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ON RIGHT UNIPOTENT SEMIGROUPS

P. S. VENKATESAN

We investigate the implications of certain conditions on
right unipotent semigroups. We describe the greatest idem-
potent-separating congruence β on a right unipotent semigroup
S. Necessary and sufficient conditions for (i) S to be a union
of groups, (ii) S to be an inverse semigroup, (iii) the idempo-
tents of S to be in the centre of S and (iv) the quotient
semigroup S/β to be isomorphic with the subsemigroup of
idempotents of S are also obtained.

It is known that any regular semigroup has the greatest idem-
potent-separating congruence [5], [6] Such a congruence on an inverse
semigroup was obtained by Howie [4]. For the general terminology
and notation the reader is referred to [1], [2].

The author wishes to express his thanks to the referee for his
valuable comments.

1* Preliminary matters* An orthodox semigroup S is a regular
semigroup in which the idempotents form a subsemigroup. An
inverse of an idempotent of S is an idempotent, and if a\ V are
inverses of the elements α, b in S then b'a' is an inverse of ab [7].

A semigroup S is called a right (left) unipotent semigroup if
every principal right (left) ideal of S has a unique idempotent gen-
erator. Such semigroups are called left (right) inverse by the author
[9], [10]. Lemma 1 below is a part of the left-righ dual of Theorem
1 in [10].

LEMMA 1. Let S be a regular semigroup. Then the following
statements are equivalent.

(A) fef — fe for any two idempotents e, f in S.
(B) If a' and a" are inverses of the element a in S then aa! =

aa".
(C) S is a right unipotent semigroup.

LEMMA 2. Let S be a right unipotent semigroup and e be an
idempotent of S. Let x e S and x\ x" be inverses of x. Then xex'
is an idempotent and xex' = xex".

Proof. By Lemma 1 we have xe = xx'xe — x(x'xex'x) = xexfx. So
xex' is an idempotent. Also xex' = (xex')xx' = (xex')xx" = (xex'x)x" —
xex", using Lemma 1.
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2* The statements (Px), (Qx) and (Rx). Let S be a right uni-
potent semigroup and xeS. Throught E = E(S) denotes the sub-
semigroup of idempotents of S and V(x) denotes the set of inverses
of the element x. The symbols (Px), (Qx) and (Rx) stand for the
statements indicated below.

(Px) exe — ex and ex'e = ex' for all eeE and for at least one
x' e V(x).

(Qx) xex' = xx'e for all eeE and x' e V(x).

(Rx) xex' = exx' for all eeE and x' e V(x).

REMARK. Let S be a left unipotent semigroup. Then the left-
right dual of (Px), (Q%) and (Rx) are obtained by replacing respectively
the equations in them by xe — xe and exfe — x'e, x'ex = ex'x and
x'ex = x'xe.

THEOREM 1. Let S be a right unipotent semigroup and E = E(S).
Then

(1) (Rx) ==> (Qx) => (Px) for any xeS.
(2) E is contained in the center of S if and only if (Rx) is

satisfied for all xeS.

Proof. (1) Let xeS and x' e V(x).
Assume (Rx). Then for any eeE we have xex1 = exx' and hence

ex = (exxf)x = xex'x = x(x'xex'x) — x(x'xe) = xe by Lemma 1. So xx'e ~
xx'(ex)x' = xx'(xe)x' = xex', giving (Qx).

Assume (Qx). Then xex' = xx'e for any eeE. Therofore, by
Lemma 1, we get exe = βx(x'xe) = ex(x'xβx'x) = e(xex')x = e(xx'β)x =
exx'x — ex and ex'e =* ex'(xx'e) = eαj'^e^') = βflj'αja?' = ex', giving (Px).

(2) The only if part is trivial. The if part follows since, for
any x eS and eeE, as shown above, (Rx) implies ex = xe.

Let S be a right unipotent semigroup. Then the statements (1)
S is union of groups, (2) each ^-class of S is a left group and (3)
each ^-class of S is a group are equivalent [8]. An alternate
characterization for S to be a union of groups is obtained in the
following

THEOREM 2. Let She a right unipotent semigroup and E = E(S).
Then S is a union of groups if and only if (Px) is satisfied for all
x in S.

Proof. Let S be a union of groups. Let % eS and eeE. Let
x~ι be the inverse of x in the group Hx. Then x~ιx = xx~ι. Let a
and & respectively be the group inverses of ex and ex~\
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an inverse of ex, and xe is an inverse of ex'1, by Lemma 1 we have
and ex~~xb — ex~ιxe. But exx~ιe = exx~ι and ex~ιxe =

= exx"1 by Lemma 1. So both ex and ex"1 and hence their
product exex"1 belong to the group with identity element βxx'1. As
exex~γ is an idempotent we conclude that exex"1 — exx~\ Therefore
exe — ex(x~ιxe) = ex(x~1xex~1x) = (exex~ι)x — exx~γx — ex by Lemma 1.
Further since ex~ι belongs to the group with identity element exx"1,
we have ex"1 = ex^exx"1) = ex~ι{xx~ιexx~x) = ex~\xx~ιe) — ex~ιe, by
Lemma 1. So we get (Px).

Conversely let (Px) be satisfied for all xeS. (This part of the
proof holds for any regular semigroup S). Let xe S and x' e V(x).
Taking e = xx' in ex — exe we have x = xV 6 x2S. So S is a right
regular semigroup and hence a union of group [1], [3].

Let S be a right unipotent semigroup. Then S is an inverse
semigroup if and only it S satisfies the left-right dual of any of the
statements of Lemma 1. We now obtain a necessary and sufficient
condition in terms of (Px) and (Rx) for S to be an inverse semigroup.

THEOREM 3. Let S be a right unipotent semigroup and E — E(S).
Then S is an inverse semigroup if and only if (Px) implies (Rx)
for all x in S.

Proof. Let S be an inverse semigroup. Let x 6 S. Assume
(Px). Then for any e e E we have exe — ex and ex^e = ex"1. As
the idempotents in S commute we get exx"1 = (exe)x"1 = e(xex~ι) =
(xex~ι)e = x(ex"1e) — xex"1, giving (Rx).

Conversely let (Px) imply (Rx) for all xe S. Let g, heE. Then
for any eeE, by Lemma 1, we have e(gh)e = egh. As gh e V(gh),
by hypothesis we conclude ghegh = eghgh. So, by Lemma 1, we get
ghe = egh. Taking e — h, by Lemma 1, we have gh — hg. Thus S
is an inverse semigroup.

COROLLARY. Let S be a right unipotent semigroup and E =
E(S). Then S is an inverse semigroup if and only if (Px), (Qx)
and (Rx) are equivalent for all x in S.

REMARK. The left-right dual of Theorems 1, 2 and 3 hold for a
left unipotent semigroup.

3* The congruences a and β. In this section we construct the
greatest idempotent-separating congruence on a right (left) unipotent
semigroup.

Theorems 4 and 7 below generalize known results for inverse
semigroups [4]. In [6] Munn relates the greatest idempotent-
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separating congruence on an inverse semigroup to a certain full
inverse semigroup. We need the following

LEMMA 3. Let S be an orthodox semigroup and σ be an idempo-
tent-separating congruence on S. If (x, y)eσ then these exist u e V(x)
and v e V(y) such that (u, v) e σ.

Proof. Let (x, y) e σ, xf e V{x) and y' e V(y). Since σ is a con-
gruence we get (x'x, x'y) e σ and hence (x'xy'y, x'y) e σ. By transitivity
of σ we conclude (x'xy'y, x'x) e σ. This, since σ is idempotent-separat-
ing, implies x'xy'y — x'x. So xy'y = x. Similarly we get xx'yy' = yyf

and xx'y = y
Set u = y'yx' and v = yrxxf. Then u e V(x) and v e F(#). Now

from (a?, #) e σ we have (̂ /'a x', #'##') e σ, that is (v, u) e a and thus
(u, v)eσ. Hence the lemma.

Let S be a regular semigroup and E be the set of idempotents
of S. Define the binary relations a and β on S thus:

a = {(a?, y)eS x S: x'ex = y'ey for all eeE,x'e V(x) and y' e

/S = {(a;, y)eS x S: xex' = yβi/' for all eeE, x' e V(x) and y' 6

THEOREM 4. iβί S be a right (left) unipotent semigroup and
E = E(S). Then β(a) is an idempotent-separating congruence on S.
Further, if σ is any idempotent-separating congruence on S then
σ £ β(σ £ a).

Proof. We prove the theorem for the right unipotent semigroup
S. Clearly β is an equivalence relation on S. Let (x, y) e β. Let
ceS and \c' e V(c) and x' e F(x). Then x'c' e F(cx) and ^/'c' e V(cy).
As c(α;βcc;)c' = c(yey')c', by Lemma 2, we get {ex, cy) e /9 and β is a
left congruence. Further, since cec' is an idempotent for any eeE,
c'x' 6 V(xc) and cV e V(yc) we have ίc(cβc') '̂ = y(cecf)yf. So by Lemma
2, (ίcc, 2/c) e /S. Therefore β is a right congruence and hence a con-
gruence relation on S.

Now let g, heE and suppose that (g, h) e/3. Then by Lemma
2, for any eeE we have #β# = Ĵ eA. Taking e = g and e = h in turn
we obtain # = /*#/*, = &# and h = ghg = βΛ using Lemma 1. Therefore
g = A(gfe) ~ hh — h proving that /S is idempotent-separating.

Now let σ be any idempotent-separating congruence on S. Let
(x, y) e a. Then by Lemma 3 there exist xf e V(x) and yf e V(y)
such that (x\ yf) eσ. As σ is a congruence, for any eeE we have
(xe9 ye) e a and hence (xex1, yeyf) e σ. But xex* and 3/03/' are idempotents
and σ is idempotent-separating. Therefore xex' — yey'. This, by
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Lemma 2, implies (x, y)eβ and thus σ Q β. Hence the theorem.

COROLLARY [4]. Let S be an inverse semigroup. Then a(=β)
is the greatest idempotent-separating congruence on S.

THEOREM 5. Let S be a right unipotent semigroup and E = E(S).
For each xeS let θx: E—*E be the mapping defined by θx(e) = xexr

where x1 e V(x). Then
( 1 ) θx is an endomorphism, and
( 2 ) the following statements are equivalent.
(A) θx is an idempotent.
(B) The £ίf-class Hx is a subgroup of S and xx~ιe = xex'1 = x~ιex

for all ee E where x~ι is the group inverse of x in Hx.
(C) θx = θg where g — xx'.

Proof. L e t xeS a n d x' e V(x).
( 1 ) For any e,feE, by Lemma 1, we have (xexf)(xfxf) —

(xextx)fxt — xefx\ proving (1).
( 2 ) Assume (A). Then xexf = xxex'x' for all e e E. Taking x'x

for e we have xx' = xxx'x' and theorefore x'x — x'(xx')x = x'xxx'x'x =
x'xxx' using Lemma 1. So x — xxfx = x2x' and x&x2.

Now taking x'x'xx for e in xexf = xxex'x', and using x — x2x' and
Lemma 1, we get xx'x'x = awe' and hence x'x'ίc = x\ Therefore x —
xx'x = xx'x'x* and x^fx2. Thus xSίfx2 and Ji, is a subgroup of S.

By hypothesis and Lemma 2, for all e e E we have xex~ι — x2ex~2

and therefore x~ιxe — x~ιxex~ιx = ί c " ^ 2 ^ " 2 ) ^ = xea;"1 since x"1^ = xx'1.
Again taking x~2ex2 for e in xβaΓ1 = x2ex~2 we get α;"1^^ = xx^exx"1 —
ίcaj"^ using Lemma 1. So we get (B).

Assume (B). Then by Lemma 1, for all eeE we have xex~ι —
xx~xe = xx^exx'1, giving (G). Clearly (C) implies (A).

THEOREM 6. Let S be a right unipotent semigroup and E = E(S).
Then

( 1 ) T = {θx: x e S} is a right unipotent semigroup.
( 2 ) The mapping θ: S —> T defined by θ(x) = θx is an onto

homomorphism and θ'θ"1 = β.
( 3 ) Set 7 = θ IE (θ restricted to E). Then Ύ is an isomorphism

of E upon Θ(E).

Proof. As θxθy — θxy it follows that T is a regular semigroup.
We now show directly that T is right unipotent. Let θx and θy be
idempotents of T. Then, for all eeE, using (B) of Theorem 5
repeatedly we have x(yxex~1y~1)x~1 — xx~1y(xex~1)y~1 = xx^yy'^xex"1) =
xx~\yy~ι)xex~ι = xx~ιx(yy~ι)ex~ι — x{yy~ιe)x~ι — xyey~ιx~\ and hence
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θxvx = θxy by Lemma 2. So, by Lemma 1, T is a right unipotent
semigroup, proving (1).

(2) follows directly. As for (3) we need only to show that 7
is one-to-one. Let 7(g) — Ύ(h) for g, heE. Then by Lemma 2, we
have (g, h) e β. This, by Theorem 4, implies # = h and so 7 is an
isomorphism.

We now consider the quotient semigroup S/β. The following
theorem gives a necessary and sufficient condition for S/β to be an
idempotent semigroup.

THEOREM 7. Let S be a right unipotent semigroup and E = E(S).
Then the quotient semigroup S/β is isomorphic with E if and only
if the statement (Qx) is satisfied for all x in S. (The left-right
dual holds for a left unipotent semigroup).

Proof. Let S/β be isomorphic with E. As S/β is a homomorphic
image of S, each idempotent of S/β is the image an idempotent of
S [10]. So each /3-class of S contains at least one and hence exactly
one idempotent of S. Let xeS. Then there exists heE such that
(x, h)eβ. So for any eeE and xf e V(x) we have xex' = heh. In

particular taking e — x'x and e = h in turn we get xx' = hx'xh and
xhxf = h. The first equation gives xx'h — xx' and the second xxfh = h.
So xx' = h. Hence for any eeE, by Lemma 1, we have xex' =
heh = he = xx'e giving (Qx).

Conversely let (Qx) be satisfied for all xeS. Let xe S. Then
for any eeE and x' e V(x), by Lemma 1, we have xex' = xx'e = xx'exx'.
Therefore (x, xx') e β and hence each /3-class contains a unique idem-
potent. Let /3* be the natural homomorphism of S upon S/β. Then
the mapping /3* restricted to E is an isomorphism of E upon S/β.
This completes the proof of the theorem.

REMARK. One may appeal to Theorems 5 and 6 to prove Theorem
7. Clearly, for any xeS, the statements (Qx), and (C) of Theorem
5 are equivalent. Therefore (Qx) is satisfied for all x e S if and only
if T = Θ(E) and hence if and only if S\β is isomorphic with E.

From Theorems 1, 2, 7 and the corollary of Theorem 3 we have
the following.

COROLLARY [4]. Let S be an inverse semigroup. Then the
following statements are equivalent.

(A) The quotient semigroup S/β is isomorphic with E.
(B) S is a union groups.
(C) The idempotents of S are contained in the centre of S.
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