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A UNIQUENESS THEOREM FOR TEMPERED
INVARIANT EIGENDISTRIBUTIONS

R. A. HERB

Let G be a real reductive Lie group and = a tempered
invariant eigendistribution on G. Given a natural ordering
on the set of conjugacy classes of Cartan subgroups of G,
7w is called extremal if it has a unique maximal element in
its support. T. Hirai has proved for a restricted class of
real simple Lie groups that if r is extremal and satisfies
certain regularity conditions, it is uniquely determined by
its restriction to the maximal element in its support. The
purpose of this paper is to show that Hirai’s theorem is
true without restriction of the type of G.

1. Introduction. Let G be a connected, acceptable, real re-
ductive Lie group with compact center. Let w be a tempered
invariant eigendistribution on G. Then = can be realized as a
locally summable function, 7', analytic on the dense open set G of
regular elements of G. [1] This function is uniquely determined
by its restrictions to a complete set of representatives of Car(G),
the set of conjugacy classes of Cartan subgroups of G.

The function 7’ can be quite complicated on the various Cartan
subgroups. However, there is a natural ordering on Car(G) such
that, if [H] € Car(G) is a maximal element for which 7’|, #0, then
there exist functions e¥ and 47 on H such that k¥ = ef4%7'|, is
analytic on all of H and is given by a simple Weyl character type
formula [5, vol. II, p. 60-62]. Thus it is useful to know when 7 is
uniquely determined by the restrictions of n’ to maximal Cartan
subgroups in its support.

For example, if 7 is the character of a discrete series represen-
tation of G, then G has a compact Cartan subgroup B which belongs
to the unique maximal conjugacy class in Car(G). Harish-Chandra
proved in [2] that = is the unique tempered invariant eigendistri-
bution with given eigenvalue and given formula on B.

In two recent papers [3, 4], Hirai studies the space of tem-
pered invariant eigendistributions on @, and proves a theorem which
is a natural generalization of the theorem of Harish-Chandra.
However, there is a crucial lemma for this theorem which is only
stated for G a simple real Lie group of classical type or of type G,.
Hirai doesn’t give a proof of this lemma, but claims it is proved
by long but elementary case by case arguments.

The purpose of this paper is to give a general proof of Hirai’s
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lemma valid for any reductive real Lie group. As a consequence,
Hirai’s theorem on uniqueness of tempered invariant eigendistribu-
tions can be proved without restriction of the type of G.

Section 2 of this paper gives the details of Hirai’s results and
their extensions. Most notation and definitions follow [3, 4]. Section
3 gives the proof of Lemma 5 of §2.

2. Uniqueness of tempered invariant eigendistributions. Let
G Dbe as in §1, with Lie algebra 9. Let Ar(\) be the set of all
tempered invariant eigendistributions on G with eigenvalue A. Thus,
an element 7 of A,(\) is a distribution on C?(G) such that:

(i) = is invariant under inner automorphisms of G;

(ii) Zm = MZ)r where Zec 2, the center of the universal
enveloping algebra of the complexification 9, of 9 and )\ is a homo-
morphism from 2 to C;

(ili) 7 extends continuously to a distribution on Z(G), the
Schwartz space of G.

Let Car(G) and Car(®)) denote the sets of all conjugacy classes
of Cartan subgroups of G and Cartan subalgebras of 9) respectively.
Then there is an order on Car(®), which can be lifted to an order
of Car(G), given as follows. Let U and B be Cartan subalgebras
of 9. We say [¥] < [B] if there is a real root a of U such that
y(A)c = B, where v =y, = exp(—n/4y/ —1 ad(X, + X_,)), and X,
X_, are root vectors for @ and —a in ¥ satisfying [X,, X_.] =
2H,/|le|’. In this case [Y] == [B], and va is a singular imaginary
root of B. Extending the order < transitively we get an order
on Car[¥)] with unique maximal and minimal elements, the Cartan
subalgebras with maximal compact and vector parts respectively.

For any tempered invariant eigendistribution =, let C(z) be the
subset of Car(G) consisting of conjugacy classes [H] for which
w'|lg # 0. Any Cartan subgroup H such that [H] is a maximal
element of C(xw) is called a highest Cartan subgroup of =, and the
function k¥ = ef4%%’|, on H is called one of the highest parts of
w. w is called extremal of height [H] if [H] is the unique maximal
element of C(w).

Let A be a homomorphism of 2 into C. Let H be a Cartan
subgroup of G with Lie algebra 9, and complexification £.. There
is an isomorphism 7v: 2 — I(9.), where I(9.) denotes the invariants
of the full Weyl group, W (9., 9.), in S(9.), the symmetric algebra
of §[5,vol, I, p. 168]. Then x\-7!=2\° is a homomorphism of
I($.) into C and is induced by a linear form g on $.. We denote
this relationship between A and ¢ by A* = \,. Clearly A\, = \,, for
all we W(., ..
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For H and M\ as above, let B,(H, \) be the set of all analytic
functions & on H such that:

(1) D& =27(D), Del($.);

(ii) &wh)=¢e(w, h)e(h), we W(G, H)=NyH)/Ci(H), he H', and
e(w, h) = £1 is defined by eZ(wh)4?(wh) = e(w, h)ei(h)4%(h);

(iil) suprex (1 + a(h))* |&(h)| < + o for some positive number
s, Where ¢ is the function on G defined in [5, vol. II, p. 66].

The following are proved by Hirai in [4].

THEOREM 1. Let we A;(\), and H one of its highest Cartan
subgroups. Then the highest part k7 of = on H is a monzero ele-
ment of By(H, ). Conwversely, for any nonzero & in By(H, \), there
exists at least one extremal element in Ap(\) with highest part &.
The space Ar(\) s spanned by extremal elements.

COROLLARY 2. Suppose By(H, \) # {0}. Ewvery extremal element
of Ar(N) with height [H] ts uniquely determined by tts highest part
wf and only if Bi(H’,\) = {0} for any [H’]<Car(G) such that
[H'] <[H].

LEMMA 3. In order that By(H, \) # {0} it is mecessary that:

(i) there exist pe1V/ —19* such that \° = \,;

(ii) expX —exp (X)) is a well-defined unitary character of
the connected component of the identity in H,

(iii) <, B = 0 for any compact root B of D.

Further, in order that B,(H, \) = {0} it is sufficient that in
addition to (i) and (ii), we have:

(iii)’ p is I-regular; that is, {¢, B) == 0 for any imaginary root
B of 9.

LEvMMA 4. Let [9]€Car(®), [9] not minimal. Assume that
peV —=19*, N, =2\ Bi(H,\)# {0}. Then in order that every
extremal element of Ar(\) of height [H] be uniquely determined by
its highest part, it is mecessary that p be I-regular.

Finally, Hirai states the following lemma in the case that 9 is
a simple real Lie algebra of classical type or of type G,.

LEMMA 5. Let 9 be a reductive real Lie algebra, and 9 a
Cartan subalgebra, mot minimal with respect to the ordering on
Car(®). Let pev —19* be I-regular, and let 9" be a Cartan subal-
gebra of Y such that [9'] < [D]. Let v be any inner automorphism



206 R. A. HERB

of 9. such that v9, = 9.. Then vy e (D)* is never pure imaginary
on ©'.

The main result of this paper is that the above lemma is true
as stated without restriction on the type of ¥, and can be proved
by a general argument. Using this lemma, together with Corollary
2 and Lemmas 8 and 4, we obtain the following theorem.

THEOREM 6. Let G be a connected, acceptable, real reductive
Lie group with compact center. Let H be a Cartan subgroup of G
with Lie algebra 9, [9] mot minimal in Car(Y). Assume that
By(H, \) # {0}, where \° = \,, pc1V —19*. Then any extremal ele-
ment © in Ay (\) of height [H] is uniquely determined by vts highest
part if and only if ¢ is I-regular.

3. Proof of Lemma 5. For any Lie algebra & and Cartan
subalgebra 9, let @ = @(®,, $.) denote the set of roots of the com-
plexification, @, @;, and @,», the subsets of @ consisting of roots
which are purely real, imaginary, or neither on $ respectively. For
ac®, H, denotes the element of §. associated to a by the Killing
form on §., 57, the hyperplane in 9* perpendicular to «, and s,
the reflection through 5#.. For 7Y€ @y, 7° denotes the conjugate
of 7, Y(H) = Y(6(H)), He 9., where ¢ is the conjugation of &, with
respect to @. 7, and 7 denote the imaginary and real parts of 7
respectively.

Let ® = & + P be a Cartan decomposition of ® with & a maxi-
mal compact subalgebra for which $ = (YUK + QU DPB) =, + D,.
Set 1/ —19F = {61V —19*:6]s, = 0}, and $; = {6 H*: 95, = O}.

Lemma 5 is proved by a series of reductions. First, by analyz-
ing the inner automorphism v: $.— 9., [9'] <[D], we reduce the
problem to a question just involving the root system 9(®, $.). We
must prove that if pxe1 —19; is I-regular, and if wyeV —19;
for some we W = W(®,, $.), then wy is also I-regular.

If we W stabilizes @;, then clearly wy is I-regular if and only
if #is. We examine the types of hyperplanes which can separate
¢t and wp. Since p, wpelV —19F, they cannot be separated by
hyperplanes 57, ac ®,. We show that hyperplanes of the form
S5, Be®;, S, 7€ Dopx, (7,7 =0, and certain hyperplanes 57,
{77y <0, can be crossed by elements of W which stabilize @;.
Thus we may as well assume that ¢ and wy are separated only by
hyperplanes 57, {7, 7"y < 0, such that v + 7 = @< @3 is orthogonal
to every other real root.
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This allows us to reduce the problem to a root system @' for
which @, is of type (A, for some integer . We then show that
the assumption that wpy is not I-regular leads to a contradiction.

Let #£e1V/ —19* be I-regular, and write gt = g, + V' —1f,, €
V' —19%, t,e 9% Then p, is also I-regular. For any [9'] < [9] and
inner automorphism y such that v9, = 9., v = y,w for some we W
and some inner automorphism y, of ®, satisfying v,9. = 9., v.5, is
a real root of ' for some singular imaginary root S5, of $, and
v C 9.

Suppose for some § and some inner automorphism v = yw as
above, eV —19'*. Then vy, c1 —19'* also. Since ¢, €V —197+
¥, the real subspace of $* spanned by @, wy, eV —19F + $F also.
But v,9, € &', so if wy, is nonzero on 9,, v,wi, = vy, takes nonzero
real values on §'. Thus wy, 1V —19%.

Since wyt,, B, eV —19F, (wpy, By is real. But (wyy, By =
wit(Hp,) = vt(H,,,) where H, , €9’ since v,8, is a real root of 9.
Thus (w4, B,y = 0. Thus to prove that vy is never pure imaginary
on ', it is sufficient to prove that wy, is I-regular for any we W
for which wy, €V —19%, and we may as well assume that ¢ = g, ¢
V' —19z.

Assume that for we W, wpe eV —19f. We can pick w’ € W, the
subgroup of W generated by s;, 8€®;, such that w'pt and wp are
separated by no hyperplanes 573, 8c®,. Further, w'zel/ —19}
and is I-regular since W, stabilizes v —197 and &,.

For Y€ ®gpy, {7, 8y = — (7°, ) for any 61V —19}, so that 5%
separates w'# and wy if and only if S£. does. If <{v,7) >0,
Y —7e®; and 57 and 5%, separate w'pt and wg if and only if
S#;_ does. Thus w'¢t and wy are not separated by hyperplanes
S7, {1, 7°) > 0.

Suppose they are separated by hyperplanes 577, {7, v’) = 0. For
such v, s,8,0 stabilizes V=197 and @,. Therefore we can choose
Y o0y Ve €Dopy such that (v, > =0, ¢=1,---,k, and wy and
87,870+ +* Sy Spow't = w'w'p are separated only by hyperplanes 577,
{7,y < 0. Again, w"w're1V —19¢ and is I-regular. Thus we may
assume that ¢ and wg are separated only by hyperplanes 2%,
&,y < 0.

For such a root v, v+ 7 =aec®, so ¥ =«a/2+ 7, ||VI|>
l|la|?/4. Using the facts that 2(v, v*)/{v,¥) and 2{a, 7)/{Y,7) are
integers, we find that ||«|]* = ||7|’. Suppose there is a, € @, such
that {(a,a) <0, a,# —a. Then (a,7) <0, so ¥, =a, +7€0.
If ||| # ||} 2a, 7)/{a, a) or 2{a, 7)/{7, 7) is not an integer.
Thus ||| = ||a,||* so that (7, v}> =0. For any 61/ —19%, (7, ) =
{7, 0y, so that if 2Z separates g and wy, so does 5%7,. But this
contradicts the assumption that g and wpg are separated by no
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complex hyperplanes %7, (7,, 77 = 0. Thus if 5% separates ¢ and
wy, 7r = a2, « is orthogonal to every other positive real root.

Pick v, ---, 7, a subset of the set of all v such that 5%
separates g and wp, for which wy = s, ---s,¢t. Let a, ---a, be
the distinct real roots which appear as v, + 7 7=1, ---, k. Then
9, =X RH,, + 9, where ;, = {He 9, (H) =0, i =1, ---7}h

Let IR be the centralizer of . in &. Then M is a reductive
Lie algebra with Cartan subalgebra §, and s, ---s, stabilizes @' =
oM, ). Further, 0, = {*a, ---, £a,} and 0; = @,. Let 3 be
the centralizer in MM of H,_,.. Then &(3, 9.) = 0'(¢) ={ac?"
(a, y = 0}, and s;,---5,P(1) = O'(wp) = {aec?: {a, wyy =0}, If
wye is not I-regular, i.e., (wpy, B) = 0 for some B € @;, then &' (wy)
contains at least 7 + 1 mutually orthogonal roots, namely «,---, a,,
B, and hence so does @'(%).

A real root system is called o-normal if @ — a°¢ @ for every
ac® [3]. @'(¢) contains =+ a,, --- + a,, some complex roots, but
no imaginary roots since g is I-regular. Since a — a° takes purely
imaginary values on § for any ac®(y), a — a’¢ @ (y), and so
@'(1) is a o-normal real root system.

Write @'(¢) = @' U---U@° where ¢° is simple, 1 <7=<s and
s <r. Then each @' is a simple, o-normal real root system with
o% of type (4,)% and no imaginary roots. The possible simple o-
normal real root systems are classified, and we see by scanning a
table such as [5, vol I, p. 30-32] that @ can only be a real form
of type 4,,, or A,,,_,. In either case, @ contains exactly r, mutually
orthogonal roots, and thus @'(¢) contains only » mutually orthogonal
roots. Therefore, wy must be I-regular.
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