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ABSTRACTLY SPLIT GROUP EXTENSIONS

G. HOCHSCHILD AND D . WlGNER

1. Introductory survey. Consider a group extension
1 —> A —• E —^ G —> 1 in some category of groups with super-
structure (topological, analytic, algebraic). Suppose it is split in
the category of abstract groups, i.e., there is a homomorphism
σ: G —> E of abstract groups such that TΓ ° σ is the identity map
on G. We are concerned with the question of when it is possible
to conclude that the extension is split as an extension in the given
category.

The most surprising known result in this connection is due to C.
Moore [2, Th. 2.3]. It says that if the given category is that of locally
compact separable topological groups, if A lies in the center of G and G
coincides with its commutator group [G, G], then every σ as above is
necessarily continuous.

A more transparent situation in which our question has a positive
answer is the following. Suppose the given extension is in the category
of locally compact separable topological groups, that A is a finite-
dimensional real vector group and that G has a discrete subgroup K such
that the coset space G/K is compact. Then, if an abstract split σ exists,
it follows that there is also a continuous split. In fact, our assumptions
on A and the topology of G imply that the given extension has a
continuous cross-section [3, Th. 12.2], and [0, Th. 4.2]. This yields a
continuous 2-cocycle / for G in A such that the extension is split if and
only if / is the coboundary of a continuous map from G to A. By a
well-known result due to van Est [4, §4], the restriction map from the
continuous cohomology of G in A to that of K in A is injective. Our
assumption that the extension has an abstract split evidently implies that
the cohomology class of / is in the kernel of the restriction
map. Therefore, it must be the 0-class, so that our extension has a
continuous split.

Another positive case is that of an extension in the category of
connected (real or complex) Lie groups in which the image G is simply
connected and the kernel A is a central vector group. The existence of
an abstract split σ evidently implies that A ΓΊ [£, E] = 1, so that the given
extension yields the extension

1 -> A -* E/[E, E] -> G/[G, G] -> 1

in the natural way. Since G is simply connected, [G, G] is closed in G,
and G/[G, G] is simply connected [1, Ch. XII, Th. 1.2]. As before, we
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have from [3, Th. 12.2] that the given extension has a continuous
cross-section, whence we find that E is simply connected. As just now,
it follows that [E, E] is closed in E, and JB/[£, E] is simply
connected. Thus, the above extension is simply an extension of vector
groups and therefore has a continuous (linear) split
T: G/[G, G]—> E/[E,E]. Let P denote the inverse image of
τ(G/[G, G]) in E, so that P is a closed subgroup of E containing [E, E],
and P/[E,E] = τ(G/[G,G]). Now it is easy to check that E is the
direct product A x ? , which shows that the given group extension is split
in the category of connected Lie groups.

The simplest example of an abstractly split extension of topological
groups that is not continuously split, which must be known to many, is the
following. Let ί%, Ά, 3f denote the additive groups of real numbers,
rational numbers, integers, respectively. Let rr\ &l x (i£/3Γ)-» 9Ϊ/3Γ be
defined by TΓ(JC, y)= (x +3f) + y. Clearly, π is a continuous open
homomorphism. The only compact subgroups of 91 x (.2/3?) are the
finite subgroups of Ά/3ζ, whence it is clear that the group extension given
by π has no continuous split. However, from a Ά-space decomposition
a = S φ 3 , w e obtain the group decomposition 9t/2£ = S x (.2/3?), and
hence an abstract group split σ\ 91I2£->01 x (,2/3?).

This example is not satisfactory, because of the lack of
connectedness. In the categories of connected Lie groups and con-
nected affine algebraic groups, our question leads to interesting subques-
tions by various further specialisations. In the positive direction, we
shall make some progress for unipotent affine algebraic groups over fields
of characteristic 0. In the negative direction, we shall see how ab-
stractly, but not continuously, split extensions of connected Lie groups
arise from the fundamental group of the image group. The question of
the existence of such examples, with simply connected image group,
remains unresolved.

With regard to the above and to what follows, it is a pleasure to
acknowledge the benefits we had from exploratory discussions with Brian
Peterson and Chih-Han Sah.

2. Deflated extensions. A source of examples of the kind
alluded to just above is the following construction. Let H be a
topological group, and let K be a discrete central subgroup of H. Let r
be a homomorphism from K to an abelian topological group A. Let C
be the subgroup of the direct product A x H consisting of the elements
(τ(fc), k), with k in K. Clearly, C is a discrete central subgroup of
A x H. Write E for (A x H)/Q and let η: H-+H/K be the canonical
homomorphism. The composite with η of the projection A x H —> H
induces a continuous, open and surjective homomorphism π: E-+ H/K
whose kernel may be identified with A in the evident way. It is easy to
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verify that the group extension determined by π has an abstract split
H/K —> E if and only if r is the restriction to K of an abstract group
homomorphism H —» A, and that it has a continuous split if and only if r
is the restriction of a continuous group homomorphism ff—> A

Here is the simplest specific example arising in this way. Let Λf be
the group of real matrices

/ I 0 Ox
[α,fty]= α 1 0 .

\ y j3 1/

Put H = ffl, x M. Now fix an irrational real number μ, and let K be the
discrete central subgroup of' H consisting of the elements
(a + μb, [0,0, Z>]), where α and b range over 3Γ. Finally, let A - &t, and
define the homomorphism r\K-*9ί by

τ(α + μi>, [0,0, 6])= α + fc

We claim that the resulting extension of topological groups

has an abstract split, but does not have a continuous split. It is evident
that T can be extended to an abstract group homomorphism H—*<31
(annihilating M). Therefore, our group extension has an abstract split.

Now suppose that, contrary to our claim, there is a continuous split
of our group extension. As stated above, this yields a continuous
homomorphism /: H-+&1 whose restriction to K coincides with r. We
have K C 01 x [M, Λf ]. Now note that / annihilates [M, M] and is linear
on the factor $1. It follows that there is a real number p such that

a + b = τ(a + μb, [0,0, b]) = pa + pμfe.

This gives the contradiction μ = 1, so that our claim is established.

3. Unipotent groups. We consider the category of unipotent
affine algebraic F-groups, where F is a field of characteristic 0. Our
results will automatically hold also in the category of simply connected
nilpotent real or complex analytic groups. We denote the Lie algebra of
a group G by «S?(G). Recall that there are mutually inverse polynomial
maps expc: S£(G)-*G and logG: G -»i?(G), through which the
categories of unipotent affine algebraic F-groups and of finite-
dimensional nilpotent F-Lie algebras are equivalent. Our question can
be transferred to the category of nilpotent Lie algebras by virtue of the
following proposition.
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PROPOSITION. Let G and H be unipotent affine algebraic F-groups,
with F of characteristic 0. Let y: G-+H be an abstract group
homornorphism, and define the map y': ££{G)-> 5£{H) by γ' =
l°gH °y °expG. Then yf is a morphism of Q-Lie algebras. In this way,
the abstract group homomorphisms G —> if are in bijective correspondence
with the morphisms of Ά-Lie algebras ϊ£{G)

Proof. If u and v are Lie algebra elements such that [w, v] = 0 then
exp(w)exp(ϋ) = exp(w + v). Using this with expG and expH, we find
that if n is an integer and x an element of ££(G) then expH(y'(nx)) =
expH(ny'(x)). Hence y\nx) = ny\x). It follows that y'(qx) = qy'(x)
for every rational number q.

Since £{G) and £(H) are nilpotent, we can express products of
exponentials in G and H by means of the Campbell-Hausdorff
formula. This formula provides a set of rational numbers, indexed by
finite sequences of 0's and Γs, such that the following holds. If u and υ
are given elements of ££{G) or =S?(iτΓ), one attaches to each finite
sequence of 0's and Γs a certain multiple commutator of u and u,
according to the following recipe. To the sequence 0 we attach w, to the
sequence 1 we attach v. Generally, if [s] denotes the commutator
attached to the sequence 5, then [0s] = [w, [s]] and [is] = [v, [s]]. Since
our Lie algebras are nilpotent, we have [s] = 0 whenever the length of s
exceeds a certain bound. Therefore, if q(s) is the rational number
corresponding to s in the Campbell-Hausdorfϊ formula, the sum
Σ5g(s)[s] is defined as an element of the Lie algebra. Denoting this by
η(u, V), we have exp(u)exp(ι>) = exp(η(u, υ)). We recall that if ηn is
the part of η coming from the sequences of length n, then T/^M, V) =
u + υ and r/2(w, v) = \[u, v].

There is a sequence

of ideals of Ϊ£{G) such that [i?(G), Zfc+1] CZk for k = 0, , n - 1. Now
suppose we have already shown that y'(u + υ)= y'(u)+ y\v) and
γ ([u, v]) = [γ'(w)> Ύ(V)] whenever u is in ££(G) and v is in Zk. Let q
be a rational number, v an element of Zk+ι and u any element of
i?(G). From the definitions, we have

y'(η(qu, qυ))=η(γ\qu), γ\qv))

This may be written

y'(lkq
kηk(u, v)) = ϊkq

kηk(Ύ'(u), Ύ'(υ))
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Since, for fc>l, ηk(u,v) lies in Zk we may apply our inductive
hypothesis to expand the left side, and we obtain

Σ*ί V(ifc(κ, v)) = ϊkq
kηk(y'(u), y\υ))

Since this holds for all rational numbers g, the coefficients of qk on the
two sides must be equal. In particular, taking k = 1 and k = 2, we
obtain y\u + v)= γ'(w)+ y\υ) and γ'([u, v]) = [y'(w), y'(v)]. This
proves, inductively, that yf is a morphism of .2-Lie algebras.

Conversely, suppose that δ: t£{G)-> ££{H) is a morphism of <2-Lie
algebras. Put γ = expH°δ °logG. Applying the Campbell-Hausdorff
formula and noting that η has rational coefficients, one verifies directly
that y: G—>H is a homomorphism of abstract groups. Clearly, γ ' =
δ. This completes the proof of the proposition.

If L is an F-Lie algebra, K a finite algebraic extension field of Ά
contained in F and M a K-Lie algebra such that L = M(g)κF, then we
call M an absolutely algebraic form of L.

THEOREM. Lei F be a field of characteristic 0, and let G be a
unipotent affine algebraic F-group. Suppose that ££{G) has an absolutely
algebraic form. Let 1-^A-^E—>G—»1 be a group extension of unipo-
tent affine algebraic F-groups having an abstract split. Then this group
extension is split in the category of affine algebraic F-groups.

Proof. Write «S?(G) = L = M®KF9 as above. Viewing M as a
Ά -Lie algebra, consider the extension of K-Lie algebras

coming from the K-space structure of M. Write U for M® aK, and
note that U is a two-sided /^-module, with

c *(m 0fc) = (cm)(g)fc and (m ®fc) • c = m ®(kc)

for c and /c in 1C and m in M. The kernel P of π is clearly the two-sided
iC-submodule consisting of all sums of elements of the form c u - u - c,
with w in U and c in K Now K is a finite-dimensional separable
2,-algebra, so that K^^K is a finite-dimensional semisimple Ά-algebra,
whence every two-sided K-module is semisimple. Let 5 be a two-sided
i£-module complement of P in U. Clearly, c s = s c for every 5 in 5
and every c in K Let T denote the two-sided X-submodule of U
consisting of all elements u for which c u = u c for all c in K We
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claim that S = T. In order to prove this, it suffices to show that
P Π T = (0). By the semisimplicity, P is a direct two-sided K-module
sum (P n Γ ) 0 R . Since (7 = P + T, it follows from the definition of P
that every element of P is a sum of elements c p - p c with c in K and
p in P (not only in 17), and the above decomposition of P shows that we
may even take the elements p to be in R. But this gives P = R, so that
P (Ί Γ = (0).

Thus, [/ = P 0 Γ. Evidently, T is an ideal of 17, so thaMhis is a
direct X-Lie algebra decomposition. The restriction of π to T is an
isomorphism of' K-Lie algebras T^>M. Let μ:M->T be its
inverse. By tensoring with F and evident identifications, μ yields a
morphism of F-Lie algebras

μ*: L = M<g>κF-> T<g)κFCU(g)κF = M®%FCL®ΆF

If T: L^^F-^L is the morphism of F-Lie algebras coming from the
F-space structure of L, it follows from the definition of μ * that r ° μ * is
the identity map on L.

Now let 1 —> A —• E —> G —> 1 be as in the statement of the
P

theorem. This yields the extension of F-Lie algebras

> 0

By our above proposition, an abstract split of the given group extension
yields a morphism of <2-Lie algebras

such that p'°σ is the identity map on ££{G). By tensoring with F, we
obtain the morphism of F-Lie algebras

Let γ: e2
>(E)(g)2F-^ ££{E) be the morphism of F-Lie algebras coming

from the F-space structure of ££{E). Then, if μ* is the morphism of
F-Lie algebras obtained above, the composite

is a split of our above extension of F-Lie algebras. Via logG and expE,
this yields a split of the given group extension in the category of affine
algebraic F-groups, so that our theorem is established.
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