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ON SEMI-SIMPLE GROUP ALGEBRAS II

EUGENE SPIEGEL AND ALLAN TROJAN

For F a field and G a group, let FG denote the group
algebra of G over F. Let ^ be a class of finite groups. Call
the fields F and F equivalent on ^ if for all G, H G % FG = FH
if and only if FG — FH. In [9] we began a study of this
equivalence relation, discussing the case when (6 consists of all
finite p -groups, for p an odd prime. In this note we continue
our study of the equivalence relation. Section one deals with
some general results, section two solves the equivalence problem
when ^ is the class of ail finite 2-groups., and some remarks
about the results are made in section three.

1. Throughout this paper we assume that all group algebras FG are
semi-simple, that is, the characteristic of F is zero or does not divide the
order of G. As usual, ζn denotes a primitive nth root of unity, Zp is the
field of p elements, and Qp is the p-adic field.

Let G be a finite group of order n, and K a field. Then KG — Σ, Ah

with A, — [K]Uι 0 D , , where D, is a finite dimensional division algebra
over K and [K]Ut represents the ring of ut x w, matrices over K. Call D,
the division algebra of A, If C, is the center of D, then K C Q C K(ζn).

Let KλG (K2G) represent the sum of those A, for which the
division algebra is (is not) commutative. Then KG — KλG φ K2G. If
charfc^O, then KG - K{G.

THEOREM 1.1. Let L be a field extension of the field K. Let G and
H be groups of order n. Suppose that L is linearly disjoint from K(ζn) over
K, and KG - KλG. Then KG - KH if and only if LG - LH.

Proof If KG - KH then LG - KG <g)κL - KH ®KL - LH.
Conversely, suppose LG - LH. Then KG - Σ i[K]Uι (g) K, where

KCKtCK(ζn). So

- Σ [ X ] U ( (g) K,L since K, and L are linearly disjoint.
K

Σ [L]U ( <g) L, where L, = K,L.
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This shows that the numbers ux are determined by LG. Also L, Π
K(ζn) = LKt Π K(ζn) = Kt by linear disjointness. So each L, determines
a Kr Thus LG determines KG. This proves the converse.

COROLLARY 1.2. // the field K is algebraically closed in the exten-
sion field L, and KG - KXG, then KG - KH if and only if LG - LH.

The next two results apply to the case where KG^ KλG.

THEOREM 1.3. Let L/K be a field extension of degree r^o°. Let
G,H be groups of order n. Assume that (r, n)= 1 and L is linearly
disjoint from K(ζn) over K Then KG - KH if and only if LG - LH.

Proof Suppose LG — LH. As before, we show that LG deter-
mines KG. Let KG — ΣAI5 where the A, are simple algebras. Then
LG^XAn where A, — A^KL. Each A, is also a simple
algebra. For example, let A=Aι — [D]u, where D is the division
algebra of A. Let C be the center of D. Then KCCCK(ζn), and so,
by linear disjointness, A (x)κL — [D]u (g)cC(g)κL — [D]u §§CCL =*
[ D ® C C L ] U , and [CL: C] = [L: K] = r is relatively prime to the index of
D, (indD). Consequently, D&)CCL is also a division
algebra. (Corollary, Theorem 20, p. 60, [1].) It is the division algebra
of the simple algebra A £g)κ L, and its center is CL. So what is necessary
is to check that A§§KL determines A uniquely, that is, D<g)cCL
determines D. But the center C of D is uniquely determined by
CL Π K(ζn) = C Now suppose D 0 K L = D'§§KL for some second
division algebra, D\ whose center also is C. Let D ' be the inverse of D
in the Brauer group. Then, for some integers / and v:

[CL]t - [C], <g) L - D ι<g)D ® L - D - ! ( g ) D ' ( g ) L -[£>"]„ (g)L

where D" is a division algebra whose center, again, is C. So CL splits
D". But (r , indD")= 1 because indD" divides (indD)2. S o D " - C, so
that D ' is the inverse of D', that is, D = D'.

THEOREM 1.4. Suppose L is a purely transcendental extension of the
field K Then KG - KH if and only if LG - LH.

Proof We show once again that LG determines KG.

Case i. L = K(x), x transcendental.
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Again, KG — Σ[D t]Ui, Dt a division algebra with center QD
K. And again we examine a particular D, = D, (C, = C, w, = w). Then
L(g)κD ^L(g) κ C(g) c D -LC(g) c D is simple. (68.1 of [5].) So there
is an integer, ί, and a division algebra, E, such that L 0 χ D — [£"],. If
t/ 1, L ® K D must have zero-divisors. Suppose a, β E L (g)κD with
α β =0. Then α - Σ r, (x) (g) α,, β = Σs, (*)(§)&„ where r,(x), 5,(x) G L
and α,,l),GD. Multiplying by a suitable p ( j c ) ® l E L ® D we can
assume that rι(x),si(x) are polynomials in x. We then obtain an
equation of the form 0 = (Σ c,x') (X d,x') with cndι^D. Obviously
either α = 0 or /3 = 0. So t = 1 and L (g) D = E is also a division
algebra. And E determines D. For suppose L§§KD — LξZ)κD'.
Then, as in the previous proof, there exist integers w, v such that:

for some division algebra D" with center C But since L 0 K D " is a
division algebra, υ - M and L 0 , D " - LC. Thus D" = C and so D"1 =
(D')~!, i.e. D = D'.

ii. L has finite transcendence degree over K.

The result follows immediately from / by induction.

Case iii. / is an index set and L = K{xt \ i E /}.

Let G = {gi, , gn}, H = {ft,, , hn) and suppose ψ: LG —» LH is
an L-algebra onto isomorphism. Write ψ(gt)

 = Σ"=.x atjhn i = 1, , n
and αίy E L. Then each α(/ is the quotient of two polynomials with
coefficients in K, each involving only a finite number of the indetermi-
nates {x, I / E /}. Let B be the set of all indeterminates which appear in
any of the aιp 1 ̂  /, / ^ n. Then \B \ < oc. Also ψ(g,)EK(B)H, i =
1, ,π. And ψ: K(B)G -> K(B)H. But ψ is a i ί (β) isomorphism of
the finite dimensional vector space K(B)G into K(B)H. So it is
onto. So LG - Lfί implies K(B)G - K{B)H. Since iC(J5) is a purely
transcendental extension of K, of finite transcendence degree, the result
follows by Case ii.

2. Let X be a field. Let yκ(n) = deg(K(ζ2^)/K(ζ2^)). We call
{jκ(n)} n = 1,2, the 2-sequence of K This sequence has one of the
following forms:

1,U,
1,1,1, ,1,2,2,
2,2,2, .
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Define:

1 if Ύκ(l) = 2

n if γ κ ( n ) = 2, γ * ( n - l ) = l , n^2

oo if yκ(n)= 1, n = 1,2,3,

f 1 if X 2 + Y2 = - 1 is solvable in K

^ ' " [ 0 if X 2 + Y2 = - 1 is not solvable in K

ί 1 if X 2 + l = 0 is solvable in K

°(K)= I 0 if X 2 + 1 - 0 is not solvable in K.

We call ind2(K), t{K) and O(K) the 2-invariants of K. In [8] the
following proposition was proven:

PROPOSITION 2.1. Let K, L be fields. Then K and L are equivalents
on the class of all finite abelian 2-groups if and only if O(K) = O(L) and
ind 2 (X)-ind 2 (L).

This result is generalized here to all finite 2-groups.

LEMMA 2.2. Let p be an odd prime. Then the equation X2 + Y2 =
- 1 is solvable in Zp and in Qp.

Proof. Any homogeneous polynomial equation of degree 2 in 3
variables has a nontrivial solution over a finite field, X 2 + Y2+ Z2 = 0 in
particular. This leads to a solution of X 2 + Y2= — 1. Let a,bEZp

satisfy α 2 + b 2 = — 1. Regarding a as an integer in Qp, the equation
Y2 = — 1 — a2 is solvable in Z p and hence in Qp. This yields a solution of

LEMMA 2.3. Let F be a field of characteristic 0. Let α, fo fte
elements transcendental over F such that a2 + b2 = - 1. 77ιe/t ίfte alge-
braic closure of F in F(α, fe) is F.

Proof. deg(F(α, b)/F(a)) = 2. So if α E F(α, δ) and α is algebraic
over F then d e g ( F ( α ) / F ) ^ 2. Suppose a ξέ. F and a = Vd,
d 6 F . Then F(α, 6) = F(α, Vd). So b = p(a) +q(a)V~d for some
p(a),q(a)G F{a). -ί-a2 = p\a) + q\ά)d + 2p(a)q(a)Vd. Thus
p(α) = 0 or q(a) = 0. If a (a) = 0, then & E F(α), which is
impossible. So b = q(a)Vd. Write q(a) = qι{a)lq2(a) where
q 1 ( α ) , ί 2 ( α ) E F [ α ] . Now ( - 1)(1 + a2) = d{qι{a))2l{q2{a))2. But l + α 2

is either irreducible in F[a] or the product of two primes, while the prime
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factorization of (qι(a))2/(q2(a))2 involves only squares of primes. This
contradicts the assumption that a 0. F.

If n ^ 2 is a positive integer, the field O(ζ2

n) contains a unique cyclic,
real extension of Q, of degree 2n~\ Call this field Rn. Then R2CR3C
R4C-.

THEOREM 2.4. Let K, L be fields. Then K and L are equivalent on
the class of all finite 2-groups if and only ift(K)=t(L), O(K)= O(L),
id(K) = ind2(L).

Proof Let 76 be the classical quaternion algebra of Hamilton over
Q. Let F be a field extension of Q. Then F splits 76 if and only if
t(F)= 1. ([3], problem 12, page 149.) Suppose K and L are equival-
ent on the class of all finite 2-groups. By Proposition 2.1, O(K) = O(L)
and ind2(K) = ind2(L). Let G be the quaternion group of order 8 and H
the dihedral group of order 8. Then O G ^ O 0 O φ O 0 O 0 ^ a n d
QH - O 0 O 0 O 0 Q Θ[O] 2 . (This can be deduced, for example,
from the examples on page 339 of [5], plus the fact that the characters of
G and H are all real.) So KG^ KH if and only if 76 does not split over
K, i.e. t(K) = 0.

Conversely, suppose t(K) = t(L), O(K) = O{L), ind2(K) = ind2(L).

Case i. t(K)=t(L) = 0.

Then O(K)= O(L) = 0. By Lemma 2.2 charK = charL =
0. Assume first that ind2K = n < oo. Then Rn+λCK, R n + 1 CL, and the
2-invariants of Rn+ι and K agree. It is sufficient to show that Rn+1 and K
are equivalent on the class of all finite 2-groups. Let G be a group of
order 2\ Write Rn+ιG - Rn+UG 0 R n + ί 2 G and KG - KλG®K2G as
in §1. But the only division algebra that can occur at a simple
component of KG (or Rn+ιG) is 76§§QK (or 76®QRn+ι). ([7].) So
K2G determines Rn+ι2G. As in the proof of Theorem 1.1, KλG deter-
mines Rn+ιιG. So KG determines LG.

If ind2 K = oo, and | G \ = | H | = 2r, then i?r C K and JRΓ C L, SO that by
an argument similar to the previous, KG — KH if and only if RrG — RrH
if and only if LG - LH.

Case ii. t(K) = t(L)= 1 and charK = charL = 0.

Now, if G is a 2-group, KG — XiG. Suppose ind2(K) = n < oo. If
O ( K ) = 1 , then Q(£2«+*)CK and Q(f 2"+0CL. The result follows by
Theorem 1.1. If O(K) = 0, then Rn+ιCK. Let α, fe be transcendental
over K, satisfying α 2 + b 2 = - 1 . Then K is algebraically closed in
K(a,b). By Corollary 1.2, K and K(a,b) are equivalent on finite
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2-groups. Rn+ι(a,b)CK(a,b). So by Proposition 1.1 of [9]
Rn+ι(a,b,ζr) and K(a,b) are linearly disjoint over Rn+ι(a,b), because
Rn+ι(a,b,ζr)nK(a/b) = Rn+](a,b,a) for some aEQ(ζr), and by
Lemma 2.3, a E K and Rn+ι(a, b, ζr) Π K(a, b) = i?n+1(α, ft). Therefore,
by Theorem 1.1, Rn+ι(a,b) and K(a,b) are equivalent on_ 2-
groups. Similarly, let ά, ft be transcendental over L, satisfying ά2 + ft2 =
- 1. Then i?n+i(<5, ft) and L are equivalent on all finite_2-groups. It is
sufficient, therefore, to check that Rn+ι(a, b) and Rn+ι(ά, ft) are equivalent
on finite 2-groups. But φ: Rn+Ϊ(a, ft)—» Rn+Ϊ(ά, ft) given by ψ(r) = r if
r E Rn+U ψ(a) = α, ψ(b) = b extends to an isomorphism of Rn+ι(a, b)G
onto Rn+ι(ά, b)G. If ind 2K = oo? proceed as in Case i.

Case iii. t(K) = t{L) = 1, charX = p > 2 .

Suppose ind 2K = n < oo. it is sufficient to show that there is a field
K of characteristic 0 with the same 2-invariants as those of X, and which
is equivalent to K on the class of all finite 2-groups. If O(K) = 0, let
T = Zp. If O(K) = 1, let T = Z p (£,-)• I n e i t h e r c a s e τ cK> τ a n d κ

have the same 2-invariants, and by Theorem 1.1 T and K are equivalent
on finite 2-groups. Let K be a totally unramified extension of Qp which
has residue class field T. By Proposition 2.4 of [9] and Lemma 2.2, K
and T have the same 2-invariants and are equivalent on the class of finite
2-groups. For ind2K = oo, we proceed again as in Case i.

COROLLARY 2.5. Q and Q2 are equivalent on the class of all finite
2-groups.

Proof. By Eisenstein's criterion, the 2r-th cyclotomic polynomial is
irreducible over Q2. Hence i n d 2 ( O 2 ) = ind2(O). We must check

If X2 + Y2 = - 1 is solvable in Q2, with X, Y 2-adic integers, then the
equation X2+ Y2= - 1 (mod 8) is solvable, a contradiction. Otherwise,
we can assume the solution of X2 + Y2 = - 1 in Q2 has the form X = α/2r

y = β/2r with r > 0, a and β 2-adic integers and a = 1 (mod 2). Then
α-2+ β 2 = 0 (mod 4). This leads to a solution of Z 2 = - 1 (mod 4), a
contradiction.

3. (i) The hypotheses of Theorem 1.3 are all necessary. The two
non-abelian groups of order 8 suffice to check this.

(ii) In Theorem 1.4 we cannot just assume that K is algebraically
closed in L. For if K = Q, L = Q(a, b), with α, b transcendental over Q
and α 2 + b 2 = - 1 , by Theorem 2.4, K and L are not equivalent on
2-groups.
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(iii) If K is an algebraic number field, by the results in [6] we can
say exactly when X2 + Y2 - - 1 is solvable in K.

(iv) In [9] we asked whether there is a prime field Zq that is
equivalent to Q on the class of all p -groups, for p odd. This says that
qp~ι ^ 1 mod p2 for all p/ q. Such primes q are studied in relation to
the Fermat problem, and numerical indications can be found in [4].
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