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DIVISION OF DISTRIBUTIONS
ELEMER E. ROSINGER

This paper deals with division in an associative commutative
algebra containing the distributions in R".

1. Introduction. In[5]and[6], afamily (A,,|p € N", A EA)
of associative, commutative algebras with unit element were constructed,
with the following main properties:

(1) 2'(R")CA, . YVpEN" LEA,

(here, N={0,1,2,---}, N=NU{x} and n€EN, n=1);

(2) The multiplication in each of the algebras A, ,, p € N A €A,
induces on $*(R") the usual multiplication of functions and the function
¢ € €°(R"), with ¢(x) =1, Vx € R", is the unit element in the algebras;

(3) for each XA € A, there exist linear mappings D?: A ., = A,
with p € N", g € N", such that

(3.1) Dr satisfies on A,., , the Leibnitz rule of product deriva-
tive.

(32) D* is the usual distribution derivative on
€(R")D DYR"), where DYR")={S € D'(R")|supp S
is finite};

(4) The following relations hold for the Dirac §,, distribution,
concentrated in x, € R":

(x—xO)"Dq6m=OeAp,A, VPEN", AEA,
if gqg rENr=p+e r=zq+e where e=(1,---,1)EN".

In the present paper, within the one dimensional case n =1,
necessary or sufficient conditions are given for T € A, ,, in order to be a
solution of one of the equations x™ - T=0€ A,, andx™ - T=S€ A, ,,
with m €N, m = 1.

2. Notations. Several classes of sequences of complex valued
smooth functions (see [5] and [6]) will be needed.

1) W=N->%(R");, if sEW, vEN, xER', then s(v)E
€=(R"), s(v)(x) € C"; for ¢ € €*(R") denote u(y) E W, where u(y)(v)
=y, Vv € N; W is in a natural way an associative, commutative algebra
(the vector spaces and algebras are considered over the field C' of
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complex numbers), with the unit element u(1) and zero element u(0);
thus, O = {u(0)} is the null space in W;

2) D: W— W is defined by (Ds)(v)(x)=(Ds(v))(x), VsE W,
v € N, x € R'; for given x,€ R', define 7,; W — W by (1,5)(v)(x)=
s(¥)(x —x0), VSEW, vEN, x ERY;

B) U={u@)|y €€ (R

(4) ¥ is the set of s € W, weakly convergent in @'(R"); ¥, is the
kernel of the linear surjection:

F3s—>(s,")ED'(RY),

where

sor=tim [ s w0 YeeaRY;

One of the basic ideas in the construction of the associative and
commutative distribution multiplication in [5] and [6], is the way the
weakly convergent sequences of smooth functions representing the Dirac
o distribution are chosen:

(5) %5 is the set of s € ¥, satisfying the conditions:

65.1) (s-)=34

(52) Ve>0:3v.EN:VvEN,

vZzy,xER|x|zZe:s(v)(x)=0

(53) VpEN:3Iy, EN:VVEN,

v=vy,: W(s(v), -+, s(v+p))0)#0.
where W(y, -, ¢,.)(x), x € R', denotes the Wronskian function of
Ui, e € €T(RY).

The condition (5.3), called ““strong local presence of s in x = 0” and
replaced in [6] by a weaker form, plays a central role in the associative,
commutative distribution multiplication presented in [5] and [6].

(6) for p € N, denote by 9%, the set of v € ¥, satistying the above
condition (5.2), as well as

6.1) VgeEN,g=p:Ay, eN:VvEN: v =y, > D(v)(0)=0;

(7) F5={s € FJsupp(s,-)C{0};

(8) Y5, with p € N, and &; are the vector subspaces generated in
W by U,er .75, tespectively U, cpr 7.F%;

©) 2% = Xew 25

(10) for % = (s, |x € R") € %,, denote by F() the vector subspace
generated in ¥, by the sequences D*s,, with x € R', p € N.

And now, the definition of the associative, commutative algebras
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(A, .|p €N, X € A), where A is the set of all A = (3, &) with = € Z; and
&, vector subspace in ¥, such that (U +%)NF =0 and ¥, =
U+ L5+ S ~

Suppose p EN, A = (3, #) € A and denote

(1) =7, OUDSR)D

(12) «,, the smallest subalgebra in %, containing ¥, , and in-
variant of the mapping D: W — W

(13) 4, . the vector subspace generated in W by V5, - A, ..

Then (see [S] and [6])

(1) Ap,/\ = 'dp,)\/yp,)d

(2) D: A,..,— A, is given by

D(t+‘-¢p+l‘)\):Dt+*¢p,)\: Vte'szgp+l,)‘-

3. Multiplication by 1/x", m =1,2,---. It is shown
(see Corollary 2) that in the algebras A, ,, the multiplication by 1/x™ does
not represent the division by x™.

THEOREM 1. Suppose T € A, ,, with given p €N, X EA.
Suppose y € €*(R") such that for a certain m € N

Dy (0)=0, Vq € N, q=m.
If there exists x € €*(R') such that ¢ - T = x in A, ,, then:
D%(©0)=0, Vq€&€N, gq=min{p, m}.

Proof. Assume T=t+J4,, witht€ «,,. Theny¢ -T=yxin A,,
implies u(x)=u(y)-t+w, with w € ¥, ,. Therefore,

VeEN q=p: 3y, EN:VvEN, v=y,: D'w(r)(0)=0.
Since x = ¢ - t(v) + w(v), Vv € N, the proof is completed.
COROLLARY 1. Suppose T € A, ,, with given p €N, A EA.

If ¢ € €*(R") such that ¢(0) #0, then, x™ - T# ¢ in A, ,, Vm € N,
m=1.

CoroLLARY 2. If m €N, m =1, then, x™ - (1/x™)# 1, in each of
the algebras A, ,, p E N, A EA.

4. Division by x”, m = 1,2, ---. First, in Theorem 2, a
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sufficient condition is given for T € A, ,, in order to be a solution of the
equation x™ - T=0€ A, ,, where m EN, m = 1.

For p € N and A € A, denote by B, all the elements TE A, , of
the form T =t + 4, ,, where t € o, , N ¥, and satisfies also (5.2) in §2.

PrOPOSITION 1. Suppose given p € N, A €A and ¢ € €*(R"), such
that, for a certain g €N, q Z p:

Dy (0)=0, Vr €N, r=q.
Then, ¢ - BS,, ={0}CA, ..

Proof. Assume TE€B), and T=t+4,,, with tE€ «,, NV, and
satisfying (5.2) in §2. Then, ¢ -T=u(¢)-t+4,, But, obviously,
u(p)-t€ V3, CV%,CH,, hence, T=0€ A, .

THEOREM 2. Suppose given p E N, A EA and m €N, m = 1.
Then, any

To= 2 x" Ty -To+ D x%-DPs-Ty,

0=i=k 0=/=h

Wlth k, hy r, q/7 p] EN’ T; >p— m,

g, >max{p,p}—m,

and T], S B(;,A’ TZ:’ T3I € AP-/\’

will be a solution in A, , of the equation x™ - T = 0.

Proof. According to Proposition 1, x™-x"-T,=x"" T, =
0E A, , sincem +r,>p. According to (4) in §1 (see also 3) in Theorem
6, 8§88 [S]), x™-x%-DP6=x""%-D»6=0€A,, since m+gq >
max{p, p;}.

It results the following sufficient condition on T € A, ,, solution of
the equation x” - T=S €A, ..

COROLLARY 3. Suppose S € A, ,, with pEN, A €A given and
meN, m=1.

If T, is any solution in A,, of the equation x™-T =S and T, is
given as in Theorem 2, then T = T, + T, will be again a solution of that
equation.

Before a necessary condition is given on T € A, ,, solution of the
equation x™ - T =0€ A, ,, the notion of support of the elements in A, ,
will be defined.
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Suppose T € A, ,, with p € N, A €A given and E CR'. Then,

(1) T vanishes on E, only if T =1t+ 4,,, with t € o, ,, such that
t(v)(x)=0,VvEN, v=v, x EE.

(2) T strictly vanishes on E, only if T vanishes on a certain open set
G CR/, containing E.

(3) T is supported by E, only if for every open set G CR',
containing E, one can write T=t+4,, with t€ 4,, such that
suppt(v)CG, VVEN, v = v,.

The support of T is defined as the closed set

supp T = R"\{x € R"| T strictly vanishes on {x}}.

Obviously, for the distributions in €*(R")P DYR"'), the above
notion of support is identical with the usual one for distributions.

PROPOSITION 2. Suppose x, € R' and q € N, then, D, € A, ,, for
pEN, AEA, and

(1) D¢?,, is supported by {x,} and supp D8, = {x,},

(2) ifE CR'andx,& closure E, then D45, strictly vanishes on E,

(3) D9, does not vanish on R"\{x,},

(4) D?,, does not vanish on {x,}.

Proof. (1), (2) and (3) follow easily.
(4) Assume A = (2, %) and X = (s, |x €R"), then, D, = D%,+ 5,,
and s, € 7,%5 Suppose, D%, vanishes on {x,}, then, there exists
t€ A, ,, such that t—D9,E€¥%,, and t(v)(x))=0, VVEN, v=
v,. Denoting v =t — D7, the relation v € 4, , implies v(v)(x,) =0,
Vv EN, v=v,. Therefore, it results

D, (v)(xo) = t(v) (x0) — v(¥) (x0) = 0, Vv EN, V=,

But, that relation implies W(s,(v), ", s(v +q))(x,)=0, Vv EN, v =
v,, which contradicts the assumption s, € 7,Z5.

ReMARK. The property of the Dirac distributions that D8, does
not vanish on {x,}, Vx,€ R', ¢ €N, is a direct consequence of the
“condition of strong local presence” (see (5.3) in §2) and it is proper for
the distribution multiplication presented in [5] and [6]. The ‘‘delta
sequences” generally used (see [2]) do not necessarily prevent the
vanishing of D8, on {x}.

THEOREM 3. Suppose T € A, , with p €N, A € A given.
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Ifx"-T=0€A,, foracertain m €N, m =1, then T is supported
by {0}, hence supp T C{0}.

Proof. Assume T =t+ $,, witht€ ,,, Thenx" -T=0€A,,
implies u(x™)-t € 4, ,, therefore, according to the definition of %, , (see
(13), §2), it results

u(x™)-t= > v-a

0=1=k

with k EN, v, € V5, a, € A, ..
Now, due to the definition 75, (see (8) and (6), §2), it follows that:
Vie{0, -+, k}: 3X, CR", X, finite: v, = 2 cx v, Where v, € 7,773 .
Concluding, there exists X CR', X finite, such that

u(x’")~t=z Z v, b, with h€N, v, €7YS, b, EHA,,.

xEX 0=j=h

It will be shown now, that in the above relation, one can consider
X ={0}. Indeed, suppose x,€ X\{0}, then v, € 7,75, with 0= =
h. The condition (5.2) in §2, results in the existence of w,; € W, with
0=j=h, such that v,(v)(x)=x"-w,(v)(x), VOSj=h, xER',
vEN, v= v, Moreover, w,, € 1,7%, YVO=j=h, since v,, € 7,773,
with 0=j = h, and x, # 0.

Denoting

U= E E W 'bm/
X0EX 0==h
x0#0

it results v € #,,, hence, T=1t+9,,, where t,=t—-v€EH,, But
u(x™)-tr=u(x™) t—u(x") v = Zo5,=5 Uy, * by,

Since v,, with 0 =j = h, satisfy (5.2) in §2, it follows that u(x™)-t,
and, therefore ¢, satisfy the same condition. Thus, T=1+4,, is
supported by {0}, which obviously results in supp T C{0}.
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