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OPEN MAPPING THEOREMS FOR
PROBABILITY MEASURES ON METRIC SPACES

LARRY Q. EIFLER

Let S and T denote complete separable metric spaces. Let
P(S) denote the collection of probability measures on S and
equip P(S) with the weak topology. If ¢: S — T is continuous
and onto, then ¢ induces a weakly continuous mapping ¢° of
P(S)onto P(T). We show that ¢° is open in the weak topology
if and only if ¢ is open. However, ¢° is always open in the
norm topology. Let K be a totally disconnected compact metric
space and let S* denote the set of continuous mappings of K into
5. Then there exists a natural mapping 7 of P(S*) into
P(S)*. Blumenthal and Corson have shown that = is
onto. We establish that 7 is an open mapping in the weak
topology.

1. Introduction. Let S beacomplete separable metric space
and let C(S) denote the algebra of bounded continuous real-valued
functions on S. Let M(S) denote the collection of Borel measures on S
which have finite total variation || ||. Given f€ C(S) and p € M(s),

set u(f) = f f(s)du(s). The weak topology on M(S) is the topology on

M(S) induced by C(S). Thus, a neighborhood system at w in M(S) is
given by sets of the form

No(usfo - f)={vEM(S): [(n —v)f|<efori=1,---, n}
where € >0 and f,, - -, f, € C(S).

Let M*(S) denote the non-negative measures and let P(S) denote the
probability measures in M(S).

Our goal is to establish open mapping theorems for some naturally
induced mappings between sets of probability measures. Let ¢ be a
continuous map of S onto ‘T where S and T are complete separable
metric spaces. Define ¢’ M(S)— M(T) by

¢’u(g)= n(g°e) for each g € C(T).

A result of P. A. Meyer [9, p. 126] shows that ¢’ maps P(S) onto
P(T). We show that ¢’ is open in the weak topology if and only if ¢ is
open.

Let K be a totally disconnected compact metric space and let S
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denote the collection of continuous maps of K into S. Given f, g € S¥,
set D(f,g)=max{d(f(x),g(x)): x € K} where d is the metric on
S. Then S* is a complete separable metric space with respect to
D. Given f € C(S) and x € K, we may define a mapping f,: S* - R by
f.(g)=f(g(x)) for each ge&S* Now define a mapping =:
P(S*)— P(S)¥ by

(mu). (f) = w(f.) for each f € C(S).

One easily checks that x — (77 ), is continuous in the weak topology and
so one may consider the family (7w ), as a continuous family of marginals
associated with u. Blumenthal and Corson [1] have shown that 7 maps
P(S*) onto P(S)X. We show that  is open in the weak topology.

2. The mapping ¢°: P(S)— P(T). Other than the in-
terior mapping principle for F-spaces [6, p. 55] and its generalizations,
there are few results in functional analysis on openness of
mappings. For example, P. Cohen [4] has shown that if T: ¢, X £,— ¢,
is a continuous bilinear mapping which is onto, then T need not be open
at (0,0). If Q is a compact subset of a Banach space B and if the
mapping (x, y)—3(x, y) is open on Q X Q, then the set ex () of extreme
points of € is closed. Our example below shows that the converse,
which was left unresolved by Vesterstrom [10, p. 293], is
false. However, convex averaging is open on P(S) and this plays a
crucial role in our results.

ExaMpLE 2.1. There exists a compact convex subset () of R* such
that the extreme points of () are closed and the midpoint mapping
(x, y)—3(x, y)is not open on @ x Q. Let Q be the convex hull of (0, 1, 0,
0) and (0,—1, 0, 0) and (x, 0, 1, x*) and (x, 0,— 1, x*) for 0= x = 1. The
extreme points of () are the two points and two arcs described
above. But, the midpoint mapping is not open since (0, 1,0, 0)+(0, — 1,
0,0)=(0, 0, 0, 0) and u, v € Q with ¥(u +v)=(x, 0, 0, x*) where x#0
implies 4 and v are of the form (x, 0, A, x?) where —1=A=1.

Let S be a complete separable metric space. We recall here some
topological properties of P(S) and M*(S). Every measure u in P(S) is
tight [8, p. 32], i.e., given € > 0, there is a compact subset F of S such that
wn(S\F)<e The weak topology on M*(S) is topologically complete.
Thus, we may consider M*(S) and P(S) as complete separable metric
spaces. By embedding S is a countable product of unit intervals and
using the fact that the unit ball in space of uniformly continuous functions
on a totally bounded metric space is separable, we have the following
result [8, p. 47].
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LEMMA 2.2. Let S be a complete separable metric space. There
exist continuous real-valued functions g, g,, - - - on S such that ||g.[-=1
for n =1,2,--- and such that the metric p defined on M*(S) by

pp, v)= 2 27" (= v)gn |

is equivalent to the weak topology on M*(S).

We now show that convex averaging is open on M*(S). But, first
we establish a result on selecting weakly convergent measures. We
write w, — u if (u.)5-; converges to u in the weak topology.

ProrosITION 2.3, Let w,, 0 € M*(S) where w, > u. Assume 0=
v=u. Then there exists 0=v, =, forn=1,2,--- such that v, —> v.

Proof. Given € >0, there exists g continuous on S such that
0=g=1and p(gu,v)<e Hence, we may choose f, continuous on S
such that 0=f, =1 and f,u —»v. But fu, — f,u as k > . So there
exist n,=n,=--- such that n, - and vy, = f u. — ».

THEOREM 2.4. Let S be a complete separable metric space. Let
0<A<1. The mapping (u,v)—An +(1—A)v is open on M*(S)X
M™(S) and is open on P(S)x P(S).

Proof. Fix u, vEM'(S) and set w =Auw +(1—A)v. Assume
w, —> o where w, € M*(S). Since Apn = w, there exist u, € M*(S) such
that u, > An and 0=, = w,. Hence,

1 1
I\ My — L and I_—/\(w,.—p.,.)—) V.

Thus, the mapping (u, v)— An + (1 —A)v is an open map of M*(S) X
M~(S) onto M*(S). One readily obtains that convex averaging is an
open map of P(S)X P(S) onto P(S).

Let S and T be complete separable metric spaces and let ¢: S — T
be continuous and onto. Then ¢ induces a mapping ¢°: M(S)— M(T)
defined by ¢°u(g)=pun(gee) for each g € C(T). As noted in §1, ¢°
maps P(S) onto P(T). We examine the openness of ¢° on P(S) with
respect to the weak topology and the norm topology.

THEOREM 2.5. Let S and T be complete separable metric spaces and



92 LARRY Q. EIFLER

let o: S — T be continuous and onto. Then ¢ is open if and only if ¢°:
P(S)— P(T) is open with respect to the weak topology.

Proof. Assume ¢% P(S)—P(T) is open in the weak
topology. Fix s,€ S and set t, = ¢(s,). Assume ¢ is not open at
s,. Then there exist t, -, and € >0 such that d(s,, ¢ '(t.))= € for
n=1,2,---. Choose f& C(S) such that f(s;)=1 and f=0 on
{s€S:d(s,s))=€}. Since U ={u € P(S): |(n —8,)f| <€} is a weak
neighborhood of §,, there exist N and u, € U such that ¢°u, = 8, for
n=N. But wu,(f)=0 since ¢ '(t,) supports u, and so wu,& U, a
contradiction.

Assume ¢: S— T is open. Fix u € P(S). Let €>0 and let
fi,= , fo: S—[0,1] be continuous. Set V' ={v € P(S): [(r —v)fi|<e
fori =1,---,n}. We must show that ¢°¥ is a neighborhood of ¢°u in
P(T). Choose wo, py, "+, m € P(S) and Ay, Ay, - - -, A, >0 such that

(1) pw=ZAy,

(2) Ao<e€ and each of u,, -, u, has compact support

(3) the oscillation off on the support of u, is less than €/2 for each

i=1,---,nand j=1,-
Set 7, —{vE P(S) l(v— p,)fl< € for i =1,---,n}. Clearly, we have
A P(S)+ MY+ 4+ 0,7, C V. We claim that ¢°Y, is a weak neigh-
borhood of ¢°u,. For each j =1, -+, m choose an open subset U, of S
containing the support of u, such that the oscillations of f,,---, f, on U,
are less than €/2. Then V, = ¢(U,) is an open subset of T containing
the support of v, = ¢°u,. It suffices to show that v € (7)) if v(V,)>
1-€/2 and v € P(T). Choose B,E€ P(T) and B € P(V,) such that

v=§[30+<1—§>[3.

Choose a, € P(S) and a € P(U,) such that ¢’a,= B, and ¢’a = B. We
have

and fori=1,---,n

w5 a—(1-5)alf|=5[(n - af |+, —a)f | <e
[ [ -5 e0= (1-5) o] £] =5

But ¢V DAP(T)+ A0V + -+ + A"V, and so by Theorem 2.4, ¢°V
is a weak neighborhood of ¢’u.
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We next show that the mapping ¢’ is open in the norm topology.

THEOREM 2.6. Let S and T be complete separable metric spaces and
let ¢ : S — T be continuous and onto. Then ¢°: M*(S)— M*(T) is norm
open and hence, ¢°: P(S)— P(T) is norm open.

Proof. Fix p € M*(S) and set v = ¢°u. Assume v, — v in norm
where v, € M*(T). Choose compact subsets K,CK,C--- of § such
that u (K,)— u(S). Set a, = u|K, and B, = ¢°a,. Then B, has com-
pact support and B, = v. Also, v AB,— B, as k —>~. Hence, there
exist 1=n,=n,=--- such that n, >« and ». A B, — v. As shown in
[5, Lemma 2.2], there exist 0 = u, = a,, satisfying p’u, = v A B... Then
we —u in norm. Choose vy, € M'(S) such that ¢%, =
v, — (v A Bn). Then ||y || =0 and so ui + v« — u. Hence, ¢° is open
in the norm topology at w.

REMARK 2.7. The proof of the openness of ¢’ in the weak topol-
ogy seems to break into the two parts (1) ¢° is open at the extreme points
of P(S) and (2) convex averaging is open on P(T). There should be a
general theorem on the openness of affine maps between convex subsets
equipped with a metric which would yield Theorem 2.5.

CoNJECTURE. Let E and F be Banach spaces and let (E), and (F),
denote the closed unit ball in E and F respectively. Let T: E— F be
continuous and linear. If T maps (E), onto (F), and if (E), is strictly
convex, then T is an open map of (E), onto (F),.

Note. Example 2.1 resolves a conjecture of Clausing and Magerl in
[3, p.- 76]. S. M. Chang [2] has extended Theorem 2.4 to averaging of
continuous collections of probability measures.

3. The mapping 7: P(S*)— P(S)*. Let S be a com-
plete separable metric space and let K be a totally disconnected compact
metric space. Let S¥ denote the collection of continuous maps of K
into S. We equip S¥ with the metric D(f, g)= max{d(f(x), g(x)):
x € K} where d is the metric on S. Thus S* is a complete separable
metric space. The space P(S) can be equipped with a metric which is
equivalent to the weak topology and with respect to which P(S) is
complete and separable. Thus, the space P(S)* denotes the continuous
maps of K into P(S) and P(S)* is equipped with the topology of uniform
convergence in the weak topology. There is a natural mapping of P(S¥)
into P(S)*. Let u € P(S¥) and x € K. If U is a Borel subset of S,
then u,(U)=pun({g € S*: g(x) € U}) defines a probability measure u,
on S. One recognizes the family (u.).ex as a family of marginals
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associated with u. The measure wu, may alternately be defined as
follows. Given f&€ C(S) and x € K, define f,: S*—>R by f.(g)=
f(g(x)). Ifu €P(S¥)and x € K, then u.(f) = n(f.). This latter equa-
tion shows that the mapping x — u, is continuous in the weak
topology. Weset mu(x)= u,. Blumenthal and Corson [1] have shown
that 77 maps P(S*%) onto P(S)*. Although there is no natural way of
pulling back elements of P(S)* to P(S*), we shall prove that 7 is an
open mapping. We begin by extending Prop. 2.3 to continuous collec-
tions of nonnegative measures.

LEmMMA 3.1. Let S be a complete separable metric space and let X be
a compact Hausdorff space. Let 0< A <1 and let ®,¥: X — P(S) be
continuous. Assume ®, Z AV, foreach x€ X. If ,: X— P(S) and
®, — O uniformly in the weak topology, then there exist continuous maps
V,: X— P(S) such that ®,=z V¥, forn=1,2,--- and ¥V, >V uni-
formly in the weak topology.

Proof. By Lemma 2.2, we may choose continuous maps g, g, - - - of
S into [0,1] such that the metric p on P(S) defined by p(u,v)=
227" |(w — v)g.| is equivalent to the weak topology on P(S). If f€
C*(S) and if u € P(S), then we define a nonnegative measure f - u on S
by (f - n)g = n(fg) for each g € C(S). Foreach p=1,2,---, choose a
partition of unity ff,--- ff for S such that each of g;,---, g, has
oscillation less than 1/p on the support of f? for i =1,---,n, Pick
€, >0 satisfying pe,n, =1. Given A: X — P(S), define m,(A): X —
M~(S) by

m(A) =2 qT*(pr%EL)f A

Recall that f? - A,.(g) = A, (f’g) for each g € C(S).
Setting f, = f* and € = ¢,, we have

(@) (8)= 3 G (risy (@) (ge)

where x € X and 1=k =p. Let af(B") denote the minimum (max-
imum) of g, over the support of f. Then B%¥ —a* <1/p. Also,

> ek (f)=V.(g) =D BYY.(f).

Choose M such that
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1——1—<£®—"'M<1+—1— for m=M.
p  P.(fte) p

For m 2 M and 1 =k =p, we have

T (q)m )x (gk ) -V, (gk )

=3 §o( ik B @) ()~ S @t ()

=3 (5+ 8t -atjr.()

<2
p

On the other hand, for m 2 M and 1= k = p, we have

7 (P )« (8) = Wi (8e)

23§ (s @) ()= BHV.()

=3 G (e (@), (i + = 3 BV~

32%@)6!’?(1—%)—2 BV (f ‘i

2 1 1< 1)
=S —=_—=(2+=).
p Ap p A

Hence, for mz M, |[7,(P.)-Y](g)|x=Q2+1/A)/p if 1=sks=
p. Thus, we may choose m, < m, < --- such that ||[7, (D, ) — V] (g)| =
2+1/A)/piftk =pandm =z m, SettingV¥, = ,(P,)ifm,=m <m,,
and ¥, =&, if m <m, we have ¥, —>V¥ uniformly in the weak
topology and also, A¥, =®,. One may now modify the ¥, so that
¥,.: X — P(S) and at the same time preserve the uniform convergence to
¥ and the inequality AV, =®,,.
We next show that convex averaging is open on P(S)*.

LEmma 3.2, Let X be a compact Hausdorff space and assume
0<A<1. Let d,¥: X— P(S) be continuous. If U and V" are neigh-
borhoods of ® and ¥ in P(S)* respectively, then AU +(1—A)V is a
neighborhood of A® + (1—A)V.

Proof. Let A, > AP+ (1—-A)¥ where A,: X— P(S) is continu-
ous. Then there exist ®,: X — P(S) such that &, —>® and AP, =
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A.. Then1/(1—2A)(A,—A®,)—>¥. Hence, AU + (1— 1)V is a neigh-
borhood of AP+ (1 - A)W.

We are now prepared to show that the “marginal”’ mapping 7 of
P(S¥) onto P(S)¥ is an open map. In [5], this result was proved for the
case S is compact and K is a two point space.

THEOREM 3.3. Let S be a complete separable metric space and let K
be a totally disconnected compact metric space. Then mw: P(S)— P(S)¥
is open in the weak topology.

Proof. Let w € P(S*). Fix continuous maps G,,---, G, of S¥
into [0,%). Set U ={v € P(§$*):|(v — )G |<lforj=1,---,m}. We
need to show that 7% is a neighborhood of mu. There exist
Los (1, " o € P(8%), Ao, Ay, -, A, >0, 8>0 and f,, -+, f, € S¥ such
that u =2 Au, and (1) the support of u, is a compact subset of
N;(f)={f€ S*: D(f, f) < &} and (2) the oscillation of G, is less than 1/2
over N,;(f,) for each i=1,---,n and j=1,---,m. Now set U =
{r€P(S*):|(v-w)G;|<1 for j=1,---,m} for i=1,---,n. Then
MP(S )+ AU+ -+ -+ AU, CU By Lemma 3.2, it remains to verify
that 7%, is a neighborhood of mu. Let M be an upper bound for
Gy, -+, G, Choose x,,---,x, and compact subsets K,,---, K, of K
such that K is the disjoint union of K,, -+, K, and x, EK, and K, C
Ns(x,)={x:d(x,x;)< 8} and such that f(K))C N;(f.(x,)) for each i =
l,---,n and j=1,---,p. Now the support of 7u:(x) is contained in
Ny (fi(x,)) when x € K. Choose 0<A <1 such that (1-A)M<
1/2. Consider the set ¥, = {® & P(S)*: 3¥ € P(S)* such that = A ¥
and the support of W, is contained in N;(f.(x,)) whenever x € K;}. Then
V. is a neighborhood of ww,. We claim that 7%, D V.. Fix ®€E€ ¥, and
choose ¥ € P(S)* such that ® = A ¥ and the support of ¥, is contained
in N;(f.(x,)) whenever x € K. Then ¥|K, is a continuous mapping of K;
into P(Ns(f(x,))). By the result of Blumenthal and Corson [1], we can
choose v, € P(N;(f.(x,))¥) such that =@y =%¥|K. Set v=
v;X---Xuy, Then v is a probability measure on S* and satisfies
mv=¥. Now choose w € P(S*) such that 7w = (P —A¥)/A. Then
m[Av+ (1 - A)w]=d. Finally, we check that Av + (1 — A)w belongs to
U. If 1=j=m, then

|(Av + (1 =)o - w,)G, |
=A (v —w)G |+ (A= )|[(0 = p)G |
SAR+(A-NM<L.

Thus, 7%, is a neighborhood of mpu..
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4. Marginals for P(IIX,). Let X, be a compact Haus-
dorfI space for each A € A and let 7, denote the projection of I1.X, onto
X,. If w is a probability measure on [1X,, then the family of probability
measures (U, )res, defined by u, (E) = u (73" (E)) for each Borel subset E
of X, is the family of marginals associated with u. We next give an
open mapping result for the mapping u — (u,).cx With respect to the
norm topology.

THEOREM 4.1.  Suppose X, is a compact Hausdorff space for each
AEA. Let a € P(IIX,) and let (a,)ien be the family of marginals
associated with a. Assume (B\).ea Is a family of probability measures
where B, € P(X,). Then there exists B € P(I1X,) such that (B,).c is the
family of marginals associated with B and |a — B||=Z | e, — B, .

Proof. Let a € P(IIX,) and let (e, ),es be the family of marginals
associated with a. Fix (B)),er in [IP(X,). Choose x, € X, for each
A €A. Given a finite subset F={A;, -+, A,} of A, let ar denote the
probability measure obtained from a by the natural projection of ITX,
onto II.; X,. The associated marginals of ar are a,, ', a,. By
applying a result in [5, Thm. 2.2], there exists a probability measure B on
I1X, with associated marginals B,,---, B, satisfying |ar— B[ =
S)la,, —B.|- Let 8 denote the point mass measure at (x,)iear in
ienr Xi. Then 8 X ar and 8¢ X B are probability measures on
IIX,. The net 8 X ar converges to « in the weak* topology. Let 3 be
a weak* limit point of the net & X B in P(IIX,). Then, 8 has
associated marginals (B )iea. Also, |a — B[ =supr|ar— B:||=

S =Bl
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