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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF

RETARDED DIFFERENTIAL DIFFERENCE

EQUATIONS

J. C. LlLLO

The asymptotic behavior of the solutions of nonautonom-
ous nth order linear retarded differential difference equations
is studied in this paper. It is shown that if the coefficients
satisfy certain restrictions, then for any real K there exists
a finite dimensional subspace F(K) of the solution space
having the following property. For any solution x of the
equation one has for all t > 0 that x{t) = xκ(t) + xr(t) where
xt belongs to F(K) and xr(t) = 0 (exp (—Kt)) as £->oo. As in
the author's earlier papers, considering the periodic and
almost periodic cases, the spaces F{K) are obtained by treating
the nonautonomous equation as a perturbation of an nth

order autonomous equation.

1. Introduction and notation. We consider perturbations of
the autonomous nιh order equation

m l[k)

(1.1) LMt)) = xw(t) + Σ Σ eιtfc">(t -Δk) = Q
fc = 0 1 = 0

where 0 = zf0 < Λ < m̂ and the clk, for all pairs (ϊ, k) occurring in
(1.1), are real numbers. We assume m Ξ> 1. We also assume that
1(0) < n and that l(k) < n, cUk)k Φ 0 for k — 1, , m. The perturbed
equations will be of the form

(1.2) L0(x(t)) = D{x{t))

where

V g(h)

(1.3) D(x(t)) = Σ Σ Q0S)x(ΰ)(t - σh) .

Here it is assumed that the qgh belong to C2n(— °of oo) and there
exists an Mι > 0 such that

(1.4) l?#(ί)I^Λfi

for te(—ooy oo), j <^ 2n, and (g, h)eB, where B denotes the set of
all prirs (g, h) in (1.3) for which qgh(t) & 0.

In earlier papers, the author has established, in the cases where
the coefficients qgh are periodic [6] or almost periodic [7], that for
K > 0 and sufficiently large there exist finite dimensional solution
spaces F(K) of (1.2) possessing the following properties. Any so-
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lution of (1.2) has a representation of the form

(1.5) x(t) = xκ(t) + xr(t) .

Here xκ e F(K) and there exists an M(x) such that

(1.6) I xr(t) I < M(x) exp (-Kt) for all t ^ 0 .

If H{K) denotes the corresponding subspace for (1.1) then there
exists a sequence ar, lim ar — — oo such that

(1.7) n(ar) = dim H(-ar) = dim F(-ar) .

In § 3 we shall extend these results to systems of the form (1.2)
under certain additional restrictions on the perturbations (1.3). In
order to state these restrictions we next introduce the notion of a
distribution diagram for (1.1) and (1.3).

Associated with (1.1) we have the characteristic polynomials

(1.8) P(z) = Σ Σ clkz
ι exp {-Akz) + zn

kl

and G(z) = P(z) exp (Amz) where Σ Σ denotes the double sum occurring
kl

in (1.1). For G(z) we define its distribution diagram [6] as follows.
Let S(G) denote the set of points, in a Cartesian plane, consisting
of the point (Am, n) and the points (Am — AkJ I) where (£, k) is any pair
of subscripts in (1.1) for which clk Φ 0. We denote by p3- = (βί9 mά),
j = 0, •••,&, those points in S(G) which possess the following proper-
ties:

( a ) pQ = (0, l(m))9 pk = (Am, n)
( b ) βά< βj+1 and ms < mj+1 for j = 0, 1, ---, k - I
( c ) if lj denotes the line segment connecting pό_x and p3- then

every point of S(G) lies on or below at least one of the lίf j — 1,

(d) if Uj denotes the slope of l3- then uγ > u2, •••, > uk.

The graph consisting of the line segments llf , lk is referred to
as the distribution diagram of G. For j = 1, , k we denote by
G3(z) those terms in G(z) which correspond to points in S(G) on the
line segment 13 . Each of the polynomials Gj(z) may be factored

a(j)

(1.9) Gj(z) = bjz^ exp (β^z) Π (z exp (z/ud) - 7jk)
βii'h)

where Ί3-h Φ ΊH for i Φ h and b3- denotes the coefficient in G(z) of
the term zm* exp (βjZ). Since our estimates for | G(z) \ depend directly
on the numbers β(j, h) in (1.9) we associate with P(z) the following
constant
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(1.10) σ(P) = max β(j, h) for j = 1, , k and h e [1, , a(j)] .

DEFINITION. Equation (1.1) is said to satisfy condition la if
σ(P) — a for its associated polynomial P{z) as defined in (2.1).

As mentioned earlier it is necessary to impose a restriction,
condition Πay on the perturbation term (1.3). In order to define this
condition we associate with (1.3) a distribution diagram. Let

(1.11) F{z) = exp (zU) Σ Σ W exp (~σhz)
hg

where τgh = 1 if (g, h) e B, rgh = 0 if (g, h) 0 B, and Σ Σ denotes
gh

the double sum in (1.3). As in the case of G(z) one now defines the
set of points S(G) and then the distribution diagram of F which is
also referred to as the distribution diagram associated with (1.3).

Let R(σ) denote the closed region bounded by the lines x = σ/uk9

y = 0, x — Jm, and the line segments lx(σ), •••, lk(σ). Here lό{σ) is
the line segment joining the points p3(σ) — (β5 + σ/ukf m3) and
P3 -I(G) = (/Sί-i + o\uky m^j) where po and py_x are the endpoints of
lj in the distribution diagram of G(z).

DEFINITION. We say that (1.3) satisfies conditions Πa for any
real a if its distribution diagram is contained in R(σ) for some
σ > a.

For an intuitive discussion of condition IIa the reader is referred
to the author's earlier paper [6]. Before stating the estimates that
we shall need in § 2 we introduce the following notation.

For any complex number zx we have

(1.12) fcfo) - I exp (-zjuk) | and

(1.13) l(zι) = {z:Re(z) = Re(z1)}.

For any pair (g, h)eB we define

(1.14) H(g, h, w, z) = exp [ — Λh(z — iw)](z — iw)j/P(z — iw) .

Let Z denote the set of zeros of P(z). In an earlier work [6] the
author has shown that there exists a decreasing sequence or real
numbers {ar}, lim ar = — oo, a0 — 2 lies to the right of Z and 1, and
an M4 such that the strips Sr = {z: \ Re z — ar | < MJc"\ar)} do not
contain any points of Z. Using the estimates established in [6] one
has the following results. If (1.1) satisfies Ia and (1.3) satisfies //α + r,
7 :> 0, then there exists β > 0, Hγ > 0 such that for any pair
(g, h)eB, r :> ^ and δr = MJc~ι{ar)l& one has the estimates

(1.15) I H(g, h, 0, z) g kr{^(ar) for Re z e (ar - δr, ar + 8r) = ar
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(1.16) j I H(g, h, 0, z) |21 dz \ <£ λr« ' + " + 1 (α r )

(1.17) j I H(g, H9*,z)\\dz\£ Ar<'+"+ ι(α r)

where the integrals in (1.16) and (1.17) are along any line l(zx) for
Re zλ 6 ar. We also have that there exists an M ^ 0 such that for
any σ ^ 0

(1.18) I H(g, h,0,z)\£M/\z |2 for z e ί(α0 + σ)

(1.19) J I H(g, h,0,z)\\dz\<* M/(a0 + σ)

(1.20) J I #(</, h, 0, 0) I21 dz I ̂  ikf/(α0 + σ)3

where the integrals in (1.19) and (1.20) are along the line l(a0 + σ).

2. The Greens function* In this section we shall obtain in
Theorem 2.1 a representation result for the Greens function associated
with equation (1.2). The proof of Theorem 2.1 consists of treating
equation (1.2) as a perturbation of (1.1) and solving by successive
approximations. To facilitate this discussion we introduce the
following notation. Let G(t, s), called the Greens function, denote
the function which vanishes for t < s, satisfies (1.2) as a function
of t for t > s, G(%-1}(s+, s) - G ^ t e " , s) = 1 and G(i)(£, s) is continuous
in t for all j ^ n — 2. Here fU)(t, s) denotes the jth partial derivative
of f(t, s) with respect to t. The jth partial derivative of f(t, s) with
respect to s will be denoted by fU)(t, s). We shall denote by G(0, t, s)
the Greens function for equation (1.1). Associated with G(0, έ, s) we
have

(2.1) G(0, ί, s, r, 1) = \ exp [z(t - s)]A(z)dz for all values of t ,

(2.2) G(0, ί, s, r, 2) = ί exp [z(t - s)]zf(z)(Zz for t > s ,
Ur

where Δ{z) — 1/P(z) and the integrals are defined as follows. The

symbol I denotes the line integral l/(2πi) \ r+t and I denotes the
Jar ς Jα r-ooi Ja~

negative of this integral. The symbol \ denotes the sum of the

and I where the a3- are defined as in § 1. Since
Z contains only a finite set of points to the right of l(ar) it follows
easily [1] that

(2.3) G(0, t, s) = G(0, t, s, r, 1) + G(0, ί, 8, r, 2)
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for all values of t. Here G(0, t, s, r, 1) satisfies equation (1.1) for
all values of t and G(0, t, s, r, 2) satisfies equation (1.1) for all t> s.
It also follows [1] that for any k ^ 0 and r sufficiently large that
there exist constants M(k, r) such that for j <Ξ n — 1

(2.4)

G{j)(0, t, s, r, 1) I ̂  M(k, r) exp [b(t - s)]

for t ^ s and 6 e [a + &, α + k + 1]

G(i)(0, ί, s, r, 1) I ̂  ΛΓ(fc, r) exp [7(ί - s)]

for ί ^ s and Ύ ear

G(i)(0, ί, s, r, 2) I ̂  M(&, r) exp [α(ί - β)]

for t ^ s and a e a r .

Since G(0, t, s, r, 1) and G(0, , ί, s, r, 2) satisfy equation (1.1) for t
and s in appropriate domains it follows that except for a finite set
of points in [0, (n + 1)ΛJ the derivatives of order j <ΞJ 2n will exist
and the constants M(k, r) may be chosen so that one has for these
higher derivatives the estimates (2.4) for the indicated values of t
and s.

We now establish, in Theorem 2.1, a similar representation result
for G{t, 0). For i = 1, 2 we define G(0, ί, r, i) = G(0, ί, 0, r, ΐ). For
i ^ 1 we define for all values of t

G(j\ ί, r, 1) = Γ J9(G0' - 1, w, r, l))G(0, t - w, r, 2)dw

(2.5) + Γ D(G(i - 1, w, r, l))G(0, t - w, r, l)dw
Jo

+ Γ D(G(j - 1, w, r, 2))G(0, t - w, r, ΐ)dw
Jo

and for ί > 0

G(j, t, r, 2) = Γ Z)((?(i - 1, w, r, 2))G(0, t - w, r, l)dw
J CO

(2.6) + ('"• D(G(j - 1, w, r, l))G(0, t - w, r, 2)dw
J

1, w, r, 2))G(0, t-w,r, 2)dw .

For ί ^ O , i ^ l w e set (?(i, ί, r, 2) = -GO', ί, r, 1). We then set

G{t, r, 1) = Σ GO", ί, r, 1)

(2.7) ^ 1

G(t, r, 2) = Σ G(i, ί, r, 2) .
0

THEOREM 2.1. // equation (1.1) satisfies Ia and Equation (1.3)
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satisfies Πa+2 then there exists an i ^ > 0 such that for any r ^ Ht

the function G(t9 0) can be written for all values of t

(2.8) G(t, 0) = G(t, r, 1) + G(t, r, 2) .

The function G(t, r, 1) satisfies equation (1.2) for all values of t
and G(t, r, 2) satisfies (1.2) for all t > 0. Furthermore there exists
a constant k and constants N(k, r) for r^Hλ such that

I G{j)(t, r, 1) I ̂  N(k, r) exp (bt)

for t ^ 0, b e [α0 + k, a, + k + 1]

(2.9) I G(Λ(ί, r, 1) I ̂  N(k, r) exp (7ί)

/ o r ^ 0 , 7 e [ar - ίr/2, αr + <5r/2] - /Sr

ί, r, 2) I ̂  tf(fc, r) exp (at) / o r ^ 0 , a e / 3 r .

Proof. For any function / we denote by [/]+ the function which
equals / for t ^ 0 and is zero for t < 0. We denote by [/]" the
function / - [ / ] + . We denote by \\f\\, and | | / | | 2 the Z^-oo, oo)
L\— oo, oo) norms of /. We also introduce the functions

/(7, m, h, g, r, j , t) = exp {-Ίt)G{9){m, t - σ,, r, j) .

Then using (2.4), (2.9), and (1.17) it follows for τe/9r, r sufficiently
large, and any pair (g, h)eB

II [/(% 0, λf fir, r, 1, - )

and the L2[—oo, oo] norms of the above functions are bounded by
k"β/2-z/\ar). Similarly using (1.19) in place of (1.17) for any k > 0,
(g, h)eB and b e [a0 + k, a0 + k + 1] it follows that

(2.11) || [/(&, 0, h, g, 1, - ) ] + |L < M/[a0 + fc]

and its L2[— oo, oo] norm is bounded by M1/2/(a0 + kf/2. Next we

note that if / G L ^ - O O , OO], ^eL 2 [-oo, OO] then

f(y + χ)g(χ)dχ

belongs to L2[ —oo, oo] and

(2.12)

(2.13)

For k = 1, 2 let C(k, ra, 7, 6) denote max (|| [/(7, m, fe, g, r, 2, )]+ IL,
|| [/(7, m, A, sr, r, 1, •)]" 1^ II[fQ>9 m, A, ,̂ r, 1, -)Y\\k where the max is
over all pairs (g, h) e 5, and 7 e βr.
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Then from (2.5), (2.6), (2.10), (2.13) we have for all {g,h)&B,
m Ξ£ 1 that

|| [f(b, TO, h, g, r, 1, )]+ ||, ^ 2Mιv{n - 3)C(2, m - 1, 7, b)

\k-t<\ar) + M/[a0 + k]]

(2 14) " ^ y > m> h' Q' T' 1} ' ^ "2

^ ZM.vίn - 3)C(2, m - 1, r, b)k~β'\ar)
\\[f{Ύ,m,h,g,r,2, )l+ll.

^ 3ikZ>(w - 3)C(2, m - 1, 7, δ)Ar"/2(α.,.) .

Thus for TO Ξ> 1 one has

C(2, TO, 7, 6) <Ξ Jl f^n -

^ + 2M/[a0 + k]]C(2, m - 1, 7, 6) .

Similarly from (2.12) we obtain the estimates for all values of t

I f(b, m, h, g, r, 1, O r I S MXn - 3)C(2, TO - 1, 7, 6)

x [5k-βl2-s'2(ar) + 2ikP'7[α0 + δf2]

W ' K 9' T' h t)]~ '(2
" ' g 3ikfM - 3)C(2, m - 1, 7,

I [/(7, m, h, g, r, 2, tψ |
^ 3M^(w - 3)C(2, n - 1, 7, 6)&-i3/2-3'2(αr)

Thus it follows that if k and r are chosen so that

(2.17) MMn - 2)[Zk-flt(ar) + 2M/[a0 + fc] | < A

then the series in (3.7) will converge uniformly and absolutely in
every finite interval and for j = 0 and Ί — a one has the estimates
(2.9). For m = 0, j" = 1, 2 and r > Hλ we note that the functions
G(m, ί, r, i) are independent of the choice of 7 e βr. By induction
this then holds for m ^ 1. Thus we have the estimates in (2.9) for
the case j = 0. It also follows that G(t, r, 2) and G(t, r, 1) satisfy
the equations

G(t, ry 1) = Γ 2?(G(w, r, l))G(0, ί - w, r, 2)dw
J —CO

+ ['DiGiw, r, l))G(0, ί - w, r, l)dw + ί" D(G(wf r, 2))
Jo Jo

x G(0, t — w, r, l)dw for all values of t

(2.18) G(t, r, 2) = Γ ί)(G(w, r, 2))G(0, ί - w, r, 2)dw
Joo

+ (~°° D(G(w, r, l))G(0, ί - w, r, 2)dw
Jo

+ Γ D(G(w, r, 2))G(0, ί - w, r, l)dw for t ^ 0 .
Jo
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Now using the estimates (2.4) it follows from (2.18) that G(t, r, 1)
satisfies equation (1.2) for all values of t and G(t, r, 2) satisfies
equation (1.2) for t > 0. It also follows from (2.18), the estimates
for the terms D(G(w, r, i)) above, and (2.17) that the estimates given
in (2.9) hold for j ^ n - 1 with N(k, r) = 2M(k, r). This completes
the proof of Theorem 2.1.

Associated with equations (1.1) and (1.2) we have the adjoint
equations (2.19) and (2.20) given below. These equations are adjoint
relative to the inner product given by (3.1) in the next section.

(2.19) U{y{s)) = y^(s) + Σ Σ (- l ) I + e,*V(I)(β + Δk)

(2.20) Lt(y(s)) = D+(y(s)) = Σ Σ (-l)'+*[0,*(« + σh)y{s + σh)Yβ) .
hg

Now in place of the equations (3.5) and (3.6) we have for j ^ 1 and
all value of t

wG(j, t, s, r, 1) = Γ D(G(j - 1, w, s, r, l))G(0, ί, w, r, 2)d
J-oo

(2.21) + £ D(G{j - 1, w, s, r, l))G(0, t, w, r, ί)dw

+ j " D(G(j - 1, w, s, r, 2))G(0, t, w, r, ΐ)dw

and for t Ξ> s

G(j, t, s, r, 2) = Γ D(G(j - 1, w, s, r, 2))(?(0, t, w, r, ϊ)dw
J oo

(2.22) + j " D(G(j - 1, w, s, r, l))G(0, t, w, r, 2)dw

i - 1, w, s, r, 2))G(0, ί, w, r, 2)dw .

For t < s and j ^ 1 we set G{j, t, s, r, 2) = — G(j, t, s, r, 1). Then
defining

Git, s, r, 1) = Σ GO', *, β, r, 1)
(2.23) ^°

G(ί, s, r, 2) = Σ (GO', ί, 8, r, 2)
i=0

we have the following theorem.

THEOREM 2.2. If equation (1.1) satisfies Ia and equation (1.3)
satisfies IIa+2 for some a then there exists H2 > 0 such that for any
r ^ H2 the function G(t, s) can be written for all value of t, s in
the form
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(2.24) G(t, s) = G(t, 8, r, 1) + G(t, s, r, 2) .

The function G(t, s, r, 1) satisfies equation (1.2) as a function of t
and equation (2.20) as a function of s for all values of s and t.
The function G(t, s, r, 2) satisfies (1.2) as a function oft and (2.20) as a
function of s for all t > s. The mixed partials dί+3'G(t, s, r, ϊj/dtfds3'
are continuous and independent of order for all i ^ n — 1, j rg n — 1,
and all values of t and s. Furthermore these partials satisfy estimates
of the form (2.9) with appropriate constants N*(k, r) and t replaced
by t — s on the right side of the inequalities.

Proof. We first note that the change of variable tx — t — s
converts the equations (2.21), (2.22) into equations of the form (2.18)
where the coefficients used in defining D have been shifted. Since
the estimates on the coefficients were uniform in t we have from
Theorem 2.1 the assertions that G(t, s, r, 1) and G(t, s, r, 2) are
solutions as functions of t, of equation (1.2) and satisfy equations
(2.25), (2.26) for the appropriate values of t.

G(t, 8, r, 1) = Γ D(G(w, s, r, l))(?(0, ί, w, r, 2)dw
J — o o

(2.25) + Γ D(G(w, s, r, l))G(0, t, w, r, ί)dw

+ Γ D(G(w, s, r, 2))(r(0, t, w, r, ϊ)dw

G(t, s, r, 2) = (* D(G(w, s, r, 2))G(0, t, w, r, l)dw
J oo

(2.26) + Γ " D(G(w, s, r, l))G(0, t, w, r, 2)dw

+ Γ D(G(w, s, r, 2))G(0, t, w, r, 2)dw .

The results of Theorem 2.1 also justify integrating the equations
(2.21) and (2.22) by parts, obtaining

G(j, t, s, r, 1)

= Γ Σ Σ G(j - 1, w - σh, s, r, l)[qgh(w)G(0, t, w, r,
J-oo gh

(2.27) + Γ Σ Σ GO" ~l,w- σh, s, r, l)[qgh(w)G(0, t, w, r,
Js gh

+ Γ Σ Σ GO" - 1, w - σk, s, r, 2)[qah(w)G(Q, t, w, r,
Js gh

and
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GO", t, S, r, 2)

= Γ Σ Σ GO - 1, w - σk, s, r, 2)[qgh(w)G(0, t, w, r,
J oo gh

(2.28) r-»
+ Σ Σ G(j -1, w - σh, s, r, l)[qβh(w)G(Q, t, w, r, 2)]™dw

Js gh

+ Γ Σ Σ G(j -l,w- σh, s, r, 2)[q,h(w)G(Q, t, w, r, 2)]<*>dw
Js gh

where [ ](flr) denotes the gth derivative with respect to w. But then
it follows from (2.27) and (2.28) for i = 1 that

(2.29) L+G(i, t, 8, r, 1, ) = D+(G(i - 1, ί, s, r, 1))

for all values of t and s, and for t ;> s that

(2.30) LtG{i, t, 8, r, 2) - D+(G(i - 1, t, s, r, 2)) .

Then assuming the relations (2.29) and (2.30) hold for i = n one
extends them to i = n + 1. This is done by noting that due to the
smoothness properties of G(n, t, s, r, k), k = 1, 2, and its derivatives
for n ^ 1 and the identity G(w, £, s, r, 2) = — G(w, έ, s, r, 1) for ί < s
one may commute the operator Li with the integral and summation
signs in equations (2.27) and (2.28). Then by the induction hypothe-
sis one obtains D+G(n — 2, w — σh, s, r, k) inside the integral as k = 1
or 2 in the given integral. But then, for the reasons mentioned
above, one is able to commute D+ with the integral and summation
signs to obtain D+G(n — 1, w — σh, s, r, 1) in (2.27) and D+G(n — 1,
w — σh, 8, r, 2) in (2.28). This completes the desired induction. The
uniform convergence results of Theorem 2.1 now establish the asser-
tions that G(t, 8, r, 1) and G(t, s, r, 2) satisfy equation (2.20) for t and
s in the appropriate domains. The assertions concerning the mixed
partial derivatives of G(t, s, r, 1) are obtained from the identity

G(t, s, r, 1)

= Γ Σ Σ G(w - σh, 8, r, l)[qgh(w)G(0, ί, w, r, 2)\{9)dw
J-oo gh

(2.31) n
+ \ ΣΣ*G(w- σh, β, r, l)[ί,A(w)G(0, t, w, r,

+ Γ Σ Σ G(w - σh, 8, r, 2)(qgh(w)G(t, w, r,
Js gh

In light of the existence of the partials of G(t, s, r, k) and G(0, t, s, r, ά)
with respect to s and t and the fact that they satisfy bounds of the
form (2.4), (2.9), the mixed partials d^'/dtfds3' are obtained by taking
these partials inside the integrals along with the additional terms due
to the simple discontinuities of G{n~1+k)(0, t, w, r, 2) at the finite set
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of isolated points tkj in the interval [0, (n + l)Δm], These terms are
of the form G{l)(tkj — σh, s, r, 1) multiplied by appropriate constants
where I = g + i + j — (n — 1 + k). Thus the mixed partials possess
the stated properties. This completes the proof of Theorem 2.2.

We now denote by K the max#(fc) for h = 0, -—,v. We then
have the following result.

THEOREM 2.3. The conclusions of Theorem 2.2 remain valid if
the hypothesis that (1.3) satisfies IIa+2 is replaced by the hypothesis
that (1.3) satisfies IIa+1/2 and the assumption that for all j t^k and
pairs (gf h)eB one has that qfy are in L1[ — oof oo].

Proof. Referring to the proof of Theorem 2.1 we note that in
obtaining the estimates (2.14) we used (2.13). The restriction IIa+2

was used in obtaining a bound for the L1 norm of the terms playing
the role of /. But now using the fact that the qgh e L ^ - w , oo] one
can obtain for the terms playing the role of g, in Theorem 2.1, an
estimate on their L1 norm. Thus one needs only an estimate on the
U norm of the terms playing the role of / in the proof of Theorem
2.1. But for this it is sufficient to have (1.3) satisfy the condition
IIa+m. Thus the results of Theorem 2.1 remain valid if the qgh e
Lι[ — oo9 oo] for all pairs (g,h)eB. The additional hypothesis that
the qg

jh e&[— oo, co] for j <i k are needed in the proof of Theorem 2.2
where the adjoint equation is considered. In particular, they are
required for the representation given by equation (2.30). This com-
pletes the proof of Theorem 2.3.

3* Representation result* In this section we shall establish
the representation result given by equation (1.5) and described in
§jl. This is done by showing that the function G(t, s, r, 1), occurring
in Theorem 2.2 defines the finite dimensional subspace F( — ar) described
in § 1. This result is then used to establish Theorem 3.2.

Let C denote the space of functions having n — 1 continuous
derivatives on [ — Δm, 0] with the uniform norm || ]] and C+ denote
the space of functions having n — 1 continuous derivatives on [0, Δm]
along with the uniform norm. Then associated with equation (1.2)
and its adjoint equation (2.20) we have for every real number σ and
f eC, deC+ the following inner product

[f,d,σ] = ±(-iγ~ψn-

- ΣΣ |Γ
hi I J -Δk
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(3.1) + Σ

+ Σ Σ j Γ /<a)(ί)<U<7 + ί + oh)d{ξ + σh)dξ
hg VJ—σh

Here we have written

W + oh)d{σh)\^ for

evaluated at £ = 0. If y denotes a solution of the adjoint equation
(2.20) for s ^ s0, then for any σ ^ s0 we define y, e C+ by the equation
#*(£) = V(P + ί) for ξe[0, zfj. Similarly if x is a solution of (1.2)
for t Ξ> ί0 we denote by a?β, σ ^ ί0, the function ^ G C defined by
^<r(ί) — ^ + S) for f e [ — z/m, 0]. For any r, r ^ H2 as given in
Theorem 2.2, we define the linear operator E(r) on C by setting

(3.2) E{r, f)(t) = [/, Go(t, , r f 1), 0] for t e [-im, 0] .

We then have the following result.

THEOREM 3.1. For any r ^ H2 the linear operator E{r) defines
a projection of C into C. The range of E(r) has the dimension n(ar)
as defined in § 1.

Proof. We first establish the identity

(3.3) G(ί, 8, r, 1) = [Go( , s, r, 1), G0(ί, , r, 1), 0]

for r ^ H2 and all values of t and s. Since the mixed partials of
G(t, s, r, 1) of order up to 2n are continuous and since G(t, s, r, 1)
is a solution of (1.2) and (2.20) it follows that the right side of (3.3)
is a solution of (1.2), as a function of έ, and a solution of (2.20), as
a function of s for all values of s and t. We consider (3.3) for the
case in which t > Am. For these values of s and t [4] one has the
identity

G(t, s, r, 1) - [Go( , 8, r, 1), G0(t, •), 0]

(3.4) - [Go( , β, r, 1), G0(ί, , r, 1), 0]

+ [G0( ,s, r, 1), G0(t, , r , 2), 0] .

Now it is known [4] that for all values of σ <; 0

(3.5) [G,(-, «, r, 1), Gσ(£, , r, 2), σ]

is a constant which is independent of σ. From Theorem 2.2 it follows
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that there exists an M > 0 such that (3.5) is bounded by

M exp [(ar - δr/2)(t - σ)] exp [(ar + δr/2)(σ - s)] .

Letting σ —• — oo we have that the expression in (3.5) is zero and
so we obtain (3.3) for all t > Δm. Using the fact that solutions of
(1.2) have unique backward continuations [5], [4], the identity (3.3)
follows for all values of t. Using the continuity of the mixed
partials of G(t, s, r, 1) as given in Theorem 2.2 and Fubini's theorem
one may carry out the interchanges in the orders of integrations and
differentiations [6] to obtain the identity

[[/, G0(t, ., r, 1), 0], G0(α:, , r, 1), 0]

= [/, [Go( , 8, r, 1), G0(a, , r, 1), 0], 0]

where t varies in [ — Δmy 0] and s in [0, Am\. Thus we have that
E(r, E{τ, /)) = E{r, f) and it follows that E(r) defines a projection
on C. In order to prove that the dimension of the range of E(r)
is n(ar) one introduces the one parameter family of equations

(3.7) L0(x(t)) = uD(x(t)) for 0 ^ u ^ 1 .

Then from Theorem 2.2 one again obtains a function G(t, s, r, 1, u)
which for u = 1 reduces to G(t, s, r, 1). As in [6], the inner product
(3.1) is modified to [/, d, σ, u] by replacing the functions qgh by the
functions uqgh. One again shows that

(3.8) E(r, /, u)(t) = [/, G0(ί, , r, 1, u\ 0, u]

defines a projection. It then follows from the proof of Theorems
2.1 and 2.2 that the mixed partials Gj(t, s, r, 1, u) are continuous
functions of u for 11 \ ̂  2JTO, | s \ ̂  2zίm, and i ^ 2^. Thus it follows
that the norm of E(r, u) is a continuous function of u for 0 ^ 6̂ ̂  1.
Since the dimension of the range of E(r, 0) is n(ar) it then follows
by the usual arguments [6] that the dimension of the range of E(r, 1)
is also n(ar). This completes the proof of Theorem 3.1.

Let C(r) denote the range of E(r). Then since C(r) has the
dimension n(ar) we may select a basis ζrp j = 1, •••, n(ar) for C(r).
Thus for every / e C(r) we have a unique representation of the
form

(3.9) E(r, f) = " Σ W , Mr, .

Now for ί > 0 we have [4] for any solution a? of (1.2)

/Q i m ^ ( έ ' ^ 0 ) = [ / ' G o ( ^ #)> 0 ] = [ / ' G ^ ' •' r ' ^ 0 ]

(o.lU)

+ [/, Gt(t, -, r, 2), 0] .
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Since G(t, s, r, 1) satisfies equation (1.2) for all values of t it follows
that [/, G0(t, , r, 1), 0] has a unique backward extension to [ — Δm, 0].
Thus it follows from (3.9) and (3.10) that for all t > 0

n(ar)

(3.11) x(t, /, 0) = Σ <*(/, JHt, ζrj, 0) + xr(t) .

From the results of Theorem 2.2 we have that there exists a constant
&(r), depending only on r, such that for all t > 0

(3.12) I I ^ I I ^ A < r ) | | / | ] e x p ( α r t ) .

Summarizing these results we have the following theorem.

THEOREM 3.2. Under the hypothesis of Theorem 2.2 or Theorem
2.3 one has for every r > H2 and every solution x{t, f, 0) of (1.2) a
unique representation of the form (3.11) where the remainder term
xr satisfies the estimate (3.12).

We note finally that the hypothesis of Theorem 2.3 are more
restrictive than those of Hale [3] and Cooke [2]. Thus in this case
their results are applicable. These results assure us that each of the
solutions x(t, ζrp 0) is asymptotic as t —> co to a solution of (1.1).
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