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ON SEMIPRIME P.I.-ALGEBRAS OVER
COMMUTATIVE REGULAR RINGS

EFrRAIM P. ARMENDARIZ

Let R be a commutative (von Neumann) regular ring with
unit. This paper deals with algebras A over R, and following
standard conventions A will be called a finitely generated
R -algebra whenever A is a finitely generated R -module. One
of the principal results obtained is that all semiprime finitely
generated R -algebras are regular rings. Combining this with a
result of J. Wehlen and a theorem of G. Michler and O.
Villamayor shows that the finitely generated semiprime algebras
over commutative regular rings are precisely the semiprime
central separable algebras over regular rings.

Since any finitely generated algebra over a commutative ring satisfies
a polynomial identity, (is a P.I.-algebra), this leads to consideration of
semiprime P.I.-algebras with regular center. In general, these will only
be semisimple I-rings. However if the center is also a self-injective ring
then the algebra is w-regular; this fact is a consequence of the observa-
tion that every semiprime P.1.-algebra is weakly algebraic over its center
in the sense that every element is a root of a nonzero polynomial with
central coefficients.

It will be assumed throughout that the polynomial identities occur-
ring have at least one coefficient * 1.

THEOREM 1. Let A be a semiprime finitely generated algebra over a
commutative regular ring R. Then A is a regular ring.

Proof. For the proof we appeal to a theorem of J. Fisher and R.
Snider [5, Theorem 1.1] which says that A will be a regular ring provided

(i) A/P is a regular ring for each prime ideal P of A,

(ii) the union of any chain of semiprime ideals of A is a semiprime
ideal of A.

For (i), we first observe that any homomorphic image of R is a
regular ring and hence we may assume that A is a faithful R-algebra with
R lying in the center of A. Now if P is any prime ideal of A then PN R
is a prime ideal of R hence is a maximal ideal of R. Consequently, A/P
is a prime finite-dimensional algebra over the field R/P N R andso A/P
is a simple Artinian ring. Thus (i) is satisfied. For (ii) suppose A =
Ra,+ -+ -+ Ra, let {B, | A € A} be a chain of semiprime ideals of A and
let B=U,c,B,. Let x€A with xAx CB. Then there is some
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A € A such that xax € B, for i=1,---,¢t and so xAx C B,. Hence
x € B, C B since each B, is a semiprime ideal. Thus B is a semiprime
ideal. It follows that A is a regular ring.

Combining Theorem 1 with [12, Theorem 2.3] and [10, Theorem 6.3]
we have the following description of finitely generated semiprime
algebras over commutative regular rings.

THEOREM 2. Let A be a finitely generated algebra over a regular
ring. The following conditions on A are equivalent:

(i) A is semiprime.

(i) A is regular.

(ili)) A is biregular.

(iv) A is a semiprime central separable algebra.

Proof. The equivalence of (ii) and (iii) is [10, Theorem 6.3] while
the equivalence of (iii) and (iv) is [12, Theorem 2.3].

Wehlen has also shown [12, Corollary 2.3.1] that a finitely generated
biregular R-algebra A is separable over R if and only if its center is
separable over R. If A is a finitely generated semiprime R -algebra with
center K then since A is K-separable, K is a K-direct summand of A [4,
Lemma 3.1, p. 51] hence K is an R-direct summand of A. Thus K is
also a finitely generated R-module. On the other hand let A be a
semiprime R-algebra with R regular whose center K is a finitely
generated R-module. Then K is regular by Theorem 1. If in addition
A is K-separable then A is biregular and finitely generated over K [12,
Theorem 2.3]. We thus have

CorROLLARY 1. Let A be a semiprime R-algebra over a regular ring
R. Then A is a finitely generated and hence regular R-algebra if and
only if A is a central separable algebra whose center is a finitely generated
R-module.

In terms of Hochschild dimension, dimg A, of R -algebras A we have
via [12, Corollary 2.4]

CoOROLLARY 2. Let A be a finitely generated semiprime algebra over
a regular ring R. Then dimzA =0 or dimgA = .

It may be of some interest to know whether or not commutative
regular rings R are characterized by the property dimg A =0 or « for all
semiprime finitely generated R-algebras A.

Wehlen has also noted that a finitely generated algebra A over a
regular ring R has nilpotent and finitely generated Jacobson radical J(A)
[12, Proposition 2.2].
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CoORrOLLARY 3. If A is a finitely generated algebra over a regular
ring R then J(A) is nilpotent and A [J(A) is a regular ring.

In another direction we consider max-rings; a ring K is a (left)
max-ring if and only if each nonzero left K-module has a maximal
submodule. Commutative max-rings have been characterized by R.
Hamsher [6] as rings K for which J(K) is T-nilpotent and K/J(K) is
regular. We obtain a similar result for finitely generated algebras over
max-rings, using Theorem 1.

COROLLARY 4. If A is a finitely generated algebra over a max-ring,
R then A is a left and right max-ring. Thus J(A) is left and right
T-nilpotent and A |J(A) is a regular ring.

Proof. We let M#0 be a left A-module and assume that A is a
faithful R-algebra with R CcenterA. Since R is a max-ring,
J(R)YM# M [3], so we can assume that J(R)M =0. Then M is a
nonzero R/J(R)-module as well as an A/J(R)A-module. Since
A/J(R)A is an R/J(R)-algebra we can assume J(R)A =0 so J(R)=
0. By Corollary 3, J(A) is nilpotent and so J(A)M# M. By Theorem
1, A/J(A) is regular and hence by [1, Theorem 2(a)] M/J(A)M has a
maximal submodule. That J(A) is left and right T-nilpotent results
from [3, pp. 470-471].

Now we consider semiprime P.I. rings having regular center. There
exist semiprime P.I. rings which are w-regular but not regular [5,
Example 1]; such P.I. rings have regular center. An example in [2]
shows that semiprime P.I. rings can have regular center without being
w-regular. However that example is not a ring with identity, so we now
provide one with an identity.

Let F(t) be the rational functions over a field F, let

<= (r) £ s 1= (3 70),

Now if A consists of all sequences with entries from K which are
eventually constant and in L, then A is semiprime with identity and has
regular center. Also A is'not w-regular since A maps onto F[t|PF
which is not 7-regular.

We will show that if the center is also self-injective then 7 -regularity
follows. This is a consequence of the following result which may be of
some independent interest.

THEOREM 3. Let A be a semiprime P.I. ring with center R. Then
every element in A satisfies a nonzero polynomial with coefficients from
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R. Moreover if a € A is nilpotent then p(x)=Z2,_,rx' € R[X] can be
chosen so that na*# 0 and p(a)=0.

Proof. Let Q(A) be the maximal quotient ring of A and Q(R) the
maximal quotient ring of R. By [2, Theorem 2.5 and Theorem 3.7] we
have Q(R) = center of Q(A) and Q(A) is a finitely generated Q(R)-
module. Let a € Aj; if a is nilpotent then of course a satisfies a monic
polynomial in R[X] so assume a is not nilpotent. We consider a as a
Q(R)-homomorphism from Q(A) into Q(A) so by the
Cayley-Hamilton theorem for finitely generated modules over a com-
mutative ring, a satisfies a monic polynomial in Q(R)[x], say a* +
W@ '+ -+ ua+u,=0. Since Q(R) is the maximal quotient ring
of R, there is an essential ideal D of R such that Dy, CR for
0=i=k—1. Further AD is essential in A [19, Theorem 6] hence
ADa*# 0 so Da*#0. Hence choosing r = r, € D so that ra*# 0 and
letting r, = ru, 1=i =k —1, we see that a is a root of p(x)=Zk,rx’
with r.a*# 0.

Observe that the degree k of the polynomial satisfied by a is
independent of a since, as the proof shows, k is at most the number of
generators for Q(A) over Q(R). From the proof we deduce the
following:

THEOREM 4. If A is a semiprime P.I. ring whose center R is a
self-injective ring then A is integral over R, hence A is a w-regular ring.

Proof. Q(R)=R so A is integral over R. It follows that primes
of A are maximal [7] so A is w-regular [5, Theorem 2.3].

We now show how to obtain rings as in Theorem 4. Let A be any
semiprime P.I. ring with center R and let C= Q(R) so that C is a
regular self-injective ring. In Q(A) we form the ring S=
AC. Following Martindale [8] we call S the central closure of A. In
general S# Q(A).

THEOREM 5. Let S = AC be the central closure of the semiprime P.1I.
ring A. Then C = center S hence S is a m-regular ring integral over
C. Furthermore S = Q(A) if and only if S is a finitely generated
C-module.

Proof. Since A CSC Q(A) we have Q(S)=Q(A) and so C=
center S, since C is the maximal quotient ring of the center of S. From
Theorem 4, S is 7-regular and integral over C and is a finitely generated
C-module if S = Q(A) [2, Theorem 3.7]. On the other hand if S is
finitely generated as a C-module then because S is a nonsingular
C-module and C is a regular self-injective ring, S is then an injective
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C-module [11, Theorem 2.5]. However S is an essential C-submodule
of Q(A)andso S = Q(A).

It seems reasonable to conjecture that if A is a regular ring with a
polynomial identity and M is a finitely generated A-module then
End, (M) is a wr-regular ring. This is certainly true if A is a commuta-
tive or if A is finitely generated over its center. For End, (M) is an
integral extension of a regular subring of its center and so has its prime
ideals maximal. Our concluding results are related to this conjecture.

THEOREM 6. Let A be a semiprime ring with a polynomial identity
and let M be finitely generated flat left A-module. Then every A-
endomorphism of M which is onto is also one-to-one.

Proof. Let Q denote the maximal quotient ring of A and let
M*=Q Q.M. Since M is a flat left A-module the mapping from M to
M* given by m — 1@ m is an A-monomorphism. Since M is a finitely
generated A-module, M* is a finitely generated Q-module. However
Q is a regular ring which is a finitely generated algebra over its center
[2]. Thus E = Endo, (M*) is a w-regular ring. If f € End, (M) then
f*=1Qf€E and the mapping f— f* is‘a ring isomorphism from
End, (M) into E, since m — 1@ m is an isomorphism. Finally if f is
onto then f* is also onto. Because E is m-regular, f* is invertible in
E. 1t follows then that f is one-to-one.

COROLLARY 7. Let A be a regular ring with a polynomial identity
and M a finitely generated A -module. Then every onto endomorphism of
M is one-to-one.

We remark that J. Fisher and R. Snider have constructed an example
(unpublished) of a ring with a polynomial identity having a finitely
generated module for which not all onto endomorphisms are one-to-one.
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