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ON COMPLETENESS OF THE BERGMAN METRIC
AND ITS SUBORDINATE METRICS, II

KYONG T. H A H N

Let M be a complex manifold of dimension n furnished
with both the Bergman metric and the Caratheodory
distance. The main result of the present paper is to prove that
the Bergman metric is always greater than or equal to the
Caratheodory distance on M. The case where M is a bounded
domain in the space Cn was already considered by the author in
Proc. Nat. Acad. Sci. (U.S.A.), 73 (1976), 4294.

1. Introduction. The main purpose of the present paper is to
prove the following

THEOREM A. Let M be a complex manifold which admits both the

Bergman metric sM and the Caratheodory differential metric aM. For each

z E M and each holomorphic tangent vector ξ,

(1) aM(z,ξ)^sM(z,ξ).

Let ρM and dM denote the integrated metrics on M which are
induced from aM and sM, respectively. Then the Caratheodory distance
cM ([2]) satisfies

(2) cM^pM^ dM

and there are cases when ρM differs from cM and dM.
From this observation and Theorem A, we obtain

THEOREM B. Let M be a complex manifold given as in Theorem
A. Then the Bergman metric is complete in M whenever the
Caratheodory distance is complete.

If in particular M is a bounded domain in the complex Euclidean
space Cn (n ̂  1), M always admits the Bergman metric and the
Caratheodory differential metric.

Theorems A and B have a number of interesting consequences.
In [4], C. Earle has proved the completeness of the Caratheodory

distance in the Teichmuller space T(g) of a compact Riemann surface of
genus g = 2. Therefore, Theorem B immediately implies the following
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THEOREM C. In the Teichmύller space T(g) of any compact
Riemann surface of genus g § 2 , the Bergman metric is complete.

Recently, S. Wolpert [11] and T. Chu have independently proved
that the Weil-Petersson metric is not complete in T(g). Therefore, we
have the following

THEOREM D. In the Teichmύller space T(g) of any compact
Riemann surface of genus g = 2, the Weil-Petersson metric is not uni-
formly equivalent to the Bergman metric.

Finally we have

THEOREM E. Let G be a bounded open connected subset of a
separable complex Hilbert space X of finite or infinite dimension, and let M
be a complex manifold of finite dimension which admits sM. If G is
homogeneous, then there exists a constant, depending only on G, such that
for any holomorphic mapping f: M—> G

(3) aG(f(z),Df(z)ξ)^k(G)sM(z,ξ) (z ε M, ξEC"),

where Df{z) denotes the Frechet derivative of f at z E M.

If in particular G is a ball, B, in X, then

(4) aB(f(z),Df(z)ξ)^sM(z,ξ).

Theorem E contains Theorem A as a special case when B is the unit
disc in the complex plane C.

2. The kernel form and invariant metric of
B e r g m a n . The theory of the Bergman kernel function and invariant
metric on a bounded domain in the space C" has been extended to a
complex manifold by S. Kobayashi [7] and also by A. Lichnerowicz [8].

Let ZF(M) be the set of holomorphic n -forms

a = adzλ Λ Λ dzn

on M such that

(1) α Λ ά <oo.
I JM

Then 2F(M) is a separable complex Hilbert space with an inner product
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given by

(2) (a,β)=in2l a
JM

Let {cpo, φu - •} be an orthonormal basis for SF. Then every a G SF may
be represented uniquely by the convergent series

(3a) oί(z)= X cvφv{z), cv

or

(3b)

where φv = (Φ^udzi Λ Λ dzn, in a local coordinate neighborhood U of
z6Aί.

Moreover,

(4) (α,α) = l l « U 2 = Σ k l 2

Let V be a local coordinate neighborhood of ζ E M in which
φv{ζ) = {Φv)v{ζ)dζι Λ Λdζn. Then the series

(5) in2

ί"2 Σ (Φ,)l/(Z) (Φ,)v(O dz, Λ Λ dzn Λ dί, Λ Λ dζn
0

converges absolutely and uniformly on every compact subset of M x M,
where M is the complex manifold_conjugate to M, and hence, represents
a holomorphic 2n-form on M x M Moreover, the sum (5) is indepen-
dent of choice of orthonormal basis. The Bergman kernel form is
defined by the sum (5) and written as

(5a) K (z, ξ) = κζ(z) = i"2k(z, ζ)dzx A Λ dzn A dζλ A Λ dζn

with a locally defined Bergman kernel function:

(5b) fc(z, 0 = Σ (Φ,)α(

Further we define the reduced kernel form by
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(6) Kζ(z)=k(z,ζ)dzίΛ'-Λdzn.

As in the classical case, see [1], the reduced kernel form has the
reproducing property of n-forms in 2F. More precisely,

LEMMA 1. For any a E 3* with a(z)= av(z)dzιA * Λ dzn,

(7) au(z ) = (a,Kz)=i"7ί a(t)ΛK(z,ϊ) (zEM).
J

Proof. First we observe that for each fixed z E M, Kz{t) is a
holomorphic n-form in M. From the uniform convergence of the series
(3a) and (5),

= Σ C -Σ Φμ(z)(φπφμ) = Σ cvΦp(z)= av(z).
v μ v

Setting in Lemma 1 a = Kζ7 ζ E M, we have

In particular, kz(z)^O. kz(z)>0 holds whenever M satisfies
(Al) For any z in M, there is an a E 3^{M) such that α (z) ^ 0. In

this case,

(9) S2(z £)= y ί

is a well-defined positive semidefinite hermitian form which is invariant
under biholomorphic mappings of M. In fact s2(z, ξ) is positive definite
if and only if M satisfies

(A2) For every holomorphic tangent vector ξ at z E M, there is an
α E &(M) such that α(z) = 0 and

where a — adzλ Λ Λ dzn.
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Therefore, any complex manifold M with properties (Al) and (A2)
is entitled to an invariant Kahler metric sM of Bergman.

3. An extension of Schwarz inequality. Let M{Ω) be
the set of square integrable n -forms defined on a measurable subset Ω of
a complex manifold M of dimension n. Then M{Ω) is a separable
complex Hubert space with respect to the inner product:

(1) ( α , / 3 ) Ω = ; " 2 ί aΛβ (a,βGM(Ω)).
J

We need the following extension of the Schwarz inequality.

LEMMA 2. Let {av} and {βv} be two sequences (finite or infinite)
from Jl(Ω) such that

(2)

Then

(3)

where " S " denotes the matrix inequality, i.e., A g B if and only ifB - A
is positive semidefinite, M and N the matrices whose entries are Mμv =
(αμ, βv)a and Nμv = (βμ, βv)n (μ, v = 0,1,2, •), respectively, and M* the
adjoint of M.

Proof. It is enough to prove the case where {av} and {βv} are infinite
sequences. The other cases can be proved in the same way. Let
u = (u0, Mi, •) be any non-zero constant vector in £\C). Then

M * M * M M = 2
μ=0 \ v = 0 / \v=0

( 4 ) - / - Λ >
μ=0 \ v = 0 1 Ω

By the Schwarz inequality in M(Ω), (4) becomes
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u*M*Mu si Σ («M»«/.)n(Σ 0Λ, Σ ft*
μ=0 \i/ = 0 τ=0

(5)

/x=0

from which (3) follows, since u was arbitrary.
In the case where M = Cn and Ω is a measurable subset of C", we

define M(Ω) to be the set of square integrable functions on Ω. Lemma 2
then holds in this case. We shall state it separately for the future use.

COROLLARY 1. Let {av} and {bv} be two sequences (finite or
infinite) from M(Ω), ΩCC", such that

Then

(7) M*M^N Σ (av,av)n,
v

where M and N are matrices whose entries are (aμy fev)Ω and (bμ,bv)n

(μ, v = 0,1,2, •), respectively.

4. The main theorems.

THEOREM 1. Let f = (/o?/i, * * *) be a holomorphic mapping from a
complex manifold M satisfying properties (Al) and (A2) of §2 into a
separable complex Hilbert space X of finite or infinite dimension such that

(1) | | / ( z ) | | χ ^ O for some Q >0.

Then

(2) \\Df(z)ξ\\x^QsM(z,ξ) (2 6Af, f 6 C " ) ,

vv/zere || | | x denotes the usual norm in X.

Proof. For each z E. M, let

(3) aμ(t) = fμ(t)Kz(t) = fμ{t)kz{t)dt^ - Λ dtn ( μ = 0 , l , 2 , )

dzv
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where

(5)
dKz(t)= dk(t,z)

dzv dzv

ti Λ Λ dtn.

In view of the reproducing property of the kernel form, see Lemma
1, we obtain

(6) <**) = Σ (f.Kz,fμKz)=(Σ fJμKz,Kz)^Q2(Kz,Kz)
μ \ μ * /

= Q2k(z,z),

(7a)
kz{z) dzμ>dzJ KΛZ) dzv

^ ( z ) / dKΛ dkz(z) dkz(z)
KΛZ) dzμ \K"dzJ+ dzμ dzv

From Lemma 1, we also have

(dKz dKΛ_ d2 d2k(z,z)
\dz/dzj~ dzpdzμ

{ " z)~ dzvdzμ

Therefore, (7a) becomes

dzvdzμ

dk{z,z)dk{z,z)
dzv

dzμ

(7b) 1

k(z,z) dzvdz
— logic (z,z).

(9)

From Lemma 2 applied to ^(M), together with (6), (7b), (9) and (9) of §2,
Theorem 1 follows.

Let X(M, B m) be the set of all holomorphic mappings / of a complex
manifold M into the unit ball Bm in the space Cm ( l ^ m S ω ) .
Following H. Reiffen [10] we define

(10)
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for (z, ξ)G M x Cm, where Bω denotes the unit ball in the Hubert space
Cω = €2(C) with the usual ί2-noτm.

It is easy to see that a^ is a pseudo differential metric in the sense of
Grauert and Reckziegel [5], and that α ^ } becomes a differential metric
whenever M satisfies the properties (Al) and (A2) of §2 by bounded
mappings in the class %!(M,Bm). We note that a$=aM is the
Caratheodory differential metric of H. Reiffen [10]. However, it turns
out that for all m, 1 g m § ω, a^ coincide with αM, as it is seen in the
following.

LEMMA 3. Let M be a complex manifold of dimension n. For each
z EM and each ξ G Cn,

(11) aW(z,ξ)=aW(z,ξ) for all m g 1.

Proof Suppose that / = (fuf2, , / m ) e W(M,Bm). Then / =
(/, 0) = (/i, , /m, 0,0, •) is a holomorphic mapping of M into Bω. Let

") = {/: / = (/,0), /

Then

^ ( M , β ω ) C ^ f ( M , β ω ) and \\Df(z)ξ\\m =\\Df(z)ξ\\ω.

Therefore,

(12) = sup{||D/(z)ί||.: /

The opposite inequality follows from the following observation.

(13)

where (\CY denotes the dual of t\C).
The second half of Lemma 3 is due to Clifford Earle (by communica-

tion) to whom the author is indebted.
It should be pointed out that the method of the proof of Theorem 1

is essentially due to K. H. Look [9]. In fact, he has proved Theorem 1
for the case when M is a bounded domain in Cn and X = C". However,
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K. H. Look did not seem to realize Lemma 3 which enabled us to relate
Theorem 1 to the Caratheodory distance.

Theorem A is now an immediate corollary of Theorem 1, or rather a
special case of Theorem 1.

Proof of Theorem A. Set X = C and Q = 1 in Theorem 1. Then
(2) becomes

(14) \Df(z)ξ\^s(z,ξ) (z6Af, ξeC)

for all fe W{M,BX), and Theorem A follows.

Proof of Theorem E. Let x0 be any fixed point in G and let
γ : G - > G b e a holomorphic automorphism of G such that y(x) — x0,
where x = /(z), z EM. Then y / is a holomorphic mapping of M into
G such that (γ f)(z) = x0. Let Q be the radius of the smallest ball in X
which contains G. We may assume that the center of this ball lies at the
origin. By Theorem 1,

(15a) \\D(γ f)(z)ξ\\x^Qs(z,ξ), (zGM, ίεC").

It is known [3] that if G is bounded then there are two positive
continuous functions A and Λ in G such that

(16) λ(x)\\ξ\\x^aG(x,ξ)^A(x)\\ξ\\x (xeG),

for each ξ G X. Set η = Df(z)ξ. Then (15a)"becomes

(15b) \\Dy(x)η\\x*ίQs(z,ξ), x=f(z).

By the invariant property of the Caratheodory differential metric aG

under biholomorphic mappings of G, see [3],

(17) aG(x,η)= aG(γ(x),Dy(x)η)= aG(x0,Dy(x)η).

From the second half of (16), (17), and (15b),

(15c) aG(f(z),Df(z)ξ)^A(x0)Qs(z,ξ).

The first half of Theorem E follows from (15c) when we set

(18) fc(G)=(?infΛ(jc).
xGG
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If in particular G is a ball, say B ={x E X : ||JC||X < JR}, R >0, then
Q = R and inequalities (16) may be reduced to

(19)

see [3]. Therefore, k(G) = 1 in (18) which proves the rest of Theorem
E.
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