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INTEGRAL BASES FOR BICYCLIC BIQUADRATIC

FIELDS OVER QUADRATIC SUBFIELDS

ROBERT H. BIRD AND CHARLES J. PARRY

Explicit conditions are given for a bicyclic biquadratic
number field to have an integral basis over a quadratic subfield.

A classical question of algebraic number theory is, "When does an
algebraic number field K have an integral basis over a subfield fc?"

A complete and explicit answer to the above question is given here
when K is a bicyclic biquadratic number field and k is a quadratic
subfield. Moreover, an explicit integral basis is given for K/k whenever
one exists. In the cases where k is imaginary or k is real and has a unit
of norm - 1, the conditions involve only rational congruences. When k
is real and the fundamental unit of e has norm + 1, the conditions
sometimes involve e.

1. Notation and preliminary remarks. Throughout this
article the following notation shall be used:
Q: field of rational numbers.
Z: rational integers,
m, n: square free integers.
/ = (m, n)^0, m = mj, n = nj and d = mxnx.
K = Q(λ/ra, Vrc): bicyclic biquadratic field.
k = O(Vm).
δL/M: different of an extension L/M.
N(e): norm of the unit e.
p, q: odd prime numbers.

An integral basis for K over Q has been_determined in [1, 3,
6]. Here an integral basis for K over k = Q(Vm) will be determined
whenever it exists. In these considerations the roles of n and d are
interchangeable so it will only be necessary to consider seven pairs of
congruence classes for (m, n) modulo 4; namely (1,1), (1,2), (1,3), (2,1),
(2,3),(3,l)and(3,2).

It follows immediately from [5] that K has an integral basis over k if
and only if K = k(Dλή where (D) is the discriminant of K over k. Since
K is a quadratic extension of k the discriminant is the square of the
different δ. In [3, 6] the different of K over Q is explicitly determined
by:
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Γ {Imxn^ when (m, n) = (1,1) (mod 4).

δκ/o = ] (4/miWi) when exactly one of m and n is 1 (mod 4).

I (8/miWi) when (m,n) is (2,3) or (3,2) (mod 4).

Since 8K/Q = 8K/k 8k/Q and δ fc/o = (Vm) or (2 Vm) according as m =
1 (mod 4) or not, the following useful result is obtained:

LEMMA I. The different 8 = 8Klk is determined (and hence the
discriminant) by:

(nλ) when n = 1 (mod 4).

δ 2 = - (4/1^ when m = 1 and n ^ 1 (mod 4).

, (2/ti) w/ien m ^ 1 and n ^ 1 (mod 4).

2. I m a g i n a r y sub field k. Although some of our results here
will also apply to the real case we shall be primarily concerned with the
case where k is an imaginary quadratic field. The main result of this
section is:

THEOREM I. If k = Q(Vm) is an imaginary quadratic field then K
has an integral basis over k if and only if one of the following conditions
hold:

(a) At least one of m or n is 1 (mod 4) and I = 1 or - m.
(b) (m,n)^ (2,3) (mod 4) and m = - 21
(c) m=-l.

Furthermore, when an integral basis exists, it can be determined by the
following table:

TABLE I

Basis (m, n) (mod 4) Conditions

l,(l + Vn)/2

l,(Vm+Vd)/2
l,V±n 1

l,(λ/m+λ/5)/2
l,(λ/ϊi + V^7i)/2

( »1)

( ,1)

( l ,n) , »
(2,3)

(3,2)

^ 1 (mod 4)

/ = 1

I = ±m

1 = 1 or ± m

1= ±m/2.

w = - 1

The proof will follow from a series of lemmas. First, even when m
is positive, it is easily seen that the conditions of Theorem I are sufficient
for the existence of an integral basis.
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LEMMA II. Whenever the conditions of any line of Table I are ful-
filled, even when m is positive, then K has the stated integral basis over k.

Proof. In each case it is a simple matter to check that the given
basis is a basis of integers with discriminant equal to that given by
Lemma I.

Our attention will now be directed to proving that the conditions of
Theorem I are necessary for the existence of an integral basis when m is
negative.

LEMMA III. If m is negative and at least one of m or n is 1 (mod 4)
then an integral basis exists if and only if I = 1 or - m.

Proof. From Lemma I and Mann's criteria the existence of an
integral basis is seen to be equivalent to the condition

where e is a unit of k. When m ̂  - 1 or - 3 the only units of k are ± 1
so the above condition implies that Q ( V ± nχ) is a quadratic subfield of
K. Thus nx = n = lnx or - nx = d = mxnx, so either / = 1 or / = - m. If
m = - 1 or - 3 then I = (n,m) must necessarily be 1 or - m.

LEMMA IV. // m is negative and (m, n) = (2,3) (mod 4) then an
integral basis exists if and only if m = -21.

Proof Here Mann's criteria is equivalent to

so that Q(V±2nx) is a quadratic subfield of K. Since n = 3 (mod 4)
this implies that d = mxnx = ± 2nx so that mx= ±2. Since m is negative
mx = — 2 and so m = — 21.

LEMMA V. When m is negative and (m, n) = (3,2) (mod 4) then
an integral basis exists if and only if m = - 1.

Proof. Again Mann's criteria gives

K = fc(V^
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with e a unit of k. When m ^ - 1 then e = ± 1 so Q ( V ± 2 n λ ) i s again a
quadratic subfield of K. Thus / = 2 or m t = - 2 both of which are
impossible with m = 3 (mod 4). Hence K has no integral basis over k
unless m = — 1.

The next result is a stronger version of Theorem 4 of [5] for our
special case.

COROLLARYI. // m is negative then k has odd class number if and
only if K = k(Vn) has an integral basis over k for every square free integer
n.

Proof. It is well known that k has odd class number if and only if
m = — 1, — 2 or— p with p = 3 (mod 4). If m is one of these values it
is immediate from Theorem I that an integral basis exists. Conversely if
m has two distinct prime divisors p and p' then it follows from Theorem I
that K = k(Vap) has no integral basis over k when a is integer
satisfying (α, m) = 1 and ap = 1 (mod 4). Finally if m - - p with
p = 1 (mod 4) then m = 3 (mod 4) so no integral basis exists for any
n = 2 (mod 4).

3. Rea l subfield k. When fc is a real subfield it follows from
Mann's criteria and Lemma I that K will have an integral basis over k if
and only if K = k(V2eenx) where e = 0 or 1 and 6 is a unit of k. Now
every unit 6 of fc has the form e = ±ej

0 where e0 is a fundamental unit
and / is an integer. For any field k it is easily seen that el = bQ + c 0Vra
with b0, c0 E Z. Since only the parity of / is important we shall assume
that / = 0, 1_ or 3 with the latter choice being made to insure that
6 = b + c Vm with b.cEZ. Furthermore when e0 has norm - 1 it is
easily seen that / = 0 and whenever / = 0 the conditions of Theorem I are
necessary and sufficient for K to have an integral basis over k.

From now on we shall only be concerned with fields k where e0 and
hence e has norm + 1. The following results on units will be very
useful.

L E M M A VI. Let e = e0 or el have the form b + c Vm with b,cGZ

and let the norm of e be + 1. If m = 1 or 2 (mod 4) then {b,c) =

(1,0) (mod 2) and c = 0 (mod 4) whenever m = 1 (mod 4). Further-
more

(1) Ve= sVΰ+tVυ

with (u, D ) = 1 and uv = m. If m = 3 (mod 4) then either c Ξ

0 (mod 4) and equation (1) holds or (b,c) = (0,1) (mod 2) and
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(2) /-_ sVϊΰ+tVϊv

2

with the above conditions on u and v.

Proof The congruence conditions are easy to verify. By [4]

r _ VN(β + 1) + V - N(€ -

When b is odd set 4s2u = 2(b + 1) and 4t2v = 2(6 - 1) with u and υ
square free. It is easily seen that (w, v)=l. Also c2m = b2-l =
4s2t2uv so uv = m. When b is even set s2u = 6 + 1 and t2v = b — 1 with
u and u square free. As above (u, v) = 1 and MU = m.

Our main objective of this section is to prove the following result:

THEOREM II. Ifk = Q(λ/ra) Ϊ5 a real quadratic field then K has an
integral basis over k if and only if one of the following conditions hold:

(a) At least one ofm, n is 1 (mod 4) and either I = 1, m, w, or v with
u and v determined by equation (1).

(b) (m, n) = (2,3) (mod 4) and 21 = m, u or ι;.
(c) (m, n) = (3,2) (mod 4) and I = u or v where u and v are

determined by equation (2).
Furthermore, when I = 1, m/2 or m an integral basis is given by Table

I and when I = u, υ, M/2, υ/2 an integraj_basis is_ given by Table II
below. For this table we set V e = (sλ/rw+ t*\Zru)/r where r = 1 or
2. Unless otherwise stated it will be assumed that r = 1 and I = uorv.

1,

1,

1,

1,

1,

1,

Basis

ii)/2

(Vm + VenO/2

(1 +Vϋi

v^
V2enJ2
(Vm+>

ι + VenO/2

/2en^)/2

TABLE II

<m,π)

( ,i)
(3,1)

(2,1)

(mod 4)

(1,3) or (1,2)

(3,2)

(2,3)

bnx

r =

21-

Conditions

s 1, c = 0

s 3, c s 0

= 3, c = 2

2

= u or v

(mod

(mod

(mod

4)

4)

4)

Proof In our preliminary remarks it was observed that we need
only consider fields K satisfying K = k(\/2eenι) where e = ej (/ = 1 or 3)
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has norm j M When one of m or n is 1 (mod 4) we wish to show that
K = fcίVe/tj) exactly when I = u or υ. Since

(3) z — 5 \Zrunλ + t V rυnλ

ven, =

we see that k( Venι) = K if and only if runx = n = lnx and rvnx = d =
m^j or vice-versa. In the first case this reduces to / = ru and mx = rv,
but m = lniι = r2uυ is square free so r = 1 and / = u. Similarly in the
second case / = v. Thus (a) is proven. According to Mann [5, p. 170]
an integral basis for K over k, when it exists, will be given by

(4)

where a is an integer of k satisfying

(5) a2 = 2fenx = 2/(ίm1 + c ^ V m ) (mod 4)

and / = 0 or 2 according as n = 1 (mod 4) or not.
When m = n = 1 (mod 4), a = h + jω with ω = (1 + Vra)/2 and

Λ,y G Z. Thus (5) becomes

(6) a2 = h2+ {^-p-\j2^-(2hj+j2)ω s feni (mod 4)

with the last congruence following from Lemma VI. Thus / =
0 (mod 2) and bnλ = h2 = 1 (mod 4) since bnλ is odd. Thus we take
a = 1 here and an integral basis is given by the first line of Table II.

When m ^ 1 and n = 1 (mod 4) then a = h + j Vm so

(7) α 2 = h2jr]2m +2hjVm = bnλ +cnxVm (mod 4).

Thus c = 0 and 6 = 1 (mod 2). When c = 0 (mod 4) congruence (7)
reduces to

(8) h2 + j2m = bnu 2hj = 0 (mod 4).

Either j = 0 (mod 2) and bnλ = h2 ^ \ (mod 4) or / = 1, Λ ^
0 (mod 2) so bnλ = j2m = m = 3 (mod 4). The last congruence holds
because &«! is odd and m Φ 1 (mod 4). Thus when c = 0 (mod 4) an
integral basis is given by one of the first two lines of Table II. When
c = 2 (mod 4) (7) becomes
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(9) h = / = 1 (mod 2)

and bnx = h2 + j2m = 1 + m = 3 (mod 4) with the last congruence fol-
lowing because bnλ is odd. Thus a = 1 + Vm and an integral basis is
given by the third line of Table II.

Finally when m = 1, n ^ 1 (mod 4) congruence (5) becomes a2 =
0 (mod 4) so a = 0 and an integral basis is given by the fourth line of
Table II.

Suppose now (m, n) = (3,2) (mod 4). Here K = k(\ί2enι) is
equivalent to 2runx = 22elnx (e = 0 or 1) and 2rvnx = 22fmλnι (f = 0 or 1) or
vice versa. Thus 22Ί = 2rw and hence / = u and r = 2 (since both / and
u are odd) or else / = υ and r = 2. Here {1, V2enJ2} forms an integral
basis.

Finally consider the case (m, rc) = (2,3) (mod 4). Here K =
k(\/2enί) if and only if2un1 = Alnλ and2υn1 = m1n1 or vice versa. Thus
21 = u or 2/ = υ. Here an integral basis is given by the last line of
Table II.

COROLLARY I. // m is positive, then K = fe(Vn) has an integral
basis over k for every n if and only if one of the following holds:

(a) m = 2 or p.
(b) m =2p or pq with p = q (mod 4) and N(e) = 1.

Proof When m = 2 or p then / = 1 or m so it is clear from (a), (b),
and (c) of Theorem II that an integral basis exists. When m= 2p and
N(e) = 1 then / = 1 or p since n is odd. But Ve = s V2 + t Vp so u = 2
and v = p, thus Theorem II is satisfied. When m = pq with p =
q (mod 4)_and JV(β)=l then it follows from Lemma VI that Ve =
svp+tVq. Thus w = p and v = q so (a) of Theorem II is always
satisfied.

To prove the converse first note that if m has 3 or more odd prime
divisors then there are at least 8 choices for /, all of which can occur for
suitably chosen values of n. But, on the other hand, there are only 4
values of / for which Theorem II is satisfied. When m = 2pq there are
four possible values of / which can occur, namely / = 1, p, q or
pq. However, it is seen from Theorem II (a) and (b) that there are less
than four possible values of / where an integral basis does exist. If
m = pq with p^ q (mod 4) and r = 1 then when n is even no integral
basis exists. If r = 2, then no integral basis exists when / = p and n
odd. Finally when m = 2p or pq with N(e)= - 1 then if / = p and
n = 1 (mod 4) no integral basis exists.

COROLLARY II. // k has odd class number then K = fe(Vn) has an
integral basis over k for every integer n.
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Proof. The field k = Q(λ/ra) has odd class number if and only if

m = 2, p, 2pλ or pιp2

with /?! = p2 = 3 (mod 4). It is easy to see that when m has a prime
divisor q = 3 (mod 4) that e has positive norm. Hence this is an
immediate result of Corollary I.

COROLLARY III. Ifk is a quadratic number field either every bicyclic
biquadratic extension field K has an integral basis over k or there exist
infinitely many such K which do (and don't) have an integral basis over k.

Proof. Immediate from Theorems I and II and their corollaries.
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