived in all the categories Diff, PL, Top or Poincare Complexes with
“obvious’ exceptions.

1. The kernel of =, (B,) — m(B:,)). We write B, for any
one of BSO(k), BPL*(k), BTop*(k) or BSH(k). For our later results
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we need information about the kernel of m(Bi)—«(Bi+1). When
B, # BTop*(k) the kernel of m(B.)— m (B, is well-known. Using
the results of Kirby-Siebenmann [13] and Lashof-Rothenberg [16] we
get information about the kernel when B, = BTop*(k), for k#4. Let
Ts, ts, 7+ and Ag+ denote the tangent vector bundle, tangent PL-
microbundle, tangent microbundle and the tangent spherical fibration of
S* Let

K, = ker m.(BSP(k)) — m.(BSO(k)),

C. = ker m(BPL *(k))— m.(BPL"*(k + 1)),

K, = ker m(BTop*(k))— m (BTop*(k + 1))
and
K% = ker m.(BSH (k))— m.(BSH (k + 1)).

It is well-known that the obvious map m,(BSO(k)— m (BSH (k))
carries K, isomorphically onto K} and that
Z if k is even
(D Ki=K;=4{10ifk=1,30r7
Z,if k is odd and #1,3,7.
with T (respy As<) as generator.
According to a result of W. M. Hirsch the map
m(BSO(k))— m(BPL *(k)) carries K, onto C,. A reference for this is

[7). Since the composite map K, — C, — K is an isomorphism, it
follows that

2 K, = C, and that t;- generates C,.
ProrosiTioN 1.1. For k#4, K, is cyclic and is generated by 7s-.

Z if k is even and # 4
3) Moreover K,= {Oifk=1,30r7
Z,ifkis odd and #1,3,7.
Proof. Since the composite map K, — K;— K} is an isomorph-
ism it follows that K, — K| is an injection for all k.

Let k=S5. In the following commutative diagram where the
horizontal rows are exact and the vertical maps are the obvious ones,



SPAN AND STABLY TRIVIAL BUNDLES 279

0—- K — m(BSO(k)) — m(BSO(k +1))

onto | | }
0O — Cc = m(BPL*(k)) — m(BPL*(k + 1))
l | onto l

0 - K, —» m(BTop*(k)) = m (BTop*(k + 1))
DIAGRAM 1

the map m (BPL*(k))— m (BTop*(k)) is onto and m(BPL*(k +
1))— m (BTop*(k + 1)) for k =5 by [13] or [16]. As already observed
K, — C; is onto according to a result of M. W. Hirsch [7]. Standard
diagram chasing using Diagram 1 yields K, — K is onto for k = 5.

For k =3 it is known that SO(k)— Top*(k) is a homotopy equival-
ence [15]. Hence for kK =2 we have K, = K;. When k =3 we have
0 = 7(S0O(3)) = m(BSO(3)) = my(BTop*(3)). Hence K,;=0 =K;.
This completes the proof of 1.1.

2. Stably trivial elements £ € R(X). Suppose dim X =
k and £*'€ R(X) is stably trivial. Then for R # Topmic it is known
that £**'=ek%. This is actually a consequence of

(4) ’7T,'(Bk+[, Bk)=0 for l gk

whenever B, = BSO(k), BPL*(k) or BSH(k). For B, = BSH(k), 4 is
due to I. M. James [10]. When B, = BPL *(k) it is due to Haefliger and
Wall[7]. We write B. to denote one of BSO, BPL*, BTop* or BSH.

LemMMA 2.1. Let dimX =k and &' € Topmic(X) be stably
trivial. Then &' = €X' whenever k # 3.

Proof. From Kirby-Siebenmann [13] or Lashof-Rothenberg [16]
we have m(BTop*(l+1), BTop'(l))=0 for i =l and [ =5. As an
immediate consequence of this and obstruction theory one gets
[X, BTop*(k + 1)]—[X, BTop*] to be an isomorphism for k = 4.

Now let k =2. Since m;(BTop*, BPL*)=m,_(Top*, PL*)=0 for
i#4, we see that [ X, BPL*]—[X, BTop*] is an isomorphism. Also
SOk +1)—>PL*(k+1) and PL*(k +1)—Top*(k +1) are homotopy
equivalences for k =2. Hence each of the maps [X, BSO(k +
DI—=[X,BPL*(k +1)], [X,BPL*(k+1)]1—[X,BTop*(k +1)] is an
isomorphism. From 4 we see that [ X, BPL *(k + 1)]—[X, BPL"] is an
isomorphism. Now Diagram 2 below immediately gives [ X, BTop"(k +
1D]—[X, BTop*] an isomorphism.
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(X, BPL*(k +1)] — [X, BPL"]
=] =~ l
[X, BTop*(k +1)]— [X, BTop"]

DIAGRAM 2

This completes the proof of Lemma 2.1.

ProposITION 2.2. Let X be a CW-complex of dimension = k where
k=3o0r 7. Let £ €R.(x) be such that £*|X*"'=¢€gx-. Then ¢ =
€ xx whenever R # Sph.

Proof. We have

&) O = wy(BSO(3)) = wy(BPL"(3)) = my(B T0p+('3))

From results in Section 1 we see that ker w(B;) — 7+Bs) is zero. From
7i(Bys, B ) =0 for i =k and kK =5 it now follows that 7(B,;) — 7:(Bs)
and 7/Bs)— m«B.) are isomorphisms. From Bott [2] 7(SO)=
0. From Hirsch and Mazur [8], [9] m(BPL*, BSO) =T the group of
concordance classes of smooth structures on S It is known [12] that
Ic=0. Combining these with the result =,(BTop*, BPL*)=0 of
Kirby-Siebenmann we get

(6 O = m(BSO(7)) = m(BPL (7)) = w(BTop"(7))

Let u: X*'— X denote the inclusion. If X = X*'U,, e% we have a
cofibration u: X*'— X with cofibre V., S% Let ¢: X— Vic; S} be
got by collapsing X*~' to a point. In the Puppe exact sequence

[ v St Bk]iltx, B.] %5 [X*, Bi]

ieJ
we have u *(£*) = 0, since £* | X*'is trivial. Hence 3 an x[Ve; S¥, B«]

such that c*(x) = ¢% By S and 6, m(B:) =0 for kK =3 and 7, whenever
B, # BSH(k). Hence x =0, which in turn yields ¢* =0 in [X, B,].

REMARKS.

2.3. If F(k) denotes the subspace of SH(k + 1) consisting of base
point preserving maps it is known [10] that
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m(BSH(3)) = m(SH(3)) = m(F(3)) = 7(S°) = Z,
and that
wH{BSH (7)) = w(SH (7)) = wy(F (7)) = ms(S7) = Z,.

Let k =3 or 7. We have a CW structure X on S* such that X*'=
(base point). If £* € Sph(X) is represented by the nonzero element of
[X, BSH (k)] = m(SH(k)) = Z, then clearly ¢*|X*™" is trivial, but ¢*
itself is not trivial.

2.4. Any ¢'€ R.(X) is trivial whatever be the dimension of X.

PropPoSITION 2.5. Let n* € R(X) be stably trivial and dim X =
k. Then

n“ Derx =€kx.
Proof. As commented already, this is well-known when
R# Topmic. For R = Topmic and k # 3 this is an immediate conse-
quence of Lemma 2.1. Let now k =3. Then 7? X* is stably
trivial. From Lemma 2.1 applied to n°| X* we get n°| X> =€} x:. Now
proposition 2.2 yields n’=¢€}x. Hence n P erx = €xx-

3. Gauss maps.

DEerINITION 3.1. Let é* € R(X). A map f: X — S* will be called
a Gauss map for £ if £ = f*(1gs+) in R(X), where 1g s+ = T, ts+, Tsx OF Agt
according as R = Vect, PL mic, Topmic or Sph.

When £ € R(X) admits of a Gauss map then necessarily £ is stably
trivial. The main result of this section is the following:

THEOREM 3.2. Let dimX =k and ¢ €R(X) stably

trivial. There exists a Gauss map for £ whatever be k if R # Topmic and
for k# 4 if R = Topmic.

In the proof of this theorem we will be making use of the following
lemma.

LeEmMA 3.3. Let Y be a CW complex of dimension =
k—1. Then [ZY,B,]—|[2Y,B..] is onto whatever be k if
B.# BTop*(k), and for k # 3,4 if B, = BTop*(k).

Proof. Let Y=Y"2U e i: Y*?>Y, j: B, — By, the in-
clusion maps and h: Y — V,o;S*"' got by collapsing Y*? to a
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point. Lemma 3.3 follows immediately by diagram chasing using the
following commutative diagram coming from Puppe exact sequences
where (Zh)*, (Zi)* and all the j. are group homomorphisms.

[z v §*1.B,

] Ghy* =i
velJ

S SY,B] 25 [(Y*), B —i»[vJS*-',Bk]
onto a | j. blij. clj d)}j.

[2 v Sk-‘,BM]@i[EY,Bk+,1—»[2(Y*-2),Bk+J F—>[v S*-',BM]

vel veJ

DiaGraMm 3

Here the maps j. marked by ¢ and d are isomorphisms under the
conditions in Lemma 3.3 and the j. marked by a is onto.

Proof of Theorem 3.2. Let X =X"'U e’ u: X*'—>X the
inclusion and c¢: X—>V,;S* the map collapsing X*' to a
point. Consider the following diagram where the horizontal rows are
part of Puppe exact sequences of the confibration u.

[E(X*-‘),Bk]—ﬁ[v S*,Bk] 5 (X, B 5 (X, B,]
y&€J
Lie L Li Li
[S(X*, Bii] = [ v §%, BM] % [X, Bunl 25 [X*, B
yeJ

DiaGrRAM 4

By Lemma 2.1 we have pu*(¢*)=0 in [X*', B.] whenever
R#Topmic and k—1#3. By proposition 2.5, j{(£)=0 in
[X, B..1]. From pu*(€)=0 we get an element u €[V, S* B:] such
that c*(u)=¢& Then j(u)=x €[V, S Biyy] satisfies c*(x)=
j(&€)=0. Hence 3 b € [Z(X*™"), B:.,] such that x* =0 where x° is got
from x by the action of [3(X*™"), B.] on [V,e; S¥ Byl

By Lemma 3.3, 3 a € [2(X*™"), B,] such that j.(a) = b except when
R =Topmic and k =3 or 4. Then the element ' = u* €[V,e; S, Bi]
satisfies jo(u')=0 and c*(u') =&  Identifying [V,e; S¥ B,] with the
direct product I, [S*, B.], u' corresponds to an element (u'),<; where
wh € kerj. I, (B,)— I (Bi.). Using 1, 2, 3 of §1 we see that u/=
d, sk {for some d, €Z if k is even, d,€Z, if k is odd}. Let
g,: S* — S* be a map of degree d, and ¢ : S* — B, a classifying map for
Trs*. Then clearly the composite map
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vg, v , ,
v S v Sk—5 8% %5 B represents p’'= () er
y&J y€J

From c*(u') = ¢ it follows that f*(rgs<) = ¢ where

f=V°<V g,)oc: X— S~
yEJ

To complete the proof of Theorem 3.2 we have still to consider the
case R = Topmic, k =3. In this case £|X? is stably trivial of rank 3
over a 2-dimensional complex. By Lemma 2.1, £|X>=¢€%. By Prop-
osition 2.2, £ = €. Since 75> = 75 we have f*(73) = ¢ This completes
the proof of Theorem 3.2.

4. Span of any £ € R(X). We now recall the definition of
span originally due to E. Thomas [19].

DEFINITION 4.1. Let £ € R(X). The span of £ is defined to be
the largest integer | with the property £ = exx 1 for some n € R(X).

In this section we will be interested in complexes of the form
X =L Ue* where dimL =k —1. It is easy to see using the exact
homology sequence of the pair (X, L) and the fact that H,_,(L) is free
abelian that either H,(X) =0 or H,(X)=Z. If we further assume that
Ext(H,_(X), Z) =0 it follows from the universal co-efficient theorem
that either H*(X) =0 or H*(X)=Z. By Hopf’s classification theorem
[X,S*]=H*(X). When H,(X)=0 every map X — S* is homotopi-
cally trivial, when H,(X)=Z the map[f]—degf provides an
isomorphism of [X, S*] with . Let I =k and 7: V,,,,.,,— S* denote
the map which carries any orthonormal (I + 1) frame (#,... #,,,) in R**' to
the vector 7,,;. We will be considering mainly complexes X = L U e*
with dim L =k — 1 and satisfying the following condition:

(%) Suppose 6: X — S* is a map admitting of a lift
¢: X—> Vi (ie. mop =60) and suppose degf =
1. Then ! = o, where o, =2°®+8d(k)—1withk +1=
20 16“ b, 0=c(k)=3, d(k)=0 and b, odd.

DerFINITION 4.2. Let k be an integer =4. A CW-complex X will
be referred to as a “‘special complex’ of dimension k

() X=LUe* withdimL =k—1

(i) Ext(H,(X),Z)=0 and

(iii) condition (**) is valid whenever k is odd.

Observe that when H, (X) = 0 condition (**) is emptily valid, since
there are no maps 0: X — S* of degree 1 then.
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THEOREM 4.3.
(A) Let £*€ R.(X) with X an arbitrary CW-complex. Then span
E=0or 2.
(B) Let k=1,3 or 7 and &£ € R(X) stably trivial with dim X =
k. Then span & = k. A
(C) Let k=4 and #7, X a special complex of dimension k and
&" € R(X) stably trivial. Then
(i) span ¢ = o, or k whenever R = Vect
(i) if R = PL mic or Sph, span ¢ = o, or k whenever k # 15
(iii) if R = Topmic, span ¢ = o, or k wheneverk # 4 and 15.

LemMa 4.4. Let X be a CW-complex of dimension =k, ¢* a
vector bundle, a € R(X) the object in R(X) underlying ¢&. Let | be any
integer =(k—1)/2. Then a =B Pexrx in R(X) if and only if £ =
n P O0x in Vect(X).

Proof. Immediate consequence of a classical result of I. M. James
[Proposition 1.2 in [10]] and obstruction theory.

LEMMA 4.5. The span of trsk = 0.

For R = Vect this is a classical result of J. F. Adams [1]. For
R = Topmic this is Theorem 1.1 in [20]. For R = PL mic or Sph the
proof is exactly similar to that of Theorem 1.1 in [20].

LeEmMMA 4.6. Let | be any integer =(k —1)/2, f: X —> S* a Gauss
map fora* € R(X) and dim X =k. Supposea =B @Derx. Then Ja
map ¢: X — Viiiusy Such that f = mwoe.

Proof. This is an immediate consequence of Lemma 4.4 applied to
the vector bundle &* = f*(Ts+).

LEmMmA 4.7. Let X be a CW-complex of dimension k satisfying
conditions (i) and (ii) of Definition 4.2. Suppose k is odd, H,(X) # 0
and a Gauss map f: X — S* for £* € R(X) has odd degree. Then any
map g: X — S* of degree 1 is a Gauss map for &.

Proof. This is an immediate consequence of the fact that 27z s« =0
in 7. (B:,) whenever k is odd.

LEmMMA 4.8. Let X be a CW-complex of dimension k =4 and
satisfying (i) and (ii) of Definition 4.2. Sup: ose k is even, a Gauss
map f: X —> S* for ¢ € R(X) has degf#0. Then span ¢ =0= 0.
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Proof. Denote the span of ¢ by o(£). If o(£) #0 we can find a
n* '€ R(X)suchthat £ =n Perx. Since 1=(k —1)/2, by Lemma 4.6
3 a map ¢: X — Vi, satisfying wep =f. Since H(V,,,0)=2, it
follows that deg f = 0, contradicting the assumption deg f# 0.

LemMMA 4.9. Let X be a CW-complex of dimension k, satisfying
conditions (i) and (ii) of Definition 4.2. Suppose f: X — S* is a Gauss
map for £ € R(X). Then ¢* = ef x whenever one of the following holds
good.

(@ H.(X)=

(b) H,(X)#0 (hence H(X)=2Z) and degf =0

©) H.(X)#0,k odd and degf is even.

Proof. (a)and (b) are immediate consequences of Hopf’s classifi-
cation theorem. (c) is immediate from 27z s+ = 0 in m,(B,) whenever k
is odd.

Proof of Theorem 4.3. We write o (&) for the span of ¢&.

(A) Ifo(£)#0,£=n Perx for some n E R+(X) By Remark
2.4, n'=€kx. Hence £*=¢€}x. Thus o(£?) =

(B) Immediate consequence of Theorem 3 2 and the fact g =
eks for k=1,3,7.

(C) ByTheorem3.2,3aGaussmap f: X > S*for¢&. If H(X)=
0, by Lemma 4.9 (a) we get o(¢)=k. If H,(X)#0 and degf =0, by
Lemma 4.9 (b) we get o(§)=k. If k is odd and deg f is even by
Lemma 4.9 (c) we get o(£)=k. If k=4 is even and deg f#0, by
Lemma 4.8 we get o(£) =0= 0.

Hence to complete the proof of (C) we have only to consider the
case k =25 odd and # 7 and deg f odd. The existence of a Gauss map
implies that o(§) Z 0. By Lemma 4.7, any map g: X — S* of deg 1 is
a Gauss map for £&.  If possible let o(¢) > o,. For R = Vect this means
that 3 a map ¢: X — Vi, satisfying mop =g for some [ > o,
contradicting the validity of condition (**x). Now suppose
R# Vect. For k =5 odd, k# 7 and 15 direct checking shows o, + 1=
(k=D2. If o(()>0. then ¢=n@Perx with [ =0, +1. From
Lemma 4.6 we see that 30 ¢: X — V..., such that mop = g, again
contradicting (**).

5. Poincare complexes with vy = 0. For any Poincare
complex X let vy €EJ(X) denote the spivak normal fibration of
X. From the results of C.T.C. Wall [21], it follows that any Poincare
complex X of formal dimension k#2 is of the homotopy type of a
CW-complex of dimension k and that if k# 3, X is homotopically
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equivalent to L Ue* with dim L =k —1. The methods employed in
[51, [6] allow one to define unstable tangent spherical fibration for
Poincare complexes of formal dimension # 2.

LemMA 5.1.  Any connected Poincare complex X of formal dimen -
sion k = 4 with vx = 0 is of the homotopy type of a *‘special complex’’ of
dimension k (as given in Definition 4.2). '

Proof. From H,_(X)= H'(X)=Hom(H,(X), Z) and finite gener-
ation of H,(X) we see that H,_(X) is free abelian. Hence
Ext(H,_(X),Z)=0. As already commented X is of the homotopy
type of L Ue* where dim L =k —1. The Thom space of the normal
fibration v, is reducible. Since vx = 0 it follows that the Thom space of
the trivial vector bundle o%"" is reducible. Suppose k =5is odd. By
the Browder-Novikov theorem [4], [11] it now follows that 3 a closed
C* manifold M* of dimension k and a homotopy equivalence
f: M* = X such that f*(O%") = O} is the stable normal bundle of
M. This means M is a closed differentiable 7- manifold. Lemma 5.1
is now an immediate consequence of Lemma 3.2 in [3].

For any PL (respy topological) manifold M the PL (respy topologi-
cal) span of M is defined to be the span of the PL (respy topological)
tangent microbundle of M. For a Poincare complex X the spherical
span of X is defined to the span of the unstable tangent spherical
fibration of X. As an immediate consequence of Theorem 4.3 we get
all the following results at one stroke.

THEOREM 5.2. (1) Let M* be a closed Diff, PL-or Top -
manifold of dimension k, with k # 15 in the case of a PL-manifold and
k#4 and 15 in the case of a topological manifold. Then the span
(respy PL-span or Top span) of M is either o, or k.

(2) If X is a Poincare complex of formal dimension k#2 and 15
with vx =0 in J(X), then the spherical span of X = a, or k.
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