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THE EXISTENCE OF NATURAL FIELD STRUCTURES
FOR FINITE DIMENSIONAL VECTOR SPACES

OVER LOCAL FIELDS

MITCHELL H. TAIBLESON

Let K be a local field (e.g., a p-adic or ^-series field)
and n a positive integer. Let K' be the unique (up to iso-
morphism) unramified extension of K. It is shown that the
natural (modular) norm of Kf is the nWa power of the usual
(l°°) vector space norm of K! when Kf is viewed as an n-
dimensional vector space over K. Further, the two distinct
descriptions of the dual of Kr (which is isomorphic to Kr)
that arise from the field model and vector space model are
isomorphic under a iΓ-linear isomorphism of Kf as a vector
space over K, and the isomorphism is norm preserving.

1. If Rn is ^-dimensional Euclidean space and n > 1, then the
only case for which Rn has a (commutative) field structure is n — 2.
In that case R2 can be identified as the additive group of C, the
complex numbers, and the norms for R2 and C are compatible in
the following sense: Let (x, y) e R2 and consider the correspondence
(x,y)+->z = x + iy. The norm of (a?, y)eR2 is \z |Λ2 = | (x, y) \& =
(x2 + y2)ί/2. Let dz be Haar measure on C. We define iVc(w) = ww
and modc (w) by the relation d(wz) — modc (w)dz. We obtain, as is
well known: | z \2

R2 = Nc(z) = mod c (z).

We will show that if K is a local field (e.g., if K is a p-adic
field) and n is an integer greater than 1, then Kn, the ^-dimensional
vector space over K, has a field structure, as a local field, which
is compatible with the usual vector space norm of Kn, in the same
sense as above.

The reader is referred to [3; Ch. I] for a review of the basic
facts about local fields and to [4; Chs. I-II] for many details and
proofs.

2* Let K be a local field; which is to say a locally compact,
nondiscrete field that is not connected. The K is totally disconnected.
Such a field is either a p-adic field, a finite algebraic extension of
a p-adic field or the field of formal Laurent series over a finite
field. The ring of integers, £), in K is the unique maximal compact
subring of K. The prime ideal, D, in ®, is a maximal ideal that
is principal, O/5β = GF(q), a finite field. There is a norm on K,
\ \κ K*-+[0, °°), such that | x + y \κ ^ πiax [| x \κ, \ y \κ]. (This is
known as the ultrametric inequality.) O = {| x \κ ^ 1}. 5̂ = {| x \κ < 1}.
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The group of units, £)*, in i£* (the multiplicative group of K) is
{|&|* = 1}. The norm, | \κ, arises naturally since | y \κ = mod* (y)
where moάκ(y) is the module of the endomorphism x—>xy, that is,
mod* (0) = 0 and if y Φ 0 then d(yx) = mod* (y)dx, where dx is Haar
measure on K+, the additive group of K. The ^-dimensional vector
space over K, Kn, is endowed with a norm as follows: x =
(xlf - , xn)eKn, \x\Kn = maxk\xk\K. As Weil points out [4, Ch. II
§ 1], this norm is "natural" in the sense that any if-homogeneous,
ultrametric norm on Kn gives rise to the same topology on Kn as
I \Kn.

Let n be a positive integer, n ^ 2. If # e iΓ * then | a; |* = qk

for some fceZ. Furthermore, the principal ideal β̂ is generated
by p = φ, 11> IjE- = gr1. The polynomial xn — p is clearly irreducible
over K since if x is a root | x \κ = q~1/n, which is impossible. Thus,
there is is an algebraic field extensions of K of degree n for all n.

Let K[τ] be a given finite algebraic field extension of K of
degree n. K[τ] is a local field and is endowed with an (analytically)
natural norm, mod^]( ). We note that if y eK then mod^[r] (y) —
\y\κ [4; p. 6]. If K[z] is normal over K then K[τ] is also endowed
with an (algebraically) natural norm as follows: Let A be the auto-
morphism group of K[τ] over K. Then one defines the norm func-
tion N(y) = ΐ[aeAa(y). N(y)eK for all yeK[τ] and the norm is
defined by x-> | N(x) \κ. Clearly, if x eK, \N(x) \κ = \x \n

κ. In fact,
as is well known, | N(x) \κ = modx[r] (x) for all x e K[τ], This follows
easily from the observation that if x e K[τ] and aeA, mod#[r] (a(x)) =
mo&κίri (%) since automorphisms of local fields have module 1 [4;
p. 14].

- {moάκίτl(x)}nΛ/n =

If x e K[τ), x = x1 + x2τ H h xnτ
n~\ xk e K. The correspondence

xx+ ••• + ίCftΓ*"1 <-> (a?!, •••,»„) is a linear isomorphism of K[τ] and
Kn as vector spaces over K. Using that isomorphism we will
denote each element in the corresponding pair with the single
symbol x. It would be nice to find an extension K[τ\ of degree n
such that modπ[τ](x) = | x \\n — maxfc | xk \

n

κ. (Note that this holds for
all xeK.)

We can do this with the aid of Corollaries 2-3 in Chapter III
§ 4 of WeiΓs book, Basic Number Theory [4]. According to these
results, if if is a local field, n ^ 2 is an integer and D/5β = GF(q)
where q is a power of a prime p, then there is a field K' which
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is the unique (up to isomorphism) unramified extension of K of
degree n, and K' is a cyclic Galois extension of K, K' = K[τ]
where r is a root of unity (of order prime to p).

We denote £}, Q' the rings of integers of K and K'; *β, ψ the
prime ideals of Q and D' and we let ϊ = O/Sβ, ϊ' = Q'/Sβ'. From
the two corollaries we obtain that F = f[/0'(τ)] where /θ' is the
canonical homomorphism of K' onto f and that f is an extension
of ϊ of degree n.

THEOREM. Let K' = K[τ] be the unramified extension of K of
degree n. Then \ N(x) |* — mod*/ (x) = | x \\n for all x e K'.

It has been suggested that this theorem is well-known to
experts. However, no one has yet been able to give a reference
for the second of the two equalities. Since this is needed for the
applications in § 3 I will sketch a proof.

Proof. Since K' is normal over K we only need to show the
second equality; namely,

mod*/ (a,. + x2τ + + a^T*"1) = max*; [mod* (xk)]n .

(a) Vx G K, mod*, (x) = [mod* (x)]\ See [4; p. 6]
(b) mod*/ (r) = 1. Note that τ is a root of unity.
(c) mod*/ (») ^ maXfc [mod* (̂ fe)]%. Use the fact that mod*/ ( )

is ultrametric and apply (a) and (b).
(d) We may assume, without loss of generality, that

maXfc [mod* (xk)] = 1 and that at least two coefficients xky xu k Φ I
are such that mod* (xk) = mod* (xt) = 1.

The reduction to maxfc [modfc(xfc)] = 1 is by homogeneity. If there
is only one coefficient xk (say k = 1) such that mod* (xk) = 1 then the
result follows from the ultrametric inequality. For suppose mod*(cc1) =
1 and mod* (xk) < 1, k Φ 1. Then from (c) mod*/ (x2τ + + x^'1) <
1 and from (a) mod*, (xj = 1. An easy consequence of the ultra-
metric inequality is that if | yί \ Φ \ y2 \ then mod*/ (yx + y2) ==
max [mod*/ (yj, mod*, (y2)]. Thus mod*/ (x) — mod*/ (Xj) = 1.

Hence our result is proved if we show, under the assumptions
of (d) that mod*/ (x) < 1 will lead to a contradiction.

(e) mod*/ (x) < 1 iff ρ\x) = 0. Use the characterization: ψ =
{x: mod*/ (α) < 1}.

(f) p\x) is a polynomial in />'(r) with coefficients in ϊ, it is of
degree less than n and has at least two nonzero coefficients. This
follows from (d) and the remarks preceding the theorem.

(g) The desired contradiction follows from (e) and (f). If
mod*/ (x) < 1 then p'(τ) is the root of a monic polynomial over ϊ of
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degree less than n* This implies that [Γ: f] < n, but [f: ϊ] = n.
Hence mod^, (x) = 1, which proves the theorem.

3* We now give a few simple consequences of the theorem
in §2.

Throughout this section K is a fixed local field with norm:
\x\κ = mod^(α?), n is an integer greater than 1, K' — K[τ] is the
unramified extension of K of degree n with norm: | x \κ. = mod^ (x),
Kn is the ^-dimensional vector space over K with norm | x \κ» —
max fc |%|^, x = (xlf - -, xn), xkeK. As in § 2 if xeK'— K[τ] we
have x = ^ + + a r̂*""1 and we identify

(x e K') < > (x = (a?lf , xn) e Kn) so that | x \κ, = \ x |J .

We recall that if Q is the ring of integers in K, and β̂ is the
prime ideal in £} then D/̂ 3 = GF(q), a finite field. We also have
the fractional ideals ψ = {\x\κ ^ q~k}, keZ.

In K' we proceed in the same way. Let R be the ring of
integers in K', P the prime ideal in R so R/P = GF(qn). The
fractional ideals are Pk = {\ x \κ, ^ (qn)~k). We note that R = P°,
P = P1. Details may be found in [3; Ch. I § 5].

For the vector space Kn one defines a neigeborhood system at
0, with the collection of balls with centers at the origin. Namely,
we set Pί = {| x \κn ̂  q~k) and then let Rt = P? and P t = Pi. From
the fact that \x\κ, = \x \n

κn it follows that Pί = Pk for all keZ
and hence i^ = R, P1 = P. Consequently we drop the subscripts.
See [3; ch. Ill §1] for details of this construction for Kn.

As additive groups (and as -^-dimensional vector spaces over
K), K' and Kn agree so additive harmonic analysis, Haar measure,
etc., all agree on these two different models for Kn. We now
examine the two different descriptions of the dual of Kn that arise
from the two models.

We fix a character on K+ that is trivial on O, but is nontrivial
on yfi~\ This character is denoted χ. (See [3; Ch. I § 5] for details.)
The dual of Kn is put into a linear isomorphism with Kn, as a
vector space over K, by the identification y <-* χ*, χ\{x) = χ{x y) =

Xi%ύJι + + xnVn)

The dual of K' (as an additive group) is put into a linear
isomorphism with the additive group of K' as follows: One first
defines the trace function, Tr(x) = Σαe^^ΦO, where A is the auto-
morphism group of Kr over K. It is known that Tr maps Kf onto
K [4; p. 139] and since K' is unramified over K we have that Tr
maps Pk onto ψ for all k [4; p. 141]. The dual of K' is then
identified with K' by the correspondence y<->χl, χl(x) = χ(Tr(xy)).
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Thus, given any y e K\ there is an L(y) e Kr such that χ\ =
Xl(y), which is to say

Zθ*ι2/i + + aw*) = χ(Tr(xL(y))) for all x e K' ,

and the map y «-•• L(y) is a i£-linear isomorphism of K' (or, more
properly, of the dual of the additive group of K'). Moreover, this
linear map preserves the norm of y; that is, | L{γ) \κ, = | y \κ, for
all y G i Γ .

We first note that χι

y = 1 iff y = 0 and if | # | ^ = gfc?ι, then χj,
is trivial on Pk but is nontrivial on Pk~\ (See [3; Ch. Ill § 1].)
From the fact that Tr maps Pk onto ?βk and the fact that χ is
trivial on O but is nontrivial on φ " 1 we see that χ\{y) Ξ 1 iff
L(y) = 0 and that if | L(#) \κ, — qln, then %l(lf) is trivial on Pι but is
nontrivial on Pι~\ Thus, | L(y) \κ, — \ y \κ>.

Therefore, these two representations of the dual of K' as an
additive group have the same induced norm and hence the same
induced metric.

Note also that the prime ideal P is generated by any element
peP such that | p \κ, = q~n. 3̂ is generated by pety, where | p \κ =
q~\ But peP and | p \κ, = | p \n

κ = q~n, so P is generated in R by
the same element, p, that generates 3̂ in £).

These last few results are simply the working out of notational
consequences of the identity | x |nκn — | x \κ,.

When we study Calderόn-Zygmund kernels on K we look at
functions of the form Ω(x)/\ x \κ where Ω(x) is homogeneous of degree
0 in the sense that Ω(pkx) = Ω(x), VxeK, keZ [3; Ch. VI §4].
Thus, on K' we examine functions of the form Ω(x)/\ x \κ, where Ω
is homogeneous of degree 0 in the sense that Ω{pkx) = Ω(x) for all
xeK', keZ and "pkx" is multiplication of x e K ' by pk eK\

When we examine such kernels on Kn, the functions are of the
form Ω(x)/\ x \% where Ω is homogeneous of degree zero in the sense
that Ω(pkx) = Ω(x) for all xeKn, keZ and "{>V is scalar multipli-
cation of xeKn by pk e K. But these two "multiplications" agree
and since | x |J» = \x\κ* the classes of kernels that would arise from
these two approaches to K* are the same class.

We will continue the analysis of these kernels a little further.
Note that J5* = {| x \κ, = 1} is a multiplicative group. It is the
group of units in (if')*. We consider (as in [2] and [3; Ch. II §4])
the collection {πfcj?=oj|o of unitary multiplicative characters on iϋ*,
where πkl is ramified of degree k and lk = qkn(l — q~nff k^2,
l0 = 1, I1 — qn — 2. {(1 — q~n)πkl} is a complete orthonormal system
on jβ* and πkl is the local field analogue of a spherical harmonic
of degree k.
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Consider Ω(x)/\ x | Jw as above with I Ω{x)dx = 0. Then Ω can
JR*

be considered as a function on i?* and we may write, formally,
oo Ik

Ω{x) - Σ X cklπkl(x) and so
fc=li=l

Ω(x)/\ x \ln ~ Σ Σ c«^«(»)/l x \κ> .

The Fourier transform of the principal value distribution induced
by Ω{x)j\ x \κ, is a function which is homogeneous of degree zero.
Call that function Ω. Using the results for the gamma function
[3; Ch. II §5] it is easy to see that Ω(x) ~ Σ Σ cklΓ(πkl)πkl{x).
That is, the map Ω—*Ω is essentially, a multiplier transform on
the group ϋ?* and the behaviour of the operator depends on the
properties of the distribution M(x) ~ Σ*>i Γ{πkl)πkl{x).

If convolution by the principal value distribution induced by
Ω(x)/\ x\κ, is a bounded operator on any Lp space, then it is bounded
on L2 and this implies that Ω is bounded. What conditions on Ω
imply that Ω is bounded? By the usual arguments for multipliers
we see that Ω is bounded whenever Ω e L2(R*) implies that M e L2(R*).
But \Γ(πkl)\=q~kn/2 [3; Ch. II §5] and since lk = qkn(l - q~nY\
k^2, we see that MgL2(i2*). (See [2] for details and extensions.)

Similarly Ω is bounded whenever Ω e L°°(i2*) implies that M is
a finite Borel measure. When q is odd, a careful examination
shows that M is not a finite Borel measure and thus the singular
integral operator /—*/*(P.V. Ω(x)/\x\κ,) is not necessarily bounded
on L\K') when ΩeL°°{R*). The same result also follows for Ω
continuous on i?*. (This is the essential part of Daley's argument
in [1].)

As a final example, we state an especially simple F. and M.
Riesz theorem for Kn. Let q be odd, D/̂ β = GF(q) and n be any
positive integer. Then there is a singular integral operator of the
Calderόn-Zygmund type, /--»/ = /*(P. V. Ω(x)/\ x \n

κn) with the follow-
ing property. If μ is a finite Borel measure and μ is a finite Borel
measure, then μ is absolutely continuous. Viewed from the per-
spective of K1 we choose Ω(x) — π(x) where π is any unitary charac-
ter on 22*, π ramified of degree 1, homogeneous of degree 0 and
odd. This was shown by Chao for n = l [3; Ch. VII § 3].
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