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NORMALITY AND THE WEAK cb PROPERTY

K. H A R D Y AND I. JUHASZ

It is demonstrated that the Alexandroff duplicate of a
Dowker space is again a Dowker space which is not weak cb,
while the existence of weak cb Dowker spaces is made manifest.

A nonmetrizable, first countable compact space was created by
Alexandroff in [1] and the construction has been subsequently general-
ized and employed ([2], [3], [7], [8]). The present note concentrates on
some properties of the Alexandroff duplicate A (X) which, in particular,
show that a (collectionwise) normal space need not have the weak cb
property, thus resolving the open question in [11, p. 240].

l Pre l iminar ies . No separation axioms are implicitly as-
sumed for the topological space X. The Hewitt-Nachbin realcompac-
tification of a Tychonoff space X is denoted by υX. We will write
An \ 0 to indicate that (An) is a decreasing sequence of subsets of X
such that ΠnAn=0. N denotes the natural numbers. A set A is
regular closed if A = clγ intx A, and dA denotes the boundary of Λ.

PROPOSITION 1.1. ([10], [11]) A space X is cb (weak cb) if and only
if for each sequence An\0 of closed (regular closed) subsets of X, there
exists a sequence of zero sets (Zn) with An C Zn and Γ)nZn = 0 .

cb -spaces originated in [5] and were studied by Mack in
[10]. Every normal, countably paracompact space is cb and every
cb -space is countably paracompact. Weak cb-spaces were defined in
[11]. They form a natural generalization of cδ-spaces and include the
Tychonoff pseudocompact spaces and all extremally disconnected
spaces. Interest in weak cfc-spaces is centered in the theorem ([11]) that
for a Tychonoff space X, the Dedekind completion of C(X) is isomorphic
to C(Y), for some space Y, if and only if vX is weak cb. It should be
noted that if X is Tychonoff and weak cb, then any space T with
X C T C vX is weak cb. The converse fails in general (see [4]) but the
following result is evident and will be needed below.

PROPOSITION 1.2. Let X be Tychonoff and consider the statements :
(a) For any sequence An \ 0 of regular closed sets in X we have

n B c U B = 0.
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(b) For any decreasing sequence (An) of regular closed sets in X we
have Π n c l ϋ X A n = cl ϋ X ΓΊ n A n .

(c) // vX is weak cb, then any space T, with X C T C vX is weak
cb. Then (a) if and only if (b); and (a) or (b) implies (c).

Proof We merely recall that if X is dense in T and A is a regular
closed subset of X then clΓA = B is the unique regular closed subset of T
with A= BOX.

According to a result of Ishikawa [6], a space X is countably
paracompact if and only if for each sequence An \ 0 of closed subsets of
X, there exists a sequence (Gn) of open sets such that An CGn and
Πn c l x G n = 0 . The following observation will be useful below and may
have independent interest.

PROPOSITION 1.3. The following statements are equivalent:
(a) X is countable paracompact.
(b) For each sequence Fn\0 of closed nowhere dense subsets of X,

there exists a sequence (Gn) of open sets such thatFn C Gn and Πn c\xGn -
0.

(c) Each countable increasing cover ([10]) by dense open sets has a
countable closed refinement whose interiors cover X.

Proof. It is enough to show (b) implies (a). Let An \ 0 be an
arbitrary sequence of closed sets and define a sequence of open sets (Gn)
with An C Gn and Πn c\xGn = 0 in the following manner:

(i) If int xAm = 0 for some m ^ 1, there exist open sets Gk with
Ak C Gfc, fc ̂  m and Πk clxGfc = 0 ; put Gn = X for 1 ̂  n < m.

Now assume that i n t x A n ^ 0 for all n.
(ii) If a subsequence (A n) exists with A Πfc+i C int x A v let GΠfc+i =

intxAnfc and Gn = X otherwise.
(iii) If there exists m g 1 such that Fk = dAk Π 3Afc+i ^ 0 for fc ̂  m

then Ffc \ 0 is a sequence of closed nowhere dense sets and there exists a
sequence of open sets (Uk) with Fk C ΓΛ and Πk clxί7fc = 0 . Define
Gk+λ = intxAk UUk for k g m and Gn = X for 1 ̂  n g m.

In order to exploit the use of nowhere dense closed subsets, we
venture to make the following:

DEFINITION 1.4. X is an nd-space if for each sequence Fn \ 0 of
closed nowhere dense sets, there exists a sequence of zero sets (Zn) with
FnCZn and ΠnZn =0.

Every cb -space is an nd-space. Since every zero set Z is a regular
Gδ-set (a countable intersection of closed sets whose interiors contain Z),
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we may adapt the proof of Proposition 1.3 to conclude that every
nd -space is countably paracompact. A space is cb if and only if it is
both a weak cb and an nd-space. The example on p. 240 of [11] is
countably paracompact but not an nd-space. It is conjectured that an
nd-space need not be cb, although an example at the present time is not
forthcoming.

2. Properties of A ( X ) . Recall the construction in [7].
Given an arbitrary topological space X, consider the set A (X) = X U X',
where X' is a disjoint copy of X. For any xGX, let x' denote the
corresponding point of X' and if S C X define S' = {x' |xES}. A
topology is introduced to A(X) by defining a base {B(z)\z E A(X)} as
follows:

B(x') = {{x'}} and B(x) = {V U (V'\{x'})| V E Y(χ)}9

where T(x) is a neighbourhood base of x in X. The resulting space,
also denoted by A(X), generalizes the original construction in [1] and is
called the Alexandroff duplicate of X. It is clear that X is a closed,
C-embedded subspace of A(X).

Many properties of X are shared with A (X). It has been noticed
that A(X) is compact ([2]), a -compact (for any infinite cardinal α),
realcompact and Tychonoff ([7]), if X has the corresponding
property. We will now expand this list of properties.

Observe that a space is normal if and only if each pair of disjoint
closed nowhere dense sets can be separated by disjoint open neighbour-
hoods.

PROPOSITION 2.1. X is normal if and only if A(X) is normal

Proof Let A and B be disjoint closed nowhere dense subsets of
A(X). Then A and B are closed and disjoint in X and can be separated
by disjoint open sets U and V in X. The sets U U U1 and V U V are
open disjoint neighbourhoods of A and B in A(X).

PROPOSITION 2.2. X is countably paracompact if and only if A (X) is
countably paracompact.

Proof For the necessity, let Fn \ 0 be a sequence of closed
nowhere dense subsets of A (X). Then Fn C X and there exists a
sequence (Vn) of open subsets of X with Fn C Un and Πn c\xUn =0.
Define Gn = Un U U'n and note that clA ( x )Gn =cl x [/ n U U'n, so that
FnCGn and Ππ clΛ ( X )Gn = 0 .

PROPOSITION 2.3. If A (X) is weak cb then both Xand A (X) are cb.
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Proof. To show that X is cb, take a sequence An \ 0 of closed sets
in X. Then Bn= AnU A'nis regular closed in Λ(X) and Bn \0. There
exist zero sets Wn in A(X) with B, C Wn and n n W n = 0 . Then
Zn = Wn Π X is a zero set in X and An C Zn with ΠΠZΠ = 0. If X is cfo
then both X and A (X) are countably paracompact, hence A (X) is cb.

One may show that A (X) is countably compact if and only if X
is. Furthermore, if X contains a C-embedded copy of N, so does A (X)
so that A (X) is pseudocompact implies that X is also. However, if X is
pseudocompact (Tychonoff) but not countable compact then A (X) is not
weak cb, in particular, not pseudocompact.

3. Dowker spaces. A Dowker space is a normal Hausdorff
space which is not countably paracompact. Such spaces exist within
Zermelo-Fraenkel set theory; the axiom of choice implies the existence
of a zero-dimensional P-space which is Dowker [12] and more recently
the continuum hypothesis implies existence of a first countable,
hereditarily separable Dowker space [9].

The open question in [11, p. 240] may be phrased as follows: Must
every Dowker space have the weak cb property? It follows from
Propositions 2.1 and 2.2 that A (X) is a Dowker space if and only if X is
such. Since no Dowker space can be even an m/-space, 2.3 implies that
for any Dowker space X, the space A (X) answers the above question
negatively. It may be of interest however that the (collectionwise
normal) Dowker space of M. E. Rudin [12] is weak cb, as is now shown.

The reader is referred to [12] for details. With the same notation as
in [12], define

F = {/: N-> ωω \ f(n) ^ ωn for all n G N}.

X = {/ G F I ω, ̂  cf(f(n)) ^ ωk for all n G N and some k G N},

X' = {/ G F I ω, ̂  cf(f(n)) for all n G N}.

F carries a topology generated by the basic open-and-closed sets

(/, g] = {h G F I f(n)< h(n)^g(n) for all n G N}.

Then X C X ' C F are subspaces and vX = X' is paracompact, and hence
a weak cfc-space.

To show that X is weak cb, let An \ 0 be a sequence of regular
closed subsets of X and suppose g G f\ clϋXΛΛ. We will define an
increasing sequence {fa G X | a < ω,} as follows:

(1) Choose any f()E.'mixAx with fo=g-
(2) Assume /β G X is defined for all β < α, and

(a) if α = j3 + 1 , let i E N be the smallest integer with
fβ^intxA, and choose fa G (int^A,) Π (/̂ , g].
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(b) if a is a limit ordinal, let ha(n) = sup{fβ(n)\β < a} and
choose fa e (intxA,) Π (ha, g].

Now define f(n) = sup{fa(n)\a < ω,}. Then f = g and cf(f(n)) = ωx

for all n E N implies that / G X. However, f G Ak for all k G N: let
ft < / and for each n £ N there is fQn E{/α |α < ω{} with h(n)< fan(n).
Let β =sup{αn|rc EN} and then /β+fc G(int xΛk)Π (ft,/], that is /G
clx intχΛk = A*.

We have a contradiction and so An\0 implies ΠnclυXAn =0.
Finally, apply Proposition 1.2 to infer that X is weak cb.

4. Remarks. Since the Dowker space X in [12] is weak cb, it
follows from [4] that E(υX) = vE(X), where E(X) denotes the absolute
of X (see for example [4, p. 652]). Thus, vE(X) is paracompact.
However, it has been shown by E. K. van Douwen that E(X) is not
normal. It would seem natural therefore to pose the following
questions. (1) Is there a normal space X with normal absolute E(X);
(2) Is there an extremally disconnected Dowker space; and ultimately (3)
Is there a Dowker space X with Dowker absolute E(X).

Added in proof. Regarding questions (2) and (3) above, M. Wage
has proved that the set-theoretic hypothesis 0 implies the existence of a
separable extremally disconnected Dowker space.
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