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MAPPINGS OF POLYHEDRA WITH PRESCRIBED
FIXED POINTS AND FIXED POINT INDICES

HELGA SCHIRMER

The following problem is studied: If points ¢, of a
polyhedron and integers 7, are given, when does there exist
a selfmap within a given homotopy class which has the ¢, as
its fixed points and the 7, as its fixed point indices? Necessary
and sufficient conditions for the existence of such selfmaps
are established if the selfmap is a deformation and the poly-
hedron is of type W, and if the selfmap is arbitrary and the
polyhedron is of type S. It is further shown that there
always exists a selfmap of an #n-sphere (n =2) which has
arbitrarily prescribed locations and indices of its fixed points.
The proofs are based on Shi Gen-Hua’s construction of
selfmaps with a minimum number of fixed points.

1. Introduction. It is known that an arbitrarily given closed
and nonempty subset of a polyhedron of type W can always be the
fixed point set of a suitable selfmap, and even of a deformation [2].
We now ask what happens if not only the locations of the fixed
points, but also their indices are prescribed. More precisely, we deal
with the following problem:

If the points ¢, of a polyhedron and the integers i, where
k=12 ---,m, are given, when does there exist a selfmap within
a given homotopy class which has the ¢, as its fixed points and the
1, as its fixed point indices?

The problem is an extension of the well-known one concerning
the existence of maps with a minimum number of fixed points, whose
most general solution to date is due to Shi Gen-Hua [4]. We use
Shi’s results and methods to a considerable degree.

We first show that the number, location and indices of the fixed
points of a deformation of a polyhedron can be arbitrarily prescribed
with the only (obvious) condition that the sum of their fixed point
indices equals the Euler characteristic of the polyhedron (Theorem 1).
In the case of arbitrary selfmaps the—necessary and sufficient—
conditions which the fixed point indices must satisfy are naturally
more complicated, and express the fact that the number and the
indices of the essential fixed point classes of a map are homotopy
invariant (Theorem 2). As in Shi’s work [4] the assumptions which
are made about the polyhedron are more restrictive in the case of
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arbitrary selfmaps than in the case of deformations, as the polyhedron
has to be of type S and not only of type W. (See §2 for definitions.)

Polyhedra of type S or W cannot be one-dimensional, but self-
maps with arbitrarily given fixed point sets (but not fixed point
indices) were in [2] also constructed for all one-dimensional connected
polyhedra. So one would also like to find selfmaps of one-dimensional
polyhedra with prescribed locations and indices of their fixed point
sets, but this cannot be done if only the conditions of Theorems 1
and 2 are assumed. The situation in the one-dimensional case seems
to be much more complicated, and only a special case (where the
one-dimensional polyhedron is acyclic and all fixed points are attractive
or expulsive) has been settled so far [3].

Another open, and probably difficult, question arises if not only
maps within a specific homotopy class, but all selfmaps of a poly-
hedron are considered. Only a very special case, namely the one
where the polyhedron is a sphere, is considered here. We show that
there always exists a selfmap of an #n-sphere (where » = 2) which
has arbitrarily prescribed locations and indices of its fixed points.

The beginning of the paper contains two lemmas which deal
with the splitting and moving of fixed points with given indices.
Together with Shi’s results they permit quick proofs of the later
theorems. Shi’s work has been included in the recent book by
R. F. Brown [1], and [all references are made to this book in order
to have them easily accessible. For the same reason Brown’s book
is used as a reference for facts about fixed point indices and fixed
point classes.

2. Splitting and moving of fixed points. In this preliminary
paragraph we develop, in the form of two lemmas, the tools for the
proofs of the results in this paper. Some definitions are needed first.

We denote by | K| a polyhedron which is the realization of a
finite simplicial complex K, by ¢ an open simplex of | K|, and by &
its closure. The carrier x(x) of a point x €| K| is the unique simplex
for which z € k(x). The star st ¢ of a simplex o consists of all simplices
which have ¢ as a face. o is called a maximal simplex if ¢ = st o.

We use @(f) to denote the fixed point set of the map f:| K|—| K|.
The point ¢e€@(f) is an isolated fixed point if there exists an open
set U with ce U and UN &(f) =c. If |K| is connected and if the
fixed point index of f on U, called i(| K|, f, U), is defined as on
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p. 65 of [1], then it follows from the additivity axiom (see [1], p. 52)
that #(| K|, f, U) is independent of the choice of the open set U as
long as ce U and UN ®(f) = c. For an isolated fixed point ¢ we
therefore write i(| K|, £, ¢) for the index of f at ¢, where i(| K|, f, ¢) =
(| K|, f, U) for any such set U. For a point ¢ which is contained in
a maximal simplex this definition coincides with the one on p. 122
of [1].

We are now ready for the two lemmas. The first states that
any isolated fixed point in a maximal simplex can be split into an
arbitrary number of fixed points as long as the Lefschetz number
is not changed. It is a counterpart to Lemma 6 on p. 133 of [1],
where fixed points are united.

LEMMA 1 (Splitting of fixed points). Let f be a selfmap of the
polyhedron | K| and let the fixed point a of f be contained in a
maximal simplex o of dimension at least two for which @(f)N G = a.
Then there exists, for every sel of m integers i, iy, *++, i, With
S, = K|, f, @), a selfmap f' of | K| which is homotopic to f,
equals f on | K|\o, and has on o exactly m fixed points a,(k =1, 2,
«oo,m) with indices (| K|, f', ar) = 1.

Proof. Choose an ¢ >0 for which Ula, 5¢) = {xe| K||d(a, v) <
5¢} c o, where d is the metric of | K|. As f is continuous, there
exists a 0 > 0 with f(U(a, 6)) < U(a, €), and we can choose it so that
0<éd<e Let B denote the p-ball U(a, §), and select points
a, @, -+, @, in B\a so that d(e, ;) is constant forall 4 =1,2, ..., m,
and so that there exists a o > 0 with ¢ — d(a, a;) < o < d(a, a,) for
which the U(a,, 0) are pairwise disjoint. Put 4, = BN U(a;, p). Then
each A, is homeomorphic to a p-ball, a¢ 4,, and A, intersects the
boundary 0B of B.

In order to construct a map with fixed points a, of index i, we
use the notation of [1], pp. 120-121. Hence | K| is imbedded into
Euclidean space R*, and

h,: R, 0, a, — R", R?, 0

(which corresponds to 7, on p. 120 of [1]) is an isometry which
transforms a, into the origin 0. A map d): 04, N 0B — R?\0 is defined
by di(y) = hi(y) — h.f(y) for all yedA, NIB. As

@) | = [h(W) | + [ hio F (1) |
=p+e+0<3e,

d; is a map of the form dj:dA, N 6B — U(0, 3¢)\0.
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Now take a p-ball B, with centre a, and with B, 4,, and
choose generators [, < H* '(R*\0) and «,< H*'(0B,) as on p. 121 of
[1]. Denote by i: U(0, 3¢)\0 — R*\0 the inclusion and by %,: 3B, — A4,
the homeomorphism obtained by linear projection from the centre
a,. As 0A,NdBis contractible and as (0.A,, d4,NJB) has the homotopy
extension property with respect to U(0, 8¢)\0, there exists an extension
d,: A, — U(0, 3¢)\0 of d} for which

hEdiin(2,) = -y

where i*, d and & are the induced homomorphisms of the appropriate
cohomology groups. We define a map g} on 04, by

9:(y) = hi'(hi(y) — di(y)) -
Then

lheogiW) | = [ he(®) | + | di(y) |
<0+ 3s < 4e,

therefore

d(a, 9i(¥)) = d(a, a;) + d(a,, 9i(y))
<0 + 4e < b5e,

and gi(y)€o. As A, is homeomorphic to a p-ball, we can extend
the map g¢;: 0A,— o0 linearly from a, to a map g,: A,— ¢ which has
@, as its only fixed point. Note that then g.(y) = f(y) if yedB.
We define a map g: U, 4, UdB—o by

g.(x) if x€A,, where k=12 ---,m,
f(x) if x€oB.

As the closure of the subset (B\U. A:) of B is homeomorphic to a
p-ball with centre a, and as ¢’ is defined on its boundary, we can
extend ¢’ to a map ¢g: B—o such that g(x) = ¢'(x) if xeJ, A, UdB,
and that {a, a, a,, ---, @,} is its fixed point set. Then the map
fi:|K|—| K| given by

g'(x) = {

fl@) if ze|K\B,

F®) = 10w if ceB

has the fixed point set {a, a,, ., --*, a,} on o, and is homotopic to f.

It follows from the construction of f; with the help of the d,,
and from pp. 120-122 of [1], that (| K|, f, @) = %,. In consequence
of the homotopy axiom (see [1], p. 52) we have

W K, £ ) + 2 K, £, @) = i( K], £, 0) ,
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and therefore (| K|, f,, @) = 0. Select an &’ with 0 < ¢’ <d(a, a,) and
Ua, 2¢') c o, and a &' with 0 <& <¢& and f(U(a, §")c Ula, €).
According to Theorem 4 on p. 123 of [1] there exists a map
f K| —| K| with f'(z) = fi(») for xe| K|\U(a, 8"), with d(f,, f') < &'
and which is fixed point free on U(a, &"). As f'(U(a, 6") < Ula, 2¢') C o,
f’ is homotopic to f; and hence to f. The set of fixed points of f’
on ¢ is {a, a, ---, a,} and the index (| K|, f, a;) equals i,.

The second lemma will show that isolated fixed points can be
moved to arbitrarily prescribed points if | K| satisfies a connectedness
condition. More precisely we require that | K| is of type W ([1],
p. 143), i.e. that every maximal simplex of | K| is of dimension at
least two and that for every two maximal simplices o, ¢’ of | K|
there exist maximal simplices o, 0,, ---, 0, wWith 0 = 0,, 6, = ¢’ and
0,N G;y, of dimension at least one for +=1,2, --., » — 1. Lemma 2
is an extension of Lemma 6 on p. 135 of [1], as we do not assume
that #(c) is a maximal simplex.

LEMMA 2 (Moving of fixed points). Let | K| be a polyhedron of
type W, let f be a selfmap of |K| with fized point set O(f) =
{a, as, +--, a,} and let a, be contained in a maximal simplex. Then
there exists, for any c¢ @(f), a selfmap f' which is homotopic to f
and for which

O(f') = {c, as, @s, -+ -, @y} and (| K|, [, ¢) = i(| K|, f, a) .
Proof. Let o and ¢’ be two maximal simplices with a,€0c and

ceo'. As |K| is of type W, there exists a chain 0, =0, 0, ---,
o, = ¢' of maximal simplices such that &, N &,., has dimension at

least one for ¢=1,2 ..., »r — 1. By repeated use of Lemma 6 on
p. 135 of [1] we can find a map g, which is homotopic to f and has
a fixed point set @(g,) = {b, a,, @, ---, a,}, where beo’. We can also

require that the line-segment [b, ¢] contains no points of @(f), and
that g, = f in a neighbourhood of {a, a;, ---, @,}. Next we obtain a
map g¢,: | K| —| K| by the same process (too complicated to describe
briefly) which is used in the proof of Lemma 6 on p. 135 of [1] to
obtain a map denoted there by f,, and therefore arrive at a map
g. which is homotopic to g¢,, agrees with ¢, in a neighbourhood of
{as, as, ---, a,}, has the same fixed points as g,, but has the property
that £(x) N £(g(x)) # @ for all xe[b, ¢]. Hence we can choose an
7> 0 so that the following three conditions are satisfied:

(1) T, cl, n) < st (),

(i) @(g)n T, e, 7) = b, )

(ili) £(x) N £(gy(x)) = @ for all xe U([b, c], n).
We then modify g, to a map f” with fixed point set {¢c, a,, as, -+, @}
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by putting f'(x) = gi(x) for x| K\U(b, c], ), and changing g, on
U([b, c¢], 7)) by a method which is completely analogous to the one
employed in the proof of Lemma 2.4 of [2]. The construction in
[2] shows that f’ is homotopic to g, and hence to f. As f' = f on
a neighbourhood of {a,, a,, ---, a,}, we have

S Kl £, @) = i( K|, £, 0) + 3 K|, £, )
= i( K, £, &) + 3 K|, f, o),
and therefore i(| K|, £, ¢) = i(| K|, f, a.).

3. Mapping with prescribed fixed points and fixed point
indices. We now proceed to construct deformations, and maps within
an arbitrarily given homotopy class, with prescribed fixed points
and indices. The method will be the same in both cases: we use
Shi’s [4] results to find a map with a minimum number of fixed
points, and then use the splitting and the moving lemma of §2 in
order to obtain a map with the prescribed fixed points.—By x(K) we
understand the Euler characteristic of | K|.

THEOREM 1. Let points ¢, of a polyhedron | K| of type W and
integers 1, be givem, where k=1,2 ---, m. Then there exists a
deformation which has the c, as its fized points and the i, as its
fized point indices if and only if

S|l =k =m} = YUK).

Proof. The necessity of the condition follows from the fact that
the Lefschets number of a deformation equals the Euler characteristic
of the polyhedron. (See [1], pp. 32, 52.) To prove its sufficiency,
we construct a deformation fi:|K|—|K| with exactly one fixed
point b which is contained in a maximal simplex in the same way
as in the proof of Theorem 1 on p. 143 of [1] (or use Theorem 3.1
of [2]). By subdividing K and using Lemma 2, if needed, we can
change f; to a deformation f, with @(f;) = @ € g, where o is a maximal
simplex with 6 N {e, ¢, -+, cu} = @. As f;is a deformation, we have
(| K|, f;, @) = x(K). Now we use Lemma 1 to construct a defor-
mation f; with @(f;) = {a,, a,, -+, ax} o and (| K|, fs, a;) = %3, and
then make m-fold use of Lemma 2 to obtain the desired deformation
f. with fixed points {c,, ¢, ---, ¢,} and indices (| K|, £, €) = %

In dealing with arbitrary maps rather than deformations we
have to restrict the polyhedron | K| further and assume that it is
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of type S ([1], p. 139). This means that the dimension of | K| is at
least three, and that the boundary of the star of each vertex of
| K| is connected. A polyhedron of type S is always of type W,
but the converse need not be true. (See [1], p. 143.)

The conditions on the indices in the generalization of Theorem 1
to arbitrary selfmaps will be more complicated. They require the
concept of a fized point class F, of a selfmap f of | K|, and the
ndex i(F) of the fixed point class F),, as defined in [1], pp. 86-87.
The number of fixed point classes of a polyhedron is finite ([1], p. 86).
A fixed point class F, of f is called essential if ¢(F)) # 0, and the
Nielsen number N = N(f) is the number of essential fixed point
classes of f.

Both the number N(f) and the indices ©(F);) of the essential fixed
point classes are homotopy invariant ([1], Chapter VI), and the con-
ditions in Theorem 2 express precisely this fact. Theorem 2 coincides
with Theorem 1 if | K| is of type S and f is a deformation, as the
Nielsen number of a deformation is 0 or 1.

THEOREM 2. Let the selfmap f of the polyhedron | K| of type
S have the essential fived point classes Fy(l=1,2, ..., N), with
indices 1(F), and let points ¢, of | K| and integers 1,(k=1,2, ---, m)
be given. Then there exists a selfmap which is homotopic to f, has
the c, as its fived points and the 1, as its fixed point indices if and
only if the c, can be relabelled c;, where 1 < j = j(k) = m, such that
either N(f) =0 and >, {i;|1 = j =< m} =0, or there exists a sequence
of integers m,, My, +++, My With

0=, <My < +vo+ <My =M
for whaich
S (i lme, < 5 =my)=i(F) forl=1,2, -, N.

Proof. If N(f) =0, then Theorem 1 on p. 140 of [1] shows that
there exists a map fi:| K|—| K| which is homotopic to f and fixed
point free. In order to modify f; to a map with one fixed point,
choose a point @ in a maximal simplex o of | K|, and arrange it so
(by subdividing K, if necessary) that ¢ N{ec, ¢, ---, ¢.} = @. Take
7>0 so that () Ua, 7)o, (i) fi(Ta, 1) cst(fi(a), and (iii)
Ula, 7) N st £(fi(a)) = @. (Again it may be necessary to subdivide
K to make (iii) possible.) Let {v(t) |0 <¢ <1} be a path in | K| from
a to fi(a) for which d(a, 7(t)) # tn/2 for all 0 <t =< 1. Denote, for
any z¢€ U(a, 7)\a, by 2(7/2) and x(7) the two unique points in which
the ray from a to « intersects the boundaries of U(a, 7)., and Ula, 7),
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and define a map f,;: | K|—| K| by

fi(@) if xeK\U, ),
f@) = {tfilzx®) + @ — Dfile) i «=ta@) + 1 — )x(y/2) ,
Y(t) if z=te(®/2) + 1~ da,

where 0 <t < 1.

It follows from the choice of 7 and 7(¢) that @(f;) = a. As f,
is homotopic to f,, we have N(f;) = N(f,) =0 and hence i(| K|, f;, @) = 0.
We now use Lemma 1 to find a map f, with @(f;) = {a,, @, ---, ¢, C 0
and ¢( K|, f;, @) = %, and then Lemma 2 to find f, with @(f) =
{ey, € ++-, ¢} and #(| K|, fi, ¢x) = %, for k=1,2, --., m. Both f; and
f: are homotopic to f, so that Theorem 2 holds if N(f) = 0.

If N(f) > 0, then Theorem 1 on p. 140 of [1], and its proof,
show that there exists a map f;:| K|—| K| in the homotopy class
of f which has N = N(f) fixed points b, b,, ---, by, where each b,
is contained in a maximal simplex. Again we can, if needed, subdi-
vide K and use Lemma 2 to change f, to a map f, which is homotopic
to f and has fixed points a,, @, ---, ay, where each a, is contained
in a maximal simplex o, with &, N {a, @, -+, @, €, Cs) ++ -, Cn} = Q.
We have (| K|, fo, @;) = ¢(| K|, f, b) = ©(F}). We now use Lemma 1
to split each a; on o, into m;, — m,_, fixed points with indices 7;, for
M_y < J < my, and then Lemma 2 to move these fixed points to the
prescribed locations c,.

4. Outlook. Theorems 1 and 2 deal only with mappings
within a given homotopy class. The following, much more general
question arises naturally:

If points ¢,, where k =1,2, ---, m, of a polyhedron | K| and
integers ¢, are given, when does there exist a selfmap of | K| which
has the ¢, as its fixed points and the ¢, as its fixed point indices?

An answer to this question with present means will be difficult
to obtain, as it seems necessary to know the number of essential
fixed point classes, and their indices, which can occur for the different
homotopy classes of selfmaps. We restrict our attention to one very
special case of the problem, namely the one where | K| is a sphere.
In this case no restriction on the fixed points and indices is necessary.

THEOREM 3. Let points ¢, of a sphere S® and integers 1, be
given, wherek =1,2, --.,m. Then there exists a selfmap of S* which
has the ¢, as its fized points and the i, as its fizxed point indices.
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Proof. As S?is not of type S, we cannot make use of Theorem 2.
Therefore we start by giving a direct construction of a selfmap
which has precisely one fixed point with index > {7, |1 < k < m}.

We identify the unit sphere S* of R® with the suspension of the
unit circle S* ={zeC||z| =1} in the complex plane, and therefore
write the points of S* as (z, s), with z€ S'and se[—1,1]. Letd be
the integer determined by

1+d=34,,
k=1
and let
121 +s) if —1<

A= Ms) = e=0,
MY T e —s) if 0=s=1.

Then the map f;: S*— S* defined by

f0(<zy S>) = <zdy S + ’\’>
is of degree d and has the fixed points u = {z,1) and v = {2, —1).

We now change f, to a map f, which is of the same degree,
but has only one fixed point. For this purpose we select a point
a = {z,0)sothat a¢{c, ¢, -+, ¢c,} and z{ #= —z,. Denote by 7 = 7(s),
where —1 < s <1, the unique great arc through u, v, and a, and
put for ¢ > 0

_ RS
U(7,e) ={xeS*|7(s)x < ¢ for some se[—1, 1]},

~
where 7(s)x is the distance from 7(s) to x measured along a shortest
arc on S2

Select 0 > 0 so that 27 = —z, if |2 — 2,| = 9, and choose ¢ = &(d) >0
so that <z, —1/3)¢ U(7, ¢) implies |z — 2z,| <9, and also so that
U(7, ¢) does not contain the antipode b = (—z, 0) of a. If fi(x)=b
for some z = {z,s>eS?% then 2= —z, and s = —1/3, therefore
fulw) = b for all xe U(v, ¢).

Any z ¢ U(7, ¢)\a determines a point ¥ = y(x) as the unique point
on the boundary of U(7, ¢) for which the shortest arc from a to y
contains . Hence we can write any x¢€ U7, ¢)\a in the form
z=(1—-1%a+ ty, where 0 <t <1. Let f:S*—S*> be the map
defined by

Folw) if 2eS7\U(,e),

fil@) = {1 — ta + thy@) if ze T, e\a,
\a if 2=a.
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As both f, and f, map U(7, ¢) into S?b, they are homotopic, and f,
has degree d. The index i(S? f,, @) = i(S? fi, S?) equals the Lefschetz
number of f; (see [1], p. 52), and hence is 1+ d = 31, 7,.

It is always possible to choose a simplicial structure of S? for
which a is contained in a maximal simplex o with 6N {e, ¢, + -+, ¢.} = O.
As S* is a polyhedron of type W, we can now use Lemma 1 to split
o into fixed points a,, a,, - - -, @, in ¢ with indices %,, and then Lemma 2
to move each a, to ¢, in order to obtain the desired map.

REMARK. An n-sphere S™ with n = 3 is of type S, and hence
an extension of Theorem 3 to such spheres is an almost immediate
consequence of Theorem 2. It is easy to see that S® in Theorem 3
cannot, however, be replaced by S*.
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