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NOETHER'S THEOREM FOR PLANE DOMAINS
WITH HYPERELLIPTIC DOUBLE

WILLIAM H. BARKER II

This paper is motivated by the observation that Noether's
theorem for quadratic differentials fails for hyperelliptic
Riemann surfaces. In this paper we provide an appropriate
substitute for Noether's theorem which is valid for plane
domains with hyperelliptic double. Our result is somewhat
more explicit than Noether's, and, in contrast with the case of
nonhyperelliptic surfaces, it provides a basis for the (even)
quadratic differentials which holds globally for all domains with
hyperelliptic double. An important fact which plays a
significant role in these considerations is that no two normal
differentials of the first kind can have a common zero on a
domain with hyperelliptic double.

Let W be a closed Riemann surface of genus g ^ 1. We wish to
consider the class of analytic quadratic differentials on W. In terms of a
local parameter z = z(p), p E W, recall that an analytic quadratic
differential has the representation f(z)dz2, where f(z) is a regular
analytic function of the variable z. The analytic quadratic differentials
form a complex linear space of dimension 3g - 3 for g ^ 1 and of
dimension 1 for g = 1. Additionally, the product of two Abelian
differentials of the first kind is an analytic quadratic
differential. Noether's theorem is fundamental in that it provides for a
basis for the analytic quadratic differentials on a nonhyperelliptic
Riemann surface in terms of products of Abelian differentials of the first
kind. See, for example, Hensel and Landsberg [4], p. 502.

In contrast, it is a direct computation that on a hyperelliptic
Riemann surface of genus g g 1, the products 0(0y of Abelian differentials
of the first kind span a complex linear space of dimension
2 g - l . Thus, in particular, Noether's theorem fails in the case of
hyperelliptic surfaces of genus g ^ 3. In this paper we obtain an
appropriate substitute for Noether's thoerem in the case of hyperelliptic
surfaces obtained as doubles of plane domains.

DEFINITION 1. For each n ^ l let sέn be the class of all domains
whose boundary is formed by n disjoint piecewise analytic curves. We
shall denote by Hn the class of all domains in sln which possess a
hyperelliptic double, and by Σn the class of all domains which are the
exterior of a system of n slits taken from the real axis.
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We established in [1] that each domain in Hn can be mapped
analytically and univalently onto a domain in Σn.

Suppose now that D E Σn, and that the point at infinity is in D. The
boundary of D is then formed by the n disjoint segments of the real axis

(1) ΎJ = [>Vi, r2y+2], j = 0,1,2, , n - 1

and we shall find it convenient to order the γ; with the assumption

(2) r, < r2 < < r2n.

We also have the complementary segments

oij = |>2,+2, ^,+3], / = 0 , 1 , 2 , , n - 2,

(3)
and an.1 = [r2n,oo] U [-<», r j .

The structure polynomial q(z) for D is defined by <jf(2) =
Π^iίz - r ;). It is easy to see that the double of D is the hyperelliptic
Riemann surface given by w2 = q(z).

Let ωμ be the harmonic measure in D with boundary values δμv on
yv. Each ωμ is the real part of a multivalued analytic function wμ(z)~
ωμ(z)+ iσμ(z) whose derivative is single valued on D. We define the
induction coefficients Pμv, μ, v = 0,1,2, , n - 1, by

μ 2π Jγι/ <9n 27ΓΪ J

Observe that the study of the Abelian differentials of the first kind on the
double of D is equivalent to the study of the differentials w'μ{z)dz on D.

THEOREM 1. // D E. Xnj and yμ is a boundary segment of D, then
wμ(z)= w'μ(z), and the zeros of w'μ(z) are all simple and are located, one
each, on the n -2 open segments of the extended real axis complementary
to the boundary of D and not adjacent to yμ.

Proof To simplify our notation, we will prove Theorem 1 only for
the differential w'0(z). From the definition of wQ(z) we have

(4) w'0(z) = -£-ω0(z)-i-^ω0(z).

But observe that ωo(z)= ωo(z), whence for z — x real in D,
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(5) ^ ω o ( x ) = O,

and so in this case equation (4) becomes

(6) wΌ(x) = — ωo(x), x real, x G D.

We have also w'0(z)= w'0(z).
Now restrict ω0 to one of the intervals au α 2 , * ,αn-2> say to

α .̂ From the boundary behavior of ω0, we see that ω0 is zero at both
endpoints of aζ and that ωo(jc) > 0 for x in the interior of aζ. It follows
that α>o achieves a maximum at some interior point xζ of aζ, and at this
point we have (d/dx)ωo(xζ) = 0 and so by equation (6), w'0(xζ) = 0.

Finally, it is known that w'Q{z)dz can possess at most n - 2 zeros in
the interior of D, and thus Theorem 1 follows.

COROLLARY 1. For a domain in the class Σ«, // w£(zo) = O, then

Proof. For z real, wj(z) = (d2/dx2)ωμ(z). Moreover, the condi-
tion w'μ(z0) = 0 implies that z0 is real and that ωμ (z) has a local maximum
at zo; thus Wμ(zo) = 0. But all of the zeros of w'μ(z) are simple and the
result follows.

The following result is an immediate consequence of Theorem 1 and
the representation of Abelian differentials of the first kind on hyperellip-
tic surfaces. See, for example, Springer [6], §10-10.

THEOREM 2. For a domain in the class Σ n whose structure polyno-
mial is q(z), we have

where pμ (z) is a real polynomial of degree at most n - 2, all of whose roots
are real

COROLLARY 2. IfD E Σn has structure polynomial q(z), and ifp(z)
is a polynomial with real coefficients of degree at most n - 2, then
p(z)/λ/q(z) can be expressed as a real linear combination of

Proof The differentials w[(z), , w'n-λ(z) are linearly indepen-
dent, and, therefore, so also are the polynomials pι(z), ,pπ_,(2).
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Our concern now is with products of the form
wf

μ(z)wf

v(z)dz2. Observe that if D is a domain with analytic boundary,
then w'μ(z)w'v(z)dz2 is negative and so, in particular, real. It is to
preserve this property that we shall consider real rather than complex
vector spaces.

DEFINITION 2. For D G Hn, we shall denote by Γ2(D) the real
linear space generated by the products w'μ(z)w'v(z)dz2, μ,v =
l,2, , n - l .

If D GΣn, n = 2,3, , with structure polynomial q(z), it is an
immediate consequence of Theorem 2 that

Γ2(D) = \(-~i dz2: p(z) is a polynomial with real coefficients of

(7) ^ . ,
degree at most 2n- A\.

In particular, we see that if D E Hn, then Γ2(D) is a real linear space of
real dimension 2n - 3, n = 2,3, .

LEMMA 1. // D is a domain in the class Σn, and if, for some
enumeration of the boundary segments of D, the differentials w[(z)dz and
wf

2(z)dz have no common zeros, then

w[(z)2dz2,w[(z)wf

2(z)dz2, - , w[(z)wf

n^(z)dz2,

(8)

are linearly independent and so form a basis for Γ2(D).

Proof. Let D be a domain in the class Σn with structure polynomial
q{z). Each of the differentials w'μ(z)dz is then of the form
pμ(z)/Vq(z)dz where pμ(z) is a polynomial of degree at most n-
2. Since the linear dependence properties of the w'μ(z)dz are preserved
by conformal homeomorphisms, we can perform, if necessary, a frac-
tional linear transformation to insure that both of the polynomials p\{z)
and p2(z) are of the maximum possible degree n - 2. The zeros of p\{z)
and p2(z) will then be denoted respectively by ξu ξ2, - , £π-2, and

We now assume that the zeros of p\{z) and p2(z) are distinct, and let
p(z) be a a polynomial with real coefficients of degree at most
2n - 4. Observe that, for appropriately chosen constants c, d] and eh we
can write
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p(z) = Pi(z)p2(z) \c

But we then have the representation

p(z)= cp1(z)p2(z) + p1(z)r(z) + p2(z)s(z)

where r(z) and s(z) are certain polynomials of degree at most n —
3. Since the pμ(z) are linearly independent, we can find real coefficients
au , an-x and bu , bn-x such that

and so the functions listed in (8) do indeed span the linear space Γ2(D)
and hence are linearly independent.

LEMMA 2. If D is a domain in the class Σn, and if a < 0 and b > 0,
ίften /or w'μ(z)dz and w'v(z)dz distinct, the zeros of the differential
aw'μ(z)dz + bw'v(z)dz are all real and simple.

Proof. Observe that the lemma is invariant under fractional linear
transformations with real coefficients, so that we can assume, without loss
of generality, that the point at infinity is in D. The boundary of D is
then formed by the n-disjoint segments of the real axis y} given by (1),
and we shall find it convenient to order the γy by the condition (2). We
have also the complementary segments a, as in (3). By performing, if
necessary, a second fractional linear transformation (with pole in αn_i),
we can further assume that

awμ(z)+bwXz)= P^f-,
Vq{z)

where p(z) is a polynomial of the maximum possible degree, n - 2. Let
N be the number of distinct real zeros of aw'μ(z)+bw'Xz). It is
immediate that n - 2 g N, and it suffices to show that N^n-2.

Consider the function

(9) ψ(z)=aωμ(z)+bωv(z);

φ(z) is harmonic in D and continuous in the entire complex plane. If
Ψ(z) is the analytic completion of ψ(z), then

(10)
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Moreover, since ψ(z) = ψ(z), for z = x taken from the real axis in D, it
follows that

(11) Ψ'(x) = £ψ(x).

Now let m (r) be the number of endpoints of the interval aτ at which
ψ(z) is zero, and let /(r) be the number of distinct solutions of ψ(z) = 0
on the closed interval aτ. Clearly, /(τ)g m(τ), and by virtue of
equation (11), Ψ'(x) has at least (/(T) - 1)+ distinct zeros on the interior of
the interval aτ.

Consider now the set

σ = {zED: ψ(z) = 0}

and its closure σ in the extended complex plane C. Since on every
analytic curve in D which joins γμ to γv, we have a point z at which
ψ(z) = 0, we see that σ is nonempty and indeed separates yμ from
yv. In particular, σ contains a point on each of the connected compo-
nents of {JC on the extended real line: x £ yμ and x £• yv}\ call these points
jc0 and Xι.

Next observe that on the set

σ —

we have (p2(z)/q(z))dz2^0. Thus σ is a system of orthogonal trajec-
tories of the quadratic differential (p2(z)/q(z))dz2. Suppose that x0 is
located on some %. Then JC0 is the intersection of two distinct arcs of the
orthogonal trajectory of (p2(z)/q(z))dz2 and so p(x0) = 0, that is Ψ'(x0) =
0. The argument is similar for JC,. (For a discussion of the trajectories
of quadratic differentials, see, for example, Jenkins [5].)

Case I. Suppose that the intervals yμ and yv are adjacent, i.e.,
μ = i/ + 1. Then

m(0)=m(l)= ••• = m(μ-2)=m(μ +2)= •• = m ( n - l ) = 2

m(μ - 1)= m(μ + 1) = 1, and m(μ) = 0.

Certainly one of the points JC0 or x} is located on the interior of aμ, say it is
x0. Then l(μ)= 1, and we consider separately the following two con-
figurations:

(a) If JC! is located on the interior of some segment ατ, then
/ ( r ) g l + m(T), and we have
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n - 2 ̂  N ̂  (number of distinct zeros of Ψ'(z) on int(α0 U U αn-i)

= Σ l(p) ~ " = Σ m (p) + 2 - n = 2(n - 3) + 2 + 2 - n
p=0 ρ=0

= n-2,

and N = n-2, as claimed.
(b) If X! is located on some closed segment γτ, then

n - 2 ^ J V ^ l + (number of distinct zeros of Ψ'(z) on

int(αoU UαB-,))

p=0 p=0

-rc = n - 2,

and so again N = n - 2.

Case II. If the segments yμ and yv are not adjacent, and if μ < v,
we then have

m (0) = m (1) - = m (μ, - 2) = m (μ + 1) = = m {v - 2)

and

ra(μ - 1) = ra(μ) = m(v - 1) = m(v)'= 1.

There are three possible configurations:
(a) If both JCO and xx are on the interior of the set Uj:iαP, then

n - 2 ̂  N ̂  (number of distinct zeros of Ψ'(z) on int(α0 U U «„-]))

p=0 p=ϋ

- 2 ( n - 4 ) + 4 + 2 - n - n - 2 ,

and we conclude that N - n-2.
(b) If one of the points JC0 or JCI is located on the boundary of D,

UpiJ,γp, while the other point is located on interior of Un

pllap, then

n - 2 ^ N + l + (number of distinct zeros of Ψ'(z) on

int(α0U U α,^))
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n-1

n^l + Σ m{ρ)+\-n
p=0 p=0

= 1 + (2(n - 4) + 4) + 1 - n = n - 2,

so again N = n - 2.
(c) Finally, if both x0 and x{ are located on the boundary of D,

U;:Jγp, we have

n - 2 § N § 2 + (number of distinct zeros of Ψ'(z) on

Σ
ρ=0 p=0

= 2 + (2(n-4) + 4 ) - n = n - 2 ,

so again N = n — 2.
All possible cases have now been treated so Lemma 2 is established.

THEOREM 3. For D a domain in the class Hπ, no two distinct
differentials w'μ(z)dz and w'v(z)dz can possess a common zero.

Proof. Without loss of generality we can suppose that D is in the
class Σπ, and suppose then that a point z0 exists such that w'μ(z0) =
w l(zo) = 0. From Corollary 1 we have w £(z0) < 0 and w "(z0) < 0, and we
consider the differential

From Lemma 2 above Ψf(z) has only simple zeros. However,

and no such point z0 can exist.
The following substitute for Noether's Theorem is now immediate.

THEOREM 4. // D is a domain in the class Hny n ^ 3, then for an
arbitrary enumeration of the boundary components of D, the quadratic
differentials

w[(z)2dz\w[(z)w'2(z)dz\ • , w[(z)wUz)dz\
(12)
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are linearly independent and so span the space Γ2(D). // n = 2, then
T2(D) is spanned by the single quadratic differential w[(zfdz2, and if
n = 1, then Γ2(D) is vacuous.

Proof The treatment of the cases n = 1 and 2 is clear. For n ^ 3
we can assume that D is in the class Σn, and in this case the result is an
immediate consequence of Lemma 1 and Theorem 3.

The significance of Theorem 4 lies in the fact that the differentials
w'μ(z), μ = 1,2, , n - 1, are up to a constant factor, the normal
differentials of the first kind (with respect to an appropriately chosen
canonical homology basis) on the Riemann surface obtained by forming
the double of a domain D E Hn. Theorem 4 tells us not only that we can
choose a basis for Γ2(D) of the form (12), but also that we can do it
arbitrarily and globally for all domains in Hn. Compare, for example,
Bers [3].

ACKNOWLEDGMENT. I would like to thank the referee' for his
extremely helpful comments and criticisms concerning this paper.

REFERENCES

1. W. H. Barker, Plane domains with hyperelliptic double, Dissertation, Stanford University, 1975.

2. , Kernel functions in domain with hyperelliptic double, to appear.

3. L. Bers, Holomorphic differentials as functions of moduli, Bull. Amer. Math. Soc, 67 (1961),

206-210.

4. K. Hensel and G. Landsberg, Theorie der Algebraischen Funktionen einer Variablen, Leipzig,

1902.

5. J. Jenkins, Univalent Functions and Conformal Mappings, Springer-Verlag, Berlin, 1965.

6. G. Springer, Introduction to Riemann Surfaces, Addison-Wesley, Reading, Mass., 1957.

Received August 10, 1976. This work forms part of the author's Doctoral Dissertation at Stanford

University written under the direction of M. M. SchifTer.

DANIEL H. WAGNER, ASSOCIATES

STATION SQUARE ONE

PAOLI, PA 19301






