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ALGEBRAICALLY IRREDUCIBLE REPRESENTATIONS
OF L,(G)

RoBERT A. BEKES

Let G be a locally compact, noncompact group and 7 a
weakly continuous, uniformly bounded representation of G on a
Hilbert space H. Suppose there exists a non-zero £ in H such
that the function x — (7 (x)¢, £) vanishes at infinity, Then 7 is
not algebraically irreducible when lifted to a representation of
L,(G). This implies that the left regular representation of
L.(G), for G noncompact, contains no algebraically irreducible
subrepresentations.

We investigate irreducible representations of locally compact, non-
compact groups which lift to algebraically irreducible representations of
L,(G). Algebraically irreducible representations lie somewhere between
the irreducible finite dimensional ones and the topologically irreducible
ones, not necessarly coinciding with either. A theorem of R. Kadison
[6] shows that the topologically irreducible *-representations of a C*-
algebra are all algebraically irreducible. Although (by a result of L. T.
Gardner [4]) L,(G) is never a C*-algebra unless G is finite, algebraically
irreducible representations occur quite naturally in several classes of
Banach *-algebras. Also given their nice properities (see the paper by
B. Barnes [1]) it would be interesting to know if L,(G) has any non-finite
dimensional ones, and where in the representation theory of G they are
located.

A. Weil [10, pp. 69-70] has shown that noncompact groups have no
finite dimensional square integrable representations and a result of M.
Rieffel [9, Corollary 5.12] shows that an infinite discrete group has no
irreducible square integrable representations. Our main result
(Theorem 5) is that for locally compact, non-compact groups, representa-
tions of L,(G) which belong to a class containing the square integrable
ones are never algebraically irreducible.

Notation and Preliminaries. Let G be a locally compact
topological group with left Haar measure u. Let L,(G) denote the
equivalence classes of integrable functions on G with repect to u, L,(G)
the equivalence classes of square-integrable functions on G with respect
to u and L.(G) the equivalence classes of essentially bounded functions
on G with respect to u. Let Cy(G) denote the set of continuous
functions on G which vanish at infinity and Cy(G) the set of continuous
functions on G with compact support.
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The L,(G) norm is denoted by || - ||;, the L,(G) norm is denoted by
[|l. and the uniform norm on Cy(G) is denoted by |- ..
If f is a function on G and x is in G then the function xf is defined

by xf(y)=f(xy) for all y in G.

Let H be a Hilbert space and let B(H) denote the set of bounded
operators on H. If T is a bounded operator on H then T* denotes its
adjoint. By a representation of G on H we mean a homomorphism of
G into the group of invertible operators in B(H). We call = weakly
continuous if 7 is continuous into B(H) with the weak-operator
topology. We say that 7 is uniformly bounded if

sup {[|7(x)]: x € G} <

and denote this number by |7 |.

Let 7 be a weakly continuous uniformly bounded representation of
G on a Hilbert space H. Then 7 may be lifted to a continuous
representation of L,(G) by the following formula

(e = [ T8 m)du(x)

for all f in L,(G) and &7n in H. If in addition = is a unitary
representation of G then = lifts to a *-representation of L,(G). If K is
a subset of H, the closure of K is denoted by cl K and the linear span of
K isdenoted by sp K. Let & bein H, M a subset of G and S a subset of
L,(G). Then

m(M)¢é ={m(x)¢: x € M}
and

m(8)¢ ={m(f)¢: f € S}.
We call 7 topologically irreducible if
clsp m(G)¢=H
for all nonzero ¢ in H. This is equivalent to
cdm(L(G))é§=H

for all nonzero £ in H.  We call 7 an algebraically irreducible represen-
tation of L,(G) if
7(L(G))¢ =H

for all nonzero ¢ in H.
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The Main Result. Throughout this section, unless otherwise
specified, G denotes a locally compact, noncompact group and =
denotes a weakly continuous, uniformly bounded representation of G on
a Hilbert space H.

LEMMA 1. Suppose m is irreducible and the function p(x)=

(m(x)¢, v) belongs to Co(G) for some nonzero £ and y in H.  Then the
functions

x = (m(x)n, )
belong to C(G) for all 7 and ¢ in H.
Proof. We first show that
clsp m(G)* ¢ = H.
Suppose for some ¢ in H we have ({, w(x)*&)=0for all x in G. Then
?T:();)){’ £)=0 for all x in G and since = is irreducible we must have

Let g(x)={(w(x)n,¢) and € >0. Choose x,,---,x, in G and
scalars Ay, - - -, A, such that

REDPEXEST Ry MTEIERNEE

Now choose yi, -+, y» in G and scalars B, - -, B. such that

+ 1”1

Let r(x) =25, 2", ABp(y;xx). Then r(x) belongs to Co(G) and

[6-2 B0+ v

< [2{”17" “2 A (%)

8= )] = [(@ym, )= 3 3 AB (mOn e )|
= [ @m )= (70 3 amg 3 o))
= |(mym - 7(x) 3 Amx)6 w) |

+ (70 S amg v -3 B2 )|
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= | =| H‘n —z)hﬂ(xi)gn 2l

sl |3 amee] |4 -3 By
<e.

This completes the proof of the lemma.

LEMMA 2. Let 7 be an irreducible representation of G on an infinite
dimensional Hilbert space H and let £ be a nonzero vector in H.  Then
given any compact subset M of G and elements x,, - - -, x,, in M there exists
Xps1 i G\ M such that mw(x,.,)* £ is linearly independent from the set

{r(x)* &, m(x,)* &}
Proof. By the first part of the proof of Lemma 1 we have that
clsp m(G)* ¢ = H.
If clsp m(M)* £# H we are done.

Suppose clsp w(M)* ¢ = H. We claim that clsp 7#(G\M)*§ =
H. To see this suppose there is a n in H such that

(n, m(x)*&)=0

for al x in G\ M. Since G is not compact there exists an x, in
B\ M™"'M. Then Mzx, is disjoint from M. So we have

(m (xo)m, w(x)* &) = (n, m(xx5)* £) =0
for all x in M. But then it follows that = (x))n =0 and so n =

m(xo)'m(xo)n =0. Therefore we may assume that clsp (G\M)* ¢ =
H. But now we are done since

clsp{m(x)*&:i=1,---,n}
is finite dimensional.

LEMMA 3. Leth € Cy(G) and let Y be the closed subspace of Co(G)
generated by the left translates of h by elements of G.  Suppose there exists
an inner product (-,-) on Y such that the norm | -| determined by it is
equivalent to the uniform norm on Y and the functions

x —(xf, g)
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belong to Co(G) for all f and g in Y. Then there exists a compact subset
M, of G and elements x,,- - -, x, in M, such that

xh € sp{xh,-- -, x,h}
for all x in G\ M,.

Proof. Suppose the contrary. Then given any compact subset M
of G and elements x;, - - -, x, in M, there exists x,.; in G\ M such that
X.+1h is linearly independent from {xh,---,x,h}. In particular Y is
infinite dimensional.

There exists a constant K > 1 such that

K7l =lfl. =K1l

for all f in Y.

Let y,=h. Having chosen x;,---,x, in G and vy, - ", 7. in
sp{xih,- - -, x,h} such that

(1) the set {y, "', v} is orthogonal

Q) v+ +wnl=@+27+--+2"Y] k|,
and

B3) lyll=E?*=2%)||h||, for k =1,---,n we choose Yn.:.

Let ¢ (x)=(xyy, %) for k=1,---,n. Then ¢, belongs to
Cy(G). Let

M= {xeG: 3 InlInl 6@z Ihl}

M={xec: 3 in@lz2znl
M,={x € G: |h(x)|z2"||h|.}
and

Mo={x€G: 3 Inlls0lz2 .

Then since all functions concerned are in Cy(G), the M, are
compact. Let M;=U!_ M, and M = M,UM;'. Then M and hence
M? are compact. So there exists x,.; in G\ (M?U M) such that x,.,h is
linearly independent from {v,,---,v.}. Note that x;}; M is disjoint
from M. Let

Yr+1 = Xn+1 h - kz_l ¢k (xn+1) " Ye "—2 Y
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Since ¢ (x)=(xh, i), the v, ---, v..: are orthogonal by the Gram-
Schmidt process.
Next we verify (2) of the inductive hypothesis. We claim that

=142+ -+ 27" 27| R ..

u

Xn+1 h + 2 ‘Yk
k=1

To see this suppose that for some x in G

’h(x,,+1x)+ D oy(x)| > A+27+ -+ 27+ 27 A,
k=1

Then either

0 [h(xeax)[>27 k]
or
(i) |2k v@)>27 A ..

Suppose (i) holds. Then x,.,x € M; and so x € x;;; M. Therefore
x# M, and so

|3 ww | <2l
But then
| )+ 3 om0 | <+ 2 ),
=s@A+27 4+ 2+ 27 Y A,
Next suppose (ii) holds. Then x € M, and so x& x,:y M. Therefore

X1 X & M, and so
|h(Xuerx)| <277 R ..

But then
h(xuax)+ 3 n0)| < 27kl + vt -+l

=2 k|, +@+27+- -+ 27| A,

=(1+27"+- -+ 27"+ 27| k..
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Therefore

Iyt =+ s =

Xprh — ‘Z:l ¢k (xn+1) " Yk "#2 Y + k§=:1 Ye

u

<<

Xniih + kZ:l Y| t ; [ s v 1721 v L

(o @MY= (1+27+ -+ 27+ 27 k|, + 277 R
=(1+2"+---+2)|h|..

which verifies (2).
Now we check (3). First note that for any x € G we have

Ikl = K|k = K|xh|. = K*||xh]|.

So

DN IIA LA

lyeusll =

2 [ | = 3 [ ) I |
(s € M) =2 K2 ||| -2 h|
= (K==2"7)].

This verifies (3).
Choose N such that 27¥'< K2 Then for n > N we have

lynailP = (K2 =27 R |P
= (K- 2")K2|h .

Let ‘P: = 2k=N+l Y- Then

n N
=] En-2 %

N
Z Y
k=1

=4[rl. by @)

n

ZYk

k=1

=

+

u

But since the vy, are orthogonal,

17
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n

1. P= 2 Inl

=N+1

= Y (K2-2K2|hf
k=N+1

v

[K™*(n — N)—-1]K*| h .
Therefore for n > K*+ N,
[W. [l = (K*(n = N)-1)K"'[|h]

which is impossible if || - ||, and || - || are equivalent on Y. This contradic-
tion proves the lemma.

LemMMA 4. Suppose i is irreducible and there exists a nonzero £ in H
such that the function p(x)= (mw(x)¢ &) belongs to C(G). Then H is
infinite dimensional.

Proof. Suppose H is finite dimensional. Let I' be the closure of
7(G) in B(H). We show that I' is a compact group. Since = is
uniformly bounded, I" is compact.

Now let S and T beinI". Choose sequences {x,}:-,; and {y,}»-, in G
such that

m(x,)— S and w(y.)— T.

Since |7 (x,)"|| = |7 (x| = || 7| for all n, by Dunford and Schwartz 3,
VII 8.1 and VII 6.1] S is invertible and 7 (x;')=n(x.)"'—=S". So
7(x.'y,)—> S'T and therefore S'TET.

It follows from Dixmier [2, 16.1.1 and 16.2.1] that we must have
{xp: x € G} relatively compact in the set of bounded continuous func-
tions on G. But this is impossible for p# 0 and p € Co(G). Because
we can choose p, € Cy(G) such that ||p — poll. <47'[p[.. Let K be the
support of p, and x,=e. Having chosen x;,---,x, in G such that
x K- x, K are pairwise disjoint, choose Xns1 in
G\ (UL, x;KK™). This can be done since G is not compact. It
follows by the choice of x,., that the sets x,K,---, x,.,K are pairwise
disjoint. Now let x be in K such that | po(x)| = poll.. Then for i# j we
have x'xxZ K and so

%' po— x7"polle Z | X7 pe{xix ) — x 7' po(x;x)]
= |p0(x )l
= [ poll..
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Therefore

Ix;'p = x7'p e 2 | x7'po— x7'polle = |1 x7'p — x7'poll = 1 x7'p = x7'poll.
=47 pll.

This contradiction proves the lemma.
We are now ready to prove the main result.

THEOREM 5. Let m be a weakly continuous uniformly bounded
representation of a locally compact, noncompact group G on a Hilbert
space H. Suppose there exists a nonzero vector ¢ in H such that the
function p(x) = (w(x)§ &) belongs to Co(G). Then = is not algebraically
irreducible when lifted to a representation of L,(G).

Proof. Suppose 7 is algebraically irreducible on L,(G). Foranyn
in H and f in L,(G) we have

(= [ fm@mdu )

Let #={f€ L(G): w(f)é =0}. Then ¥ is a closed left ideal of
L,(G). Since 7(L,(G))¢ = H the map

0: L(G)$—H
defined by
0(f + F)=m(f)¢

is one-to-one and onto. We claim that @ is also continuous. To see this
let f be in L,(G) and g in $. Then

(el = (- g)el
= |[. ¢@-senpmxdu)

= Il [ 17680l du ()
=l liilf— gl

and so

lm el =Nl inf (£~ gl = (7l f+Flh.
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By the open mapping theorem there exists a constant K >0 such that

K7 (Héll = 1f+ £lh= K= (Hél

for all f in L,(G).
By the above inequality it follows that the adjoint map

‘0: H*—> (L(G)/#)*
is a bicontinuous isomorphism. Now (L,(G)/#)* may be naturally

identified with $*, the annihilator of $ in L.(G), see Dunford and
Schwartz [3, 114.18b].

(i.e. gi= {h € L(G): L f(x)h(x)d (x) =0 for all f in j})

Therefore $* is equivalent to a Hilbert space in the norm induced from
the inner product.

(f,8)=(07'(f), '07'(g)
for f and g in $*.

For 7 in H* we determine ‘0(n) explicitly: Let f be in
L,(G). Then

| 78 du ) = <65 + 9),m)
~(n () m)
= fexm 08 mdux)

= [ feommm8du )

Therefore

‘B(n)x)=(n, m(x)§) ae.

In particular ‘6(¢)=p. It follows from Lemma 1 that

$4C CG).
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Also if y is in G, then

y ‘0(n)(x)="0(n)(yx)
=(n, m(yx)¢)
=(m(y)*n, m(x)§)
='9((y)*n)(x).

So #* is closed under left translates.
Let f be in #* and x in G. Then

‘0 (m(x)*'07'(f)) = x'0(07(f))
='0('07'(xf))
and so
97 (xf) = m(x)*'07'(f).
Then for f and g in #* and x in G
(xf, g) = (07'(xf), '07'(g)
=(m(x)*'07'(f), '07'(g)
=(07'(f), m(x)07'(g))-

This implies by Lemma 1 that the functions

x —{xf, g)

belong to Co(G) for all f and g in $*.

Let Y be the closed subspace of #* generated by the left translates
of p. Then Y and p satisfy the hypothesis of Lemma 3 with h =p. We
show that the conclusion of Lemma 3 is not satisfied. By Lemma 4, H is
infinite dimensional. ~So the contradiction follows from Lemma 2 since

9(m(x)* €)= xp
for all x in G and ‘0 is one to one. This proves the theorem.

COROLLARY 6. The left regular representation of L,(G), for G
noncompact, contains no nontrivial algebraically irreducible sub-
representations.
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Proof. Let A: G — B(L,(G)) denote the left regular representation
of G. By Hewitt and Ross [6, 32.43(e)] the functions

x = A (X))

belong to Cy(G) for all f in L,(G). Therefore Theorem 5 applies.

The next lemma, when G is unimodular and =7 is a continuous
unitary representation of G, is a special case of a result due to R. A.
Kunze [8, Theorem 1]. His proof also works in the more general case
below.

LemMa 7. Let G be a locally compact group and m a weakly
continuous, uniformly bounded representation of G on a Hilbert space
H. Suppose the functions

x —=>{(m(x)&n)

belong to L,(G) for all ¢ and m in H. Then there exists a constant K >0
such that

l=AOl = K|l
for all f in Cy(G).

Before proving the next corollary we will need the following
elementary fact from measure theory:

LEmMa 8. Let fbein L,(G)N Ly(G) and € >0. Then there exists
g in Co(G) such that |[f—gli<eand |f-glh<e

Proof. By Hewitt and Ross [6, 32.30 and 32.33(b)] there exists h in
Cw(G) such that |f—f*h|,<3"'e and ||[f—f*h|,<3"'e Choose a
compact subset K of G such that [[(f*h)|ck[i<3'€¢ and
I(f * h)loxk [k <37"e.

Let U be open such that KCU and [p(UNK)P'<
[6{|[f*h|.+1}] e forp=1and 2. Pick k in Cp(G) suchthat k =1=
|k|l. on K and k =0 on G\ U. Then for p =1 and 2 we have

[f*h = *h)kl, = I(f*W)lowull, + 1(F *h = (F * K)okl
<3'e+2|f*h | [ (UNK)F"
< 3'e+3e.

Soif g = (f*h)k wehave g € Co(G)and | f—gli<eand|f-gl.<e.
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COROLLARY 9. Let G be a locally compact, noncompact group and
a a weakly continuous uniformly bounded representation of G on a Hilbert
space H. Suppose the functions

x = {m(x)&mn)

belong to L,(G) for all ¢ and m in H. If m lifts to an algebraically
irreducible represetntation of L,(G), then 7w = 0.

Proof. Suppose = is algebraically irreducible on L,(G) and
H#{0}. Let f be in L,(G)-and g in L,(G)N L,G). Then since
If*gl.=[fl:lgll. we'have that f*g is in L(G) N Ly(G).

Let ¢ be in H with ||¢|=1. Then #(L(G)N LyG))¢ is an
invariant subspace- for 7 (L,(G)). Since L,(G)N L,(G) is dense in
L,(G) and = is algebraically irreducible we must have that

o 7(L(G)N L(G))¢ = H.

Let K be the constant in Lemma 7. So |7 (f)||= K |||| f|. for all f in
Cw(G). By the density of C(G) in L,(G) we may extend 7 to a
continuous map 7 of L,(G) into B(H). Let f€ L,(G)NL,G). We
show that 7(f) = w(f). By Lemma 8 there exists a sequence {g,}r-1 C
Cwn(G) such that [f—g.i—0 and |f-g.[.—=0. So |[=(f)—
m(g.)|—0. Therefore

7)==l = lim | #(f)~ 7 (g.)]
= lim || #(f) ~ #(g.)|

= li'r‘n K| f— gl

=0.
By (1) we must have that

7 (LAG))¢ = H.

Let M ={f € L,(G): w(f)¢é =0}. Then #(M*)¢é = H. Since the sub-
space M is closed in L,(G), the continuous map

f- ()¢

of M* onto H is one to one. So by the open mapping theorem there
exists a constant C >0 such that
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CHfl=lw(eél = Clfl.

for all f in M.

Let A: Ly(G)— B(LAG)) denote the left regular representation of
L,(G).

Let f be in L,(G) and g in M*. Choose {g,}7-1 C Cw(G) such that
lg — g |.—0. Then

lw ()7 ()= 7(f * g)ll = lim || 7 (f)m(g.) — 7 (f * &)
= lim [|7(f * &)~ #(f*g)|
= lim || #(f * g.) = #(f* )|
= lim K||f*g. —f+*gl

= lim K [f/lg. - gl
=0.
And so we have

= ()7 (@)l = |7 (f * g )¢l
= #(f =gl
=K|f=*zgl
=K[rxOllglk
= KClIa(Ol 1 #(g)él.

Hence

Il = CB AP

for all f in L,(G).

Let Ci(G) denote the C* enveloping algebra of A(L(G)) in
B(L,(G)). Then by the above inequality we may extend 7 from L,(G)
to a representation of C}(G) on H. Moreover, = is algebraically
irreducible on C3(G) since it is on L,(G). A result of Barnes [1,
Theorem 4.1] implies that = is similar to a *-representation of C$(G) on
H. So there exists a positive invertible operator V in B(H) such that
the map
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a—Vig(a)V
is a *-representation of C3(G) on H. Therefore the map
x—=>Via(x)V
is a continuous unitary representation of G on H. Let

p(x)=(V'm(x)VE &) =(m(x)VE VTE).

Then p is a continuous positive definite function on G and p belongs to
L,(G). Soby Godement’s Theorem [2, p. 269, 13.8.6], p =q*q=q *§
where q € L,(G) and g(x)= q(x™"). But then by [5, Theorem 20.16] p
belongs to Cy(G). This is a contradiction by Lemma 1 and Theorem 5.

REFERENCES

1. B. A. Barnes, Strictly irreducible representations of Banach *-algebras, Trans. Amer. Math. Soc.,
170 (1972), 459-469.

J. Dixmier, Les C*-algebres et leurs Representations, Gauthier-Villars, Paris, 1969.

N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.

L. T. Gardner, Uniformly closed Fourier algebras, Acta. Sci. Math., 33 (1972), 211-216.

E. Hewitt and K. A. Ross, Abstract Harmonic Analysis I, Springer-Verlag, Berlin, 1963.

, Abstract Harmonic Analysis II, Springer-Verlag, Berlin, 1970.

R. V. Kadison, Irreducible operator algebras, Proc. Nat. Acad. Sci. U.S.A., 43 (1957), 273-276.

R. A.Kunze, A note on square-integrable representations, Journ. Funct. Anal., 6 (1970), 454-459.

M. Rieffel, Square-integrable representations of Hilbert algebras, Journ. Funct. Anal., 3 (1969),
265-300.

10. A.Weil, L’ Integration dans les Groupes Topologiques et ses Applications, Herman, Paris, 1953.

O PN R LD

Received April 24, 1974.
ARIZONA STATE UIVERSITY, TEMPE, ARIZONA
Present Address: Department of Mathematics

Dartmouth College
Hanover, New Hampshire








