INTEGRAL BASES FOR BICYCLIC BIQUADRATIC FIELDS OVER QUADRATIC SUBFIELDS

Robert H. Bird and Charles J. Parry
Explicit conditions are given for a bicyclic biquadratic number field to have an integral basis over a quadratic subfield.

A classical question of algebraic number theory is, "When does an algebraic number field K have an integral basis over a subfield k ?"

A complete and explicit answer to the above question is given here when K is a bicyclic biquadratic number field and k is a quadratic subfield. Moreover, an explicit integral basis is given for K / k whenever one exists. In the cases where k is imaginary or k is real and has a unit of norm -1 , the conditions involve only rational congruences. When k is real and the fundamental unit of ϵ has norm +1 , the conditions sometimes involve $\boldsymbol{\epsilon}$.

1. Notation and preliminary remarks. Throughout this article the following notation shall be used:
Q : field of rational numbers.
Z : rational integers.
m, n : square free integers.
$l=(m, n) \geq 0, m=m_{1} l, n=n_{1} l$ and $d=m_{1} n_{1}$.
$K=Q(\sqrt{m}, \sqrt{n})$: bicyclic biquadratic field.
$k=Q(\sqrt{m})$.
$\delta_{L / M}$: different of an extension L / M.
$N(\epsilon)$: norm of the unit ϵ.
p, q : odd prime numbers.
An integral basis for K over Q has been determined in [1, 3, 6]. Here an integral basis for K over $k=Q(\sqrt{m})$ will be determined whenever it exists. In these considerations the roles of n and d are interchangeable so it will only be necessary to consider seven pairs of congruence classes for (m, n) modulo 4 ; namely $(1,1),(1,2),(1,3),(2,1)$, $(2,3),(3,1)$ and $(3,2)$.

It follows immediately from [5] that K has an integral basis over k if and only if $K=k\left(D^{\frac{1}{2}}\right)$ where (D) is the discriminant of K over k. Since K is a quadratic extension of k the discriminant is the square of the different δ. In $[3,6]$ the different of K over Q is explicitly determined by:

$$
\delta_{K / Q}^{2}=\left\{\begin{array}{l}
\left(\operatorname{lm}_{1} n_{1}\right) \text { when }(m, n) \equiv(1,1)(\bmod 4) \\
\left(4 m_{1} n_{1}\right) \text { when exactly one of } m \text { and } n \text { is } 1(\bmod 4) . \\
\left(8 l m_{1} n_{1}\right) \text { when }(m, n) \text { is }(2,3) \text { or }(3,2)(\bmod 4) .
\end{array}\right.
$$

Since $\delta_{K / Q}=\delta_{K / k} \cdot \delta_{k / Q}$ and $\delta_{k / Q}=(\sqrt{m})$ or $(2 \sqrt{m})$ according as $m \equiv$ $1(\bmod 4)$ or not, the following useful result is obtained:

Lemma I. The different $\delta=\delta_{K / k}$ is determined (and hence the discriminant) by:

$$
\delta^{2}=\left\{\begin{array}{l}
\left(n_{1}\right) \text { when } n \equiv 1(\bmod 4) . \\
\left(4 n_{1}\right) \text { when } m \equiv 1 \text { and } n \neq 1(\bmod 4) . \\
\left(2 n_{1}\right) \text { when } m \neq 1 \text { and } n \neq 1(\bmod 4) .
\end{array}\right.
$$

2. Imaginary subfield \boldsymbol{k}. Although some of our results here will also apply to the real case we shall be primarily concerned with the case where k is an imaginary quadratic field. The main result of this section is:

Theorem I. If $k=Q(\sqrt{m})$ is an imaginary quadratic field then K has an integral basis over k if and only if one of the following conditions hold:
(a) At least one of m or n is $1(\bmod 4)$ and $l=1$ or $-m$.
(b) $(m, n) \equiv(2,3)(\bmod 4)$ and $m=-2 l$.
(c) $m=-1$.

Furthermore, when an integral basis exists, it can be determined by the following table:

TABLE I

Basis	$(m, n)(\bmod 4)$	Conditions
$1,(1+\sqrt{n}) / 2$	$(, 1)$	$l=1$
$1,(\sqrt{m}+\sqrt{d}) / 2$	$(, 1)$	$l= \pm m$
$1, \sqrt{ \pm n_{1}}$	$(1, n), n \neq 1(\bmod 4)$	$l=1$ or $\pm m$
$1,(\sqrt{m}+\sqrt{d}) / 2$	$(2,3)$	$l= \pm m / 2$.
$1,(\sqrt{n}+\sqrt{-n}) / 2$	$(3,2)$	$m=-1$

The proof will follow from a series of lemmas. First, even when m is positive, it is easily seen that the conditions of Theorem I are sufficient for the existence of an integral basis.

Lemma II. Whenever the conditions of any line of Table I are fulfilled, even when m is positive, then K has the stated integral basis over k.

Proof. In each case it is a simple matter to check that the given basis is a basis of integers with discriminant equal to that given by Lemma I.

Our attention will now be directed to proving that the conditions of Theorem I are necessary for the existence of an integral basis when m is negative.

Lemma III. If m is negative and at least one of m or n is $1(\bmod 4)$ then an integral basis exists if and only if $l=1$ or $-m$.

Proof. From Lemma I and Mann's criteria the existence of an integral basis is seen to be equivalent to the condition

$$
K=k\left(\sqrt{\epsilon n_{1}}\right)
$$

where ϵ is a unit of k. When $m \neq-1$ or -3 the only units of k are ± 1 so the above condition implies that $Q\left(\sqrt{ \pm n_{1}}\right)$ is a quadratic subfield of K. Thus $n_{1}=n=\ln _{1}$ or $-n_{1}=d=m_{1} n_{1}$, so either $l=1$ or $l=-m$. If $m=-1$ or -3 then $l=(n, m)$ must necessarily be 1 or $-m$.

Lemma IV. If m is negative and $(m, n) \equiv(2,3)(\bmod 4)$ then an integral basis exists if and only if $m=-2 l$.

Proof. Here Mann's criteria is equivalent to

$$
K=k\left(\sqrt{ \pm 2 n_{1}}\right)
$$

so that $Q\left(\sqrt{ \pm 2 n_{1}}\right)$ is a quadratic subfield of K. Since $n \equiv 3(\bmod 4)$ this implies that $d=m_{1} n_{1}= \pm 2 n_{1}$ so that $m_{1}= \pm 2$. Since m is negative $m_{1}=-2$ and so $m=-2 l$.

Lemma V. When m is negative and $(m, n) \equiv(3,2)(\bmod 4)$ then an integral basis exists if and only if $m=-1$.

Proof. Again Mann's criteria gives

$$
K=k\left(\sqrt{2 \epsilon n_{1}}\right)
$$

with ϵ a unit of k. When $m \neq-1$ then $\epsilon= \pm 1$ so $Q\left(\sqrt{ \pm 2 n_{1}}\right)$ is again a quadratic subfield of K. Thus $l=2$ or $m_{1}=-2$ both of which are impossible with $m \equiv 3(\bmod 4)$. Hence K has no integral basis over k unless $m=-1$.

The next result is a stronger version of Theorem 4 of [5] for our special case.

Corollary_I. If m is negative then k has odd class number if and only if $K=k(\sqrt{n})$ has an integral basis over k for every square free integer n.

Proof. It is well known that k has odd class number if and only if $m=-1,-2$ or $-p$ with $p \equiv 3(\bmod 4)$. If m is one of these values it is immediate from Theorem I that an integral basis exists. Conversely if m has two distinct prime divisors p and p^{\prime} then it follows from Theorem I that $K=k(\sqrt{a p})$ has no integral basis over k when a is integer satisfying $(a, m)=1$ and $a p \equiv 1(\bmod 4)$. Finally if $m=-p$ with $p \equiv 1(\bmod 4)$ then $m \equiv 3(\bmod 4)$ so no integral basis exists for any $n \equiv 2(\bmod 4)$.
3. Real subfield k. When k is a real subfield it follows from Mann's criteria and Lemma I that K will have an integral basis over k if and only if $K=k\left(\sqrt{2^{e} \epsilon n_{1}}\right)$ where $e=0$ or 1 and ϵ is a unit of k. Now every unit ϵ of k has the form $\epsilon= \pm \epsilon_{0}^{j}$ where ϵ_{0} is a fundamental unit and j is an integer . For any field k it is easily seen that $\epsilon_{0}^{3}=b_{0}+c_{0} \sqrt{m}$ with $b_{0}, c_{0} \in Z$. Since only the parity of j is important we shall assume that $j=0,1$ or 3 with the latter choice being made to insure that $\epsilon=b+c \vee m$ with $b, c \in Z$. Furthermore when ϵ_{0} has norm -1 it is easily seen that $j=0$ and whenever $j=0$ the conditions of Theorem I are necessary and sufficient for K to have an integral basis over k.

From now on we shall only be concerned with fields k where ϵ_{0} and hence ϵ has norm +1 . The following results on units will be very useful.

Lemma VI. Let $\epsilon=\epsilon_{0}$ or ϵ_{0}^{3} have the form $b+c \sqrt{m}$ with $b, c \in Z$ and let the norm of ϵ be +1 . If $m \equiv 1$ or $2(\bmod 4)$ then $(b, c) \equiv$ $(1,0)(\bmod 2)$ and $c \equiv 0(\bmod 4)$ whenever $m \equiv 1(\bmod 4)$. Furthermore

$$
\begin{equation*}
\sqrt{\epsilon}=s \sqrt{u}+t \sqrt{v} \tag{1}
\end{equation*}
$$

with $(u, v)=1$ and $u v=m$. If $m \equiv 3(\bmod 4)$ then either $c \equiv$ $0(\bmod 4)$ and equation (1) holds or $(b, c) \equiv(0,1)(\bmod 2)$ and

$$
\begin{equation*}
\sqrt{\epsilon}=\frac{s \sqrt{2 u}+t \sqrt{2 v}}{2} \tag{2}
\end{equation*}
$$

with the above conditions on u and v.
Proof. The congruence conditions are easy to verify. By [4]

$$
\begin{aligned}
\sqrt{\epsilon} & =\frac{\sqrt{N(\epsilon+1)}+\sqrt{-N(\epsilon-1)}}{2} \\
& =\frac{\sqrt{2(b+1)}+\sqrt{2(b-1)}}{2}
\end{aligned}
$$

When b is odd set $4 s^{2} u=2(b+1)$ and $4 t^{2} v=2(b-1)$ with u and v square free. It is easily seen that $(u, v)=1$. Also $c^{2} m=b^{2}-1=$ $4 s^{2} t^{2} u v$ so $u v=m$. When b is even set $s^{2} u=b+1$ and $t^{2} v=b-1$ with u and v square free. As above $(u, v)=1$ and $u v=m$.

Our main objective of this section is to prove the following result:

ThEOREM II. If $k=Q(\sqrt{m})$ is a real quadratic field then K has an integral basis over k if and only if one of the following conditions hold:
(a) At least one of m, n is $1(\bmod 4)$ and either $l=1, m, u$, or v with u and v determined by equation (1).
(b) $(m, n) \equiv(2,3)(\bmod 4)$ and $2 l=m$, u or v.
(c) $(m, n) \equiv(3,2)(\bmod 4)$ and $l=u$ or v where u and v are determined by equation (2).

Furthermore, when $l=1, m / 2$ or m an integral basis is given by Table I and when $l=u, v, u / 2, v / 2$ an integral basis is given by Table II below. For this table we set $\sqrt{\epsilon}=(s \sqrt{r u}+t \sqrt{r u}) / r$ where $r=1$ or 2. Unless otherwise stated it will be assumed that $r=1$ and $l=u$ or v.

Table II

Basis	$(m, n)(\bmod 4)$	Conditions
$1,\left(1+\sqrt{\epsilon n_{1}}\right) / 2$	$(, 1)$	$b n_{1} \equiv 1, c \equiv 0(\bmod 4)$
$1,\left(\sqrt{m}+\sqrt{\epsilon n_{1}}\right) / 2$	$(3,1)$	$b n_{1} \equiv 3, c \equiv 0(\bmod 4)$
$1,\left(1+\sqrt{m}+\sqrt{\epsilon n_{1}}\right) / 2$	$(2,1)$	$b n_{1} \equiv 3, c \equiv 2(\bmod 4)$
$1, \sqrt{\epsilon n_{1}}$	$(1,3)$ or $(1,2)$	
$1, \sqrt{2 \epsilon n_{1} / 2}$	$(3,2)$	$r=2$
$1,\left(\sqrt{m}+\sqrt{2 \epsilon n_{1}}\right) / 2$	$(2,3)$	$2 l=u$ or v

Proof. In our preliminary remarks it was observed that we need only consider fields K satisfying $K=k\left(\sqrt{2^{e} \epsilon n_{1}}\right)$ where $\epsilon=\epsilon_{0}^{j}(j=1$ or 3$)$
has norm +1 . When one of m or n is $1(\bmod 4)$ we wish to show that $K=k\left(\sqrt{\epsilon n_{1}}\right)$ exactly when $l=u$ or v. Since

$$
\begin{equation*}
\sqrt{\epsilon n_{1}}=\frac{s \sqrt{r u n_{1}}+t \sqrt{r v n_{1}}}{r} \tag{3}
\end{equation*}
$$

we see that $k\left(\sqrt{\epsilon n_{1}}\right)=K$ if and only if $r u n_{1}=n=\ln _{1}$ and $r v n_{1}=d=$ $m_{1} n_{1}$ or vice-versa. In the first case this reduces to $l=r u$ and $m_{1}=r v$, but $m=\operatorname{lm}_{1}=r^{2} u v$ is square free so $r=1$ and $l=u$. Similarly in the second case $l=v$. Thus (a) is proven. According to Mann [5, p. 170] an integral basis for K over k, when it exists, will be given by

$$
\begin{equation*}
1,\left(a+\sqrt{2^{f} \epsilon n_{1}}\right) / 2 \tag{4}
\end{equation*}
$$

where a is an integer of k satisfying

$$
\begin{equation*}
a^{2} \equiv 2^{f} \epsilon n_{1} \equiv 2^{f}\left(b n_{1}+c n_{1} \sqrt{m}\right)(\bmod 4) \tag{5}
\end{equation*}
$$

and $f=0$ or 2 according as $n \equiv 1(\bmod 4)$ or not.
When $m \equiv n \equiv 1(\bmod 4), a=h+j \omega$ with $\omega=(1+\sqrt{m}) / 2$ and $h, j \in Z$. Thus (5) becomes

$$
\begin{equation*}
a^{2} \equiv h^{2}+\left(\frac{m-1}{4}\right) j^{2}+\left(2 h j+j^{2}\right) \omega \equiv b n_{1}(\bmod 4) \tag{6}
\end{equation*}
$$

with the last congruence following from Lemma VI. Thus $j \equiv$ $0(\bmod 2)$ and $b n_{1} \equiv h^{2} \equiv 1(\bmod 4)$ since $b n_{1}$ is odd. Thus we take $a=1$ here and an integral basis is given by the first line of Table II.

When $m \not \equiv 1$ and $n \equiv 1(\bmod 4)$ then $a=h+j \sqrt{m}$ so

$$
\begin{equation*}
a^{2}=h^{2}+j^{2} m+2 h j \sqrt{m} \equiv b n_{1}+c n_{1} \sqrt{m}(\bmod 4) \tag{7}
\end{equation*}
$$

Thus $c \equiv 0$ and $b \equiv 1(\bmod 2)$. When $c \equiv 0(\bmod 4)$ congruence (7) reduces to

$$
\begin{equation*}
h^{2}+j^{2} m \equiv b n_{1}, 2 h j \equiv 0(\bmod 4) \tag{8}
\end{equation*}
$$

Either $j \equiv 0(\bmod 2) \quad$ and $b n_{1} \equiv h^{2} \equiv 1(\bmod 4) \quad$ or $j \equiv 1, \quad h \equiv$ $0(\bmod 2)$ so $b n_{1} \equiv j^{2} m \equiv m \equiv 3(\bmod 4)$. The last congruence holds because $b n_{1}$ is odd and $m \not \equiv 1(\bmod 4)$. Thus when $c \equiv 0(\bmod 4)$ an integral basis is given by one of the first two lines of Table II. When $c \equiv 2(\bmod 4)(7)$ becomes

$$
\begin{equation*}
h \equiv j \equiv 1(\bmod 2) \tag{9}
\end{equation*}
$$

and $b n_{1} \equiv h^{2}+j^{2} m \equiv 1+m \equiv 3(\bmod 4)$ with the last congruence following because $b n_{1}$ is odd. Thus $a=1+\sqrt{m}$ and an integral basis is given by the third line of Table II.

Finally when $m \equiv 1, n \neq 1(\bmod 4)$ congruence (5) becomes $a^{2} \equiv$ $0(\bmod 4)$ so $a=0$ and an integral basis is given by the fourth line of Table II.

Suppose now $(m, n) \equiv(3,2)(\bmod 4)$. Here $K=k\left(\sqrt{2 \epsilon n_{1}}\right)$ is equivalent to $2 r u n_{1}=2^{2 e} \ln _{1}(e=0$ or 1$)$ and $2 r v n_{1}=2^{2 f} m_{1} n_{1}(f=0$ or 1$)$ or vice versa. Thus $2^{2 e} l=2 r u$ and hence $l=u$ and $r=2$ (since both l and u are odd) or else $l=v$ and $r=2$. Here $\left\{1, \sqrt{2 \epsilon n_{1}} / 2\right\}$ forms an integral basis.

Finally consider the case $(m, n) \equiv(2,3)(\bmod 4)$. Here $K=$ $k\left(\sqrt{2 \epsilon n_{1}}\right)$ if and only if $2 u n_{1}=4 \ln _{1}$ and $2 v n_{1}=m_{1} n_{1}$ or vice versa. Thus $2 l=u$ or $2 l=v$. Here an integral basis is given by the last line of Table II.

Corollary I. If m is positive, then $K=k(\sqrt{n})$ has an integral basis over k for every n if and only if one of the following holds:
(a) $m=2$ or p.
(b) $m=2 p$ or $p q$ with $p \equiv q(\bmod 4)$ and $N(\epsilon)=1$.

Proof. When $m=2$ or p then $l=1$ or m so it is clear from (a), (b), and (c) of Theorem II that an integral basis exists. When $m=2 p$ and $N(\epsilon)=1$ then $l=1$ or p since n is odd. But $\sqrt{\epsilon}=s \sqrt{2}+t \sqrt{p}$ so $u=2$ and $v=p$, thus Theorem II is satisfied. When $m=p q$ with $p \equiv$ $q(\bmod 4)$ and $N(\epsilon)=1$ then it follows from Lemma VI that $\sqrt{\epsilon}=$ $s \sqrt{p}+t \sqrt{q}$. Thus $u=p$ and $v=q$ so (a) of Theorem II is always satisfied.

To prove the converse first note that if m has 3 or more odd prime divisors then there are at least 8 choices for l, all of which can occur for suitably chosen values of n. But, on the other hand, there are only 4 values of l for which Theorem II is satisfied. When $m=2 p q$ there are four possible values of l which can occur, namely $l=1, p, q$ or $p q$. However, it is seen from Theorem II (a) and (b) that there are less than four possible values of l where an integral basis does exist. If $m=p q$ with $p \not \equiv q(\bmod 4)$ and $r=1$ then when n is even no integral basis exists. If $r=2$, then no integral basis exists when $l=p$ and n odd. Finally when $m=2 p$ or $p q$ with $N(\epsilon)=-1$ then if $l=p$ and $n \equiv 1(\bmod 4)$ no integral basis exists.

Corollary II. If k has odd class number then $K=k(\sqrt{n})$ has an integral basis over k for every integer \dot{n}.

Proof. The field $k=Q(\sqrt{m})$ has odd class number if and only if

$$
m=2, p, 2 p_{1} \text { or } p_{1} p_{2}
$$

with $p_{1} \equiv p_{2} \equiv 3(\bmod 4)$. It is easy to see that when m has a prime divisor $q \equiv 3(\bmod 4)$ that ϵ has positive norm. Hence this is an immediate result of Corollary I.

Corollary III. If k is a quadratic number field either every bicyclic biquadratic extension field K has an integral basis over k or there exist infinitely many such K which do (and don't) have an integral basis over k.

Proof. Immediate from Theorems I and II and their corollaries.

References

1. A. Adrian Albert, The integers of normal quartic fields, Ann. Math., 31 (1930), 381-418.
2. Harvey Cohn, A Second Course in Number Theory, John Wiley \& Sons, New York, 1962.
3. Elaine Haught, Bicyclic Biquadratic Number Fields, Masters Thesis, VPI \& SU, 1972.
4. S. Kuroda, Über die Dirichletschen Körper, J. Fac. Sci. Univ. Tokyo, 4 (1943), 383-406.
5. Henry B. Mann, On integral bases, Proc. Amer. Math. Soc., 9 (1958), 167-172.
6. Kenneth S. Williams, Integers of biquadratic fields, Canad. Math. Bull., 13 (1970), 519-526.

Received April 30, 1974.

Virginia Polytechnic Institute and State University

