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OPEN MAPPING THEOREMS FOR
PROBABILITY MEASURES ON METRIC SPACES

LARRY Q. EIFLER

Let 5 and T denote complete separable metric spaces. Let
P(S) denote the collection of probability measures on S and
equip P(S) with the weak topology. It φ: S —» T is continuous
and onto, then φ induces a weakly continuous mapping φ° of
P(S) onto P(T). We show that φ° is open in the weak topology
if and only if φ is open. However, φ° is always open in the
norm topology. Let K be a totally disconnected compact metric
space and let Sκ denote the set of continuous mappings of K into
S. Then there exists a natural mapping π of P(SK) into
P(S)K. Blumenthal and Corson have shown that π is
onto. We establish that π is an open mapping in the weak
topology.

1. Introduction. Let 5 be a complete separable metric space
and let C(S) denote the algebra of bounded continuous real-valued
functions on S. Let M(5) denote the collection of Borel measures on S
which have finite total variation ||μ ||. Given / E C(S) and μ E M(s),

set μ (/) = I f(s)dμ (s). The weak topology on M(S) is the topology on

M(S) induced by C(S). Thus, a neighborhood system at μ in M(S) is
given by sets of the form

Ne(μ',fu •••,/„) = {!>£ M(S): I(μ - v)l I < * for / = 1, , n)

where e > 0 and /„ ••-,/„£ C(S).

Let M+(S) denote the non-negative measures and let P(S) denote the
probability measures in M(S).

Our goal is to establish open mapping theorems for some naturally
induced mappings between sets of probability measures. Let φ be a
continuous map of 5 onto T where S and T are complete separable
metric spaces. Define φ°: M(S)—>M(T) by

φ°μ(g)= μ(g°φ)for each g E C{T).

A result of P. A. Meyer [9, p. 126] shows that φ° maps P(S) onto
P(T). We show that φ° is open in the weak topology if and only if φ is
open.

Let K be a totally disconnected compact metric space and let Sκ
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denote the collection of continuous maps of K into S. Given f, g E Sκ,
set D(f,g) = max{d(f(x),g(x)):xEK} where d is the metric on
S. Then Sκ is a complete separable metric space with respect to
D. Given / E C(S) and x E K, we may define a mapping fx: S* —> R by
/x(g) = /(g(*)) for each gESκ. Now define a mapping TΓ:

* by

(7Γμ)x(f) = μ(fx) for each / E C(5).

One easily checks that x -»(πμ)* is continuous in the weak topology and
so one may consider the family (πμ)x as a continuous family of marginals
associated with μ. Blumenthal and Corson [1] have shown that π maps
P(SK) onto P(S)K. We show that π is open in the weak topology.

2. The mapping φ°: P(S)-^P(T). Other than the in-
terior mapping principle for F-spaces [6, p. 55] and its generalizations,
there are few results in functional analysis on openness of
mappings. For example, P. Cohen [4] has shown that if Γ: €λ x €i—> €x

is a continuous bilinear mapping which is onto, then T need not be open
at (0,0). If Ω is a compact subset of a Banach space B and if the
mapping (x, y)—» (̂x, y) is open o n Ω x ί l , then the set ex (Ω) of extreme
points of Ω is closed. Our example below shows that the converse,
which was left unresolved by Vesterstrom [10, p. 293], is
false. However, convex averaging is open on P(S) and this plays a
crucial role in our results.

EXAMPLE 2.1. There exists a compact convex subset Ω of R4 such
that the extreme points of Ω are closed and the midpoint mapping
(x, y) -» \(x, y) is not open on Ω x Ω. Let Ω be the convex hull of (0,1, 0,
0) and (0, - 1, 0, 0) and (x, 0, 1, x2) and (x, 0, - 1, x2) for 0 ̂  x ^ 1. The
extreme points of Ω are the two points and two arcs described
above. But, the midpoint mapping is not open since (0,1, 0, 0) + (0, - 1,
0, 0) = (0, 0, 0, 0) and w, v E Ω with \{u + v) = (x, 0, 0, x2) where x ^ 0
implies u and υ are of the form (x, 0, A, x2) where - 1 ̂  λ ^ 1.

Let S be a complete separable metric space. We recall here some
topological properties of P(S) and M+(S). Every measure μ in P(S) is
tight [8, p. 32], i.e., given e > 0, there is a compact subset F of S such that
μ(S\F)<e. The weak topology on M+(5) is topologically complete.
Thus, we may consider M+(5) and P(S) as complete separable metric
spaces. By embedding S is a countable product of unit intervals and
using the fact that the unit ball in space of uniformly continuous functions
on a totally bounded metric space is separable, we have the following
result [8, p. 47].
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LEMMA 2.2. Let S be a complete separable metric space. There
exist continuous real-valued functions gu g2, * on 5 such that \\gn H*^ 1
for n = 1,2, — - and such that the metric p defined on M+(S) by

ρ(μ,v)=Σ 2-n\(μ-v)gn\
ιι = l

15 equivalent to the weak topology on M+{S).

We now show that convex averaging is open on M+(S). But, first
we establish a result on selecting weakly convergent measures. We
write μ n ->μ if (μn)n=i converges to μ in the weak topology.

PROPOSITION 2.3. Let μn, μ E M+(S) where μn -> μ. Assume 0 ^
v ^ μ. Then there exists 0 ^ vn ^ μn /or n = 1,2, sucfr ί/iαί i>n —> v.

Proof. Given 6 > 0, there exists g continuous on 5 such that
0 ^ g ^ 1 and p(gμ, v) < e. Hence, we may choose fn continuous on S
such that 0^fn ^ 1 and fnμ -> v. But fnμk-^fnμ as fc -»oo. So there
exist n! ̂  n2 ̂  * such that nk —> oo and i/fc = /rtkμfc -> K

THEOREM 2.4. Lei S be a complete separable metric space. Let
0 < λ < l . The mapping (μ, v)^> λμ 4- (1 - λ)v is open on M+(S)x
M+(S) and is open on P(S)xP(S).

Proof Fix μ, v E M+(5) and set ω = Λμ + (1 - λ)v. Assume
ωn —> ω where ωn E M+(S). Since Λμ ^ ω, there exist μn E M+(S) such
that μn -> λμ and 0 ̂  μn ^ ωn. Hence,

1
 A

— μn-*μ and

Thus, the mapping (μ, ι̂ )->Λμ -f(l —λ)i/ is an open map of M+(S)x
M+(5) onto M+(S). One readily obtains that convex averaging is an
open map of P(S)xP(S) onto P(S).

Let S and T be complete separable metric spaces and let φ: S —• T
be continuous and onto. Then φ induces a mapping φ°: M(S)-+ M(T)
defined by φ°μ(g)= μ(g °φ) for each g G C(T). As noted in §1, φ°
maps P(S) onto P(T). We examine the openness of φ° on P(S) with
respect to the weak topology and the norm topology.

THEOREM 2.5. Let S and T be complete separable metric spaces and
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let φ: S —> Γ be continuous and onto. Then φ is open if and only if φ°:
P(S)—>P(T) is open with respect to the weak topology.

Proof Assume φ°: P(S)—> P(T) is open in the weak
topology. Fix s 0 E S and set to= φ(s0). Assume φ is not open at
s0. Then there exist tn-*t0 and e > 0 such that d(s0, φ~ι(tn))^ e for
n = l,2, •••. Choose feC(S) such that f(sQ)=l and / = 0 on
{s<ES: d(s,so)^e}. Since % = {μ G P(S): \(μ - δ s o ) / | < e } is a weak
neighborhood of δΛ), there exist N and μn E °U such that <pVn = δfπ for
n^N. But μ π (/) = 0 since φ~ !(ίn) supports μn and so μn$L°lί, a
contradiction.

Assume φ : S-^ T is open. Fix μ E. P(S). Let 6 > 0 and let
fu'-Jn'. S - > [ 0 , l ] be continuous. Set ί = { i ^ E P ( S ) : | ( μ - i / ) / | < €
for / = 1, , n). We must show that φ°T is a neighborhood of φ°μ in
P ( Γ ) . Choose μ o , μ i , , μ m 6 P ( 5 ) and A0,AI? •• ,λm>0 such that

(1) μ=ΣλΛ

(2) Ao< 6 and each of μu , μm has compact support
(3) the oscillation of /, on the support of μ} is less than e/2 for each

/ = 1, , n and / = 1, , m.
Set T}={p<E P(S): \{v - μ,)f \ < e for i = 1, , n}. Clearly, we have
λ0P(S)+λιVι^ - - - + λmYm C r . We claim that φ0^ is a weak neigh-
borhood of φ°μr For each / = 1, , m choose an open subset U, of S
containing the support of μy such that the oscillations of fu •••,/„ on U,
are less than e/2. Then V] = φ(U}) is an open subset of T containing
the support of v} = <,poμr It suffices to show that v E φ\Ύ,) if ^(VJ)>
1 - e/2 and v G P(T). Choose β0 G P(T) and β G P( Vy) such that

Choose α 0 G P ( S ) and α G P([/7) such that φ°α o = βozndφ°a = β. We
have

and for / = 1, , n

f
But φ°T D A0P(Γ) + λxφ°Yx + + λmφ°Tm and so fey Theorem 2.4,
is a weak neighborhood of φ°μ.
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We next show that the mapping φ° is open in the norm topology.

THEOREM 2.6. Let S and T be complete separable metric spaces and
let φ: S —> Tbe continuous and onto. Then φ°: M+(S)-^ M+(T) is norm
open and hence, φ°: P(S)-+ P(T) is norm open.

Proof. Fix μ E M+(S) and set v = φ°μ. Assume vn —> v in norm
where vn E M+(T). Choose compact subsets K}CK2C of S such
that μ(Kn)-> μ(S). Set an = μ \Kn and βn = φ°an. Then βn has com-
pact support and βn -» v. Also, vk Λ /3n -> βn as fc —>oo. Hence, there
exist 1 = Mi ̂  n2 = such that nk —» oo and *>fc Λ βΠk —» K AS shown in
[5, Lemma 2.2], there exist 0 ̂  μk ^ αn, satisfying p%tk = vk Λ βnk. Then
μk->μ in norm. Choose γ^GM+(S) such that (jP°γfc =
vk-(vk Λ jβnk). Then ||γfc || —̂  0 and so /xfc -f yk -> μ. Hence, φ° is open
in the norm topology at μ.

REMARK 2.7. The proof of the openness of φ° in the weak topol-
ogy seems to break into the two parts (1) φ° is open at the extreme points
of P(S) and (2) convex averaging is open on P(T). There should be a
general theorem on the openness of affine maps between convex subsets
equipped with a metric which would yield Theorem 2.5.

CONJECTURE. Let E and F be Banach spaces and let (E)λ and (F)x

denote the closed unit ball in E and F respectively. Let T: E->F be
continuous and linear. If T maps (E)λ onto (F)x and if {E)x is strictly
convex, then T is an open map of (E)λ onto (F)λ.

Note. Example 2.1 resolves a conjecture of Clausing and Magerl in
[3, p. 76]. S. M. Chang [2] has extended Theorem 2.4 to averaging of
continuous collections of probability measures.

3. The mapping ΊT : P(SK)-> P(S)K. Let 5 be a com-
plete separable metric space and let K b e a totally disconnected compact
metric space. Let Sκ denote the collection of continuous maps of K
into S. We equip Sκ with the metric D(/, g) = max{d(/(x), g(x)):
x E K) where d is the metric on S. Thus Sκ is a complete separable
metric space. The space P(S) can be equipped with a metric which is
equivalent to the weak topology and with respect to which P(S) is
complete and separable. Thus, the space P(S)K denotes the continuous
maps of K into P(S) and P(S)K is equipped with the topology of uniform
convergence in the weak topology. There is a natural mapping of P(SK)
into P(S)K. Let μ G P(SK) and x G K. If U is a Borel subset of S,
then μx(U) = μ({g G Sκ: g(x)E 17}) defines a probability measure μx

on S. One recognizes the family (μx)x(=κ as a family of marginals
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associated with μ. The measure μx may alternately be defined as
follows. Given fEC(S) and xGK, define fx: SK^>R by /*(g) =
/(g(jc)). If μ G P(S*) and x G K, then μx(/) = μ(/x). This latter equa-
tion shows that the mapping x -» μx is continuous in the weak
topology. We set πμ(x) = μx. Blumenthal and Corson [1] have shown
that π maps P(SK) onto P(S)K. Although there is no natural way of
pulling back elements of P(S)K to P(SK), we shall prove that π is an
open mapping. We begin by extending Prop. 2.3 to continuous collec-
tions of nonnegative measures.

LEMMA 3.1. Let S be a complete separable metric space and let X be
a compact Hausdorff space. Let 0 < λ < 1 and let Φ, Ψ: X^P(S) be
continuous. Assume Φx ^ λΨx for each x G X. If Φn: X-*P(S) and
Φn - ^ Φ uniformly in the weak topology, then there exist continuous maps
Ψn: X^P(S) such that Φn ^ λΨn for n = 1,2, •• and Ψn-^Ψ uni-
formly in the weak topology.

Proof. By Lemma 2.2, we may choose continuous maps gu g2, of
S into [0,1] such that the metric p on P(S) defined by p{μ,v) =
Σ 2 " |(μ - v)gn I is equivalent to the weak topology on P(S). If /G
C+(S) and if μ G P(S), then we define a nonnegative measure / μ on S
by (/* μ)g = μifg) for each g G C{S). For each p = 1,2, , choose a
partition of unity /?, •• ,/Sp for S such that each of gu"',gP has
oscillation less than 1/p on the support of f\ for ί = l, •• ,np. Pick
€p >0 satisfying pepnp = 1. Given A: X—>P(S), define πp(Λ): X—>
M+(5) by

Recall that /? Λx(g) = Λx(/*g) for each g G C(S).
Setting f, = f, and e = ep, we have

where JC G X and l^k^p. Let αrί (/Sί) denote the minimum (max-
imum) of gk over the support of /,. Then βk

t - ak

t < lip. Also,

Choose M such that
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1 1

P Φ*(f, + e) P

For m § M and 1 ̂  k ^p, we have

1 for
P

On the other hand, for m g M and 1 ̂  k ^ p, we have

^ Σ φ^(f€) «Ϊ(Φ-). (/)- Σ

( / ) Q.t/'φ Λ ( t + €\~y βkψ (f\- —

Hence, for m g M, | | K ( Φ W ) - Ψ ] (gk)\\x ^ (2+ l/λ)/p if 1 ̂ /c ^
p. Thus, we may choose mι<m2< * such that | | [ τ r p (Φ m )-Ψ] (gk)| | ^
(2 + 1/λ )/p if k ^ p and m ^ mp. Setting Ψ m = ττp(Φm) if mp ^ m < mp+1

and Ψ m = Φm if m<mu we have Ψ m —>Ψ uniformly in the weak
topology and also, λΨm ^ Φ m . One may now modify the Ψm so that
Ψm: X-* P(S) and at the same time preserve the uniform convergence to
Ψ and the inequality λΨm ^ Φ m .

We next show that convex averaging is open on P(S)X.

LEMMA 3.2. Let X be a compact Hausdorff space and assume
0 < A < 1. Let Φ, Ψ: X-^P(S) be continuous. If °U and Ύ are neigh-
borhoods of Φ and Ψ in P(S)X respectively, then λ°lί +(1- λ)V is a
neighborhood of λ Φ + (1 - λ )Ψ.

Proof Let Λn -* AΦ-f (1 - λ)Ψ where Λ n :X->F(S) is continu-
ous. Then there exist Φn : X-^P(S) such that Φ n ^ Φ and AΦn ^
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Λn. Then 1/(1 - λ)(Λn - λ Φ n ) - » Ψ . Hence, λ°U + (1 - λ)V is a neigh-
borhood of λ Φ + (1 - λ )Ψ.

We are now prepared to show that the "marginal" mapping π of
P(SK) onto P(S)K is an open map. In [5], this result was proved for the
case S is compact and K is a two point space.

THEOREM 3.3. Let S be a complete separable metric space and let K
be a totally disconnected compact metric space. Then π: P(SK)-+ P(S)K

is open in the weak topology.

Proof. Let μ E P(SK). Fix continuous maps GU',Gm of Sκ

into [0,o)). Set % = {v E P(5 f c ): |(i/ - μ)G71 < 1 for / = 1, , m}. We
need to show that rήl is a neighborhood of πμ. There exist
μo,μi, , μ n e P ( S * ) , λo,λ1, , λ Π > O , δ > 0 and /1? -,/„ E S* such
that μ = Σ λ t μ , and (1) the support of μ, is a compact subset of
Ns{ft) = {fE Sκ: D(/,/,)< 5} and (2) the oscillation of G, is less than 1/2
over N2s(fi) for each / = l, ,n and y = l, ,m. Now set %, =
{vEP(Sκ):\(v-μi)Gi\<l for y = l, ,m} for ί = 1, , n. Then
λ0P(Sκ) + λλ°lίλ + + An%Π C %. By Lemma 3.2, it remains to verify
that TΓ^, is a neighborhood of πμ,. Let M be an upper bound for
GU',Gm. Choose xu — ,xp and compact subsets KU-,KP of K
such that K is the disjoint union of Ku , Kp and x7 E iζ and K, C
JVδ(xy) = {jc:d(jc,xy)<δ} and such that /{K}) C Nδ(/f (JC;)) for each i =
1, , n and / = 1, ,p. Now the support of πμ,(x) is contained in
N2M{χi)) w h e n x Ξ XΓ Choose 0 < A < 1 such that (1 - λ ) M <
1/2. Consider the set Vt ={Φ<ΞP(S)K: 3 Ψ G P ( S ) K such that Φ^λΨ
and the support of Ψx is contained in ΛΓδ (/, (x})) whenever x E K}}. Then
r, is a neighborhood of πμ t. We claim that ττύUι D %. Fix ΦE.% and
choose Ψ E P(S)K such that Φ ̂  λ Ψ and the support of Ψx is contained
in Nδ (/, (Xj)) whenever JC E lζ. Then Ψ | K} is a continuous mapping of Kf

into P(Nδ(fi(Xj))). By the result of Blumenthal and Corson [1], we can
choose Vj E P(Nδ (ft (x, ))κ>) such that τrv} = Ψ \ Kr Set v =
vγ x x vp. Then v is a probability measure on Sκ and satisfies
πi^ = Ψ. Now choose ω E P(SK) such that πω = ( Φ - AΨ)/Λ. Then
ττ[λv + (1 - A)ω] = Φ. Finally, we check that λv + (1 - λ)ω belongs to
%, If 1 ^ / ^ m , then

Thus, 77̂%, is a neighborhood of πμr
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4. Marginals for P ( Π X λ ) . Let Xλ be a compact Haus-
dorff space for each λ E Λ and let ττλ denote the projection of ΠXλ onto
Xλ. If μ is a probability measure on ΠXλ, then the family of probability
measures (μλ)λeΛ, defined by μλ(E) = μ{π~k\E)) for each Borel subset E
of Xλ, is the family of marginals associated with μ. We next give an
open mapping result for the mapping μ-*(μλ)λξΞΛ with respect to the
norm topology.

THEOREM 4.1. Suppose Xλ is a compact Hausdorff space for each
AEΛ. Let α G F ( Π X λ ) and let ( α λ ) λ e Λ be the family of marginals
associated with a. Assume (βλ)λGA is a family of probability measures
where βλ G P(Xλ). Then there exists β G F(ΠX λ) such that (j3λ)ΛeΛ is the
family of marginals associated with β and || a - β || ̂  Σ || aλ - βλ ||.

Proof Let a G F(ΠX λ) and let (αλ)λeΛ be the family of marginals
associated with a. Fix (βλ)λeΛ in ΠF(X λ ). Choose xλ G Xλ for each
A G Λ. Given a finite subset F = {λu , λn} of Λ, let aF denote the
probability measure obtained from a by the natural projection of ΠXλ

onto ΠΓ=iXλi. The associated marginals of aF are αλl, , αλπ. By
applying a result in [5, Thm. 2.2], there exists a probability measure βF on
ΠXλi with associated marginals βλl, , βλn satisfying || aF - /3F || =
Σ||αΛ i - βλι ||. Let δF denote the point mass measure at (XX)XEA\F in
ΠλeΛVpXλ Then δF x aF and δF x βF are probability measures on
ΠXλ. The net δF x aF converges to a in the weak* topology. Let β be
a weak* limit point of the net δFxβF in P(ΠX λ). Then, β has
associated marginals (βλ ) λ G Λ. Also, || a - β \\ ^ supF || aF - βF \\ ^
Σ | | α λ - β λ | | .
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