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SUMS OF INVARIANT SUBSPACES

DAVID A. STEGENGA

This paper is concerned with certain functional analytic and
functional theoretic questions concerning the spaces of bounded
analytic and bounded harmonic functions in the unit disk.

Specifically, a characterization is given of those weak-star
closed, invariant subspaces of L", on the unit circle, whose
vector space sum with the space of continuous function is
uniformly closed. This generalizes Sarason's result that Hx + C
is a closed subspace. The characterization involves the notion
of local distances to H . In addition, a partial solution is given
to a problem raised by Sarason concerning the structure of
functions in Hx + C.

1. Introduction. Let Hx denote the closed subspace of Lx on
the unit circle Γ, consisting of all F G Lx whose negative Fourier
coefficients are all zero. Denote by C, the space of all continuous
functions on T.

Sarason [8], [11], has shown that Hx + C is a closed subalgebra of
Lx. Sarason's theorem answered a question raised by Devinatz [2] who
asked for a characterization of those functions on T which belong to the
smallest closed subalgebra of L x containing Hx and the set of all
trigonometric polynomials on T. By showing that Hx + C is a closed
subspace of L x these additional algebraic properties follow
easily. Sarason proves that ίΓ°+ C is closed by considering the bidual
of the quotient space C/Λ, where A = Hx Π C (the disk algebra), by
means of the F. and M. Riesz theorem.

The intent of this paper is to generalize Sarason's theorem by
replacing JFf* with an arbitrary weak star closed, invariant subspace M,
and ask under what conditions M + C is closed. The word invariant
means that M is closed under multiplication by the identity function on
T, namely z. We approach this problem by considering the bidual of the
space M/M Π C as was the case in Sarason's proof, however, we find that
M + C is not closed in general. The simplest counterexample arises by
taking M = φH™, where φ is a certain type of inner function. An inner
function is any ψ E ff°° with | φ | = 1 almost everywhere with respect to
Lebesgue measure. This situation can be compared with the fact
φHx+ C is closed for all inner functions φ. These two examples are
typical of the general case when M is of the form φH00, where φ is any
unimodular function in L°\ Our characterization involves the relation-
ship between φ and Hx at each point of T.
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In §4 we show that a question raised by Sarason concerning the
structure of unimodular functions in H°° 4- C is equivalent to showing that
φH00 + C is closed for all unimodular functions <p in H00 + C. We do not
answer Sarason's question in general but we do answer an important
special case.

I would like to express my thanks to Patrick Ahern for many
valuable discussions. I would also like to thank Allen Shields for many
helpful suggestions in preparing the final manuscript.

2. The doubly invariant case. If M is a weak star closed
invariant subspace of Lx then it is known that either M = φH00 where φ is
a unimodular function in Lx (| φ | = 1 a.e.), or else M is determined by a
measurable subset E of T and M consists of all functions in L00 which
vanish almost everywhere on the complement of E. Denote this second
set of functions by LE. These facts can be established by noting that
since M is weak star closed it suffices to obtain the analogous character-
ization for closed invariant subspaces of L1. Now in Helson's book [6,
pg. 26] he proves that if M is a closed invariant subspace of L1 then
M Π L2 is dense in M (actually M is simply invariant in this proof, but
the argument is the same). Since M Π L2 is a closed invariant subspace
of L2 it suffices to obtain the analogous characterization in this
setting. But these facts are well-known and follow from a theorem of
Wiener and a generalization of a theorem of Beurling [1] by Helson and
Lowenslager [7]. Modern proofs for both of these theorems can be
found in Helson's book [6, pp. 7-9]. M is simply invariant if zM is
contained in, but not equal to M and doubly invariant if zM is equal to
M. The simply invariant weak star closed subspaces of L00 are of the
form φH00 and the doubly invariant ones are of the form LX

E.
We consider the doubly invariant case first. Given a measurable

subset E of Γ, define the essential interior of E to be the union of all
open sets with the property that their intersection with EC(EC - T\E)
has measure zero. Denote this set by JE0, then clearly £ O Π £ C has
measure zero and Eo is the largest open set with this property. Note that
if two measurable subsets are essentially equal (symmetric difference has
measure zero) then they have the same essential interiors.

LEMMA 2.1. A function gELEΓ)C if and only if g E C and
{\g\>0}CE0.

Proof. For g E C the set {| g | > 0} is open and since g E LX

E if and
only if the set { | g | > 0 } n £ c has measure zero, it is clear from the
maximality of Eo that this happens if and only if { |g |>0}CE 0 The
proof of the lemma is complete.
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LEMMA 2.2. For g E C the following three quantities are equal:
(i) ||g + L E | | = infF e L S | |g + F | | .
(ii) ||g + L H n C | | = inf F G L l n c | | g + F | | .
(iii) |jg||Ec = s u p z e E S | g ( z ) | .

Proof. For g E C we have \\g + L E | | = \\X^g H- where XEc is the
characteristic function of Ec. Since g is continuous and EC

Q is compact
there exists an a E Ec

0 with ||g||Es = |g(α)l Let e > 0 then there is an
open neighborhood U of a with | g ( z ) | = ||g ||ES ~~ € for all z E U. Now
(7 is not contained in Eo so U Γ) Ec has positive measure and so
II XE<g Hoc ^ II g ||E(

c> - €. But e being arbitrary yields the inequality ||g ||Eδ ^

Now let K be a compact subset of Eθ9 then we can find a continuous
function φ with O ^ φ ^ l , φ = l on K, and {φ>0}CE0. By the
previous lemma φg E L^Π C, thus

Since K is arbitrary we conclude that || g + L E Π C || ^ || g ||ES. Combining
these two inequalities we have

but inequality \\g + LE | | ^ ||g H- L E Π C|| is trivially true so all three
quantities are equal and the proof is complete.

The following lemma is basic and essentially appears in Zalcman's
proof that Hx+ C is closed, see Theorem 6.1 [14].

LEMMA 2.3. Suppose X and Y are closed subspaces of a Banach
space Z. Then a necessary and sufficient condition for X 4- Y to be closed
is that there exist a K < oo with

(1) | | y + X n y | | g K | | y + X | |

for all y in Y.

Proof. By elementary Banach space techniques we know that
X + Y being closed in Z is equivalent to X/X ΠY+ Y/x Π Y being
closed in the quotient space Z/X Π Y. But X/X Π Y and Y/X Π Y
intersect trivially in Z/X Π Y. As a simple consequence of the closed
graph theorem we have X/X Π Y + Y/X Π Y is closed if and only if the
natural projection operator taking this sum onto Y/X Π Y is
bounded. Thus X + Y is closed in Z if and only if there is a constant
K < oo with
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|| y + X Π Y || ^ K || y + x + X Π Y\\

for all y E Y and x E X But this last relation is easily seen to be
equivalent with (1) and the proof is complete.

By putting the information of the last two lemmas together we have
proved the following:

THEOREM 2.4. LX

E+ C is closed in Lx for all measurable subsets E
ofT.

In other words, if M is weak star closed and doubly invariant
subspace of Lx then M + C is closed.

3. The simply invariant case. With the doubly invariant
case disposed of we consider the more interesting simply invariant case
where M — ψHx for some unimodular φ E Lx.

For / and g in Lx and A a point in T, define

distλ (f, g ) = ess. lim sup | /(z) — g (z) |.
z—*λ

If / and g are extended harmonically for \z | < 1 then we also have

d i s tλ(/,g) = l imsup|/(z)-g(z) | .
|z|<l

For / in Lx define

distλ (/, Hx) = inf |dist (/, ft): ft E H00}.

We might note that if Xλ denotes the Lx fiber over λ then
distλ(/,g) = | | / -g | | x ,

We first consider the case that φHx Π C = {0}. For instance, φ
could be a Blaschke product whose zeros cluster on the entire unit circle,
or even on a set of positive measure.

THEOREM 3.1. Suppose φ is a unimodular function in Lx for which
φHx Π C = {0} holds. The following are equivalent:

(a) ψHx+ C is closed in Lx.
(b) There is an e > 0 with distλ (φ, Hx) ^ e for all λ in T

Proof Assume (b) is true and let g E. C. Suppose λ E T, g(λ) ^ 0,
and ft EHX then for z E T
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\g(λ)\\φ(z)-h(z)\ = \φ(z)g(λ)-h(z)g(λ)\

and so | g ( λ ) | d i s t λ ( φ , / i ) ^ | | g - g ( λ ) # | μ Thus

holds for all AST. Clearly then,

and φH"+ C is closed by Lemma 2.3. This gives (b) implies (a).
Suppose that (a) holds then for some e > 0

for all g € Q once again by Lemma 2.3. Fix A G Γ and suppose
distλ (φ, Hx) < £, then there is a function h E Jf " and a neighborhood U
of λ such that

ess sup I φ (z ) - h (z) \ < e.
zEU

Let g(z) = (2A-z)" 1 then g(ΞH°°ΠQ |g(λ) | = l, and | g ( z ) | < l for
z •£ A but in Γ. By considering powers of g we can make | gn | as small as
we like off the set U. Hence

\\Φgn-hgnl<e

for n sufficiently large. However, |g"(λ) | = 1 for all n. Thus,

1 = ||g" M β^llg" + φH \\ S e-HIg- |

and we arrive at a contradiction. So we must have distλ (φ, ίί00) g 6 for
all λ and the proof is complete.

We now come to the most interesting part of this problem, that is, we
consider the possibility that φH" Π C is not trivial. So we are assuming
that there is a F in ί P and a g in C with φF = g and g is not identically
zero. A well-known property of functions in Hx is that log | F | G L1 for
all nontrivial F E H00. As a result, the set where g is zero must have
measure zero since \F\ = \g |. Define Z(φ) as the closed set formed by
the intersection of the zero sets of each g in φH™ Π C In other words
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Z(φ) is the set of common zeros for the functions in <pίΓ°(Ί C. Thus
Z(φ) is closed and has measure zero. Suppose λ ^ Z(φ) then φF = g
for some FEH00, g G C, with g(λ) ^ 0. Thus

|g(λ)|distλ(V, -^χ)ή = ess. Urn sup \φ(z)g(λ)- F(z)\

= ess.limsup|φ(z)g(λ)-<p(z)g(z)|

= ess.limsup|g(λ)-g(z)| = O

and so {distλ (φ,Hx) >0} CZ(<p). Our aim is to show that if for some
e > 0 the function distΛ (φ, H°°) is greater than e whenever it doesn't
vanish, then Z(φ) is equal to the set {distλ (φ,H°°)>0} and <pH°°+ C is
closed. The converse is also true.

We start by stating a sharpened version of the Rudin-Carleson
Theorem, due to Rudin and Stout [10, Thm. 4.1] which will be extremely
useful to use. Let A denote the intersection of H™ with C; A is usually
referred to as the disk algebra.

THEOREM 3.2. Suppose K is a compact subset of measure zero in T
and g is a continuous function defined on K. Then there is a function F in
A with the property that F = g on K and | F ( z ) | < \\g \\κ for all z £ K.

In the proof of Theorem 3.1 we used a trivial special case of this
theorem, where K was a single point.

Let ψ be an inner function; then the harmonic extension of φ into
the open unit disc (also denoted by ψ) has the form

φ(z) = B(z)S(z) ( | z | < l )

where

B(z) f\ A f ^
v ' lL\an\\-anz

with I an I < 1 for all n, and Σ (1 - | an \) < <*> (aj\ an \ = 1, if an = 0) and

where μ is a finite, nonnegative measure on T, singular with respect to
Lebesgue measure.

The support of φ is the set of points λ E T for which there is a
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sequence {zn} of points (\zn | < 1) such that zn —» A and φ(z π )-»0. This
set, denoted by supp φ, is known to be the union of the support of the
measure μ and the cluster set of the sequence {an}. It is also well-
known that φ is analytic on the complement of supp φ. Now if {an} is a
subsequence of {an} and μ0 is a measure with O ^ μ o = μ then the
corresponding inner function φ0 is a divisor of φ, i.e., φ/φ0 is a bounded
analytic function for | z | < 1. In terms of boundary values this says that
φφ0 E f/00. All divisors of φ are of this form. See Hoffman's book [9,
Chapter 5] for details. We need to know the following simple fact about
inner functions: if ψ is a nontrivial inner function then φ has a nontrivial
divisor φ0 with m (supp φ0) = 0 (m refers to normalized Lebesgue meas-
ure on Γ). This fact is obvious unless φ = S. However, if this is the
case then there is a compact subset K of measure zero and μ(K)>0.
If we take φ0 to be the inner function determined by restricting the
measure μ to the set K then supp φ0C K and we are done.

LEMMA 3.4. Suppose φ is unimodular and φH™ Π Cj£ {0} then
φHx (Ί C is weak star dense in φH06.

Proof. First note that φH™ Π C is weak star dense in φH00 if and
only if φC Π Hx is weak star dense in H°°. Since the weak star closed,
invariant subspaces of Hx are of the form ψH™ where ψ is an inner
function we may assume that φC Π H00 C ψH°° for some inner function
ψ. We must show that ψ = l, so assume that ψψ^l. By the above
discussion ψ has a nontrivial divisor ψQ where m (supp ψ0) = 0. Now we
are assuming that φg = F for some F E ff °° and O ^ g G C . It is easy to
show that for some positive integer n, ψoF G H00 but ψS+1F0 HX. By
Theorem 3.2 there is a function h E Λ with /ι = 1 on supp φQ and | ft | < 1
on the complement of supp ψ0. Clearly, φo(l - h m) E C for all positive
integers m and

as m —>°° in the weak star topology. Now we have

φ[gψno(l ~ hm)} = Fψ"0(l -hm)ϊΞH"

for all m. But then Fφn

Q{\ - ftm)E ψHx since φC Γ)H~CψH°° by as-
sumption and hence FψS E ψ/ί00. This is a contradiction since it implies
that FψS+1 E ψψ0H

xCHx. Thus φ = 1 and the proof is complete.

LEMMA 3.5. For functions ψ as in Lemma 3.4 we have

for all g&C.
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Proof. The first inequality is trivial. Let M(T) denote the Banach
space of all complex measures on T, with the total variation norm. Now
M{T) is the dual of C by the Riesz representation theorem and each μ in
M(T) has the form dμ = hdm + dμs where h E L1 and μs is singular
with respect to m. Also we have || μ || = || h \\λ + \\μs ||. Let X denote the
annihilator subspace of φH00 Π C in M(Γ), i.e.,

X = ίμ E M(Γ): ί Fdμ = 0 for all F E φH" Π

then a simple functional analysis argument shows that X can be identified
with the dual of the quotient space C/φH00 Π C. Let F E φ//00 Π C and
μ E X then, since z n F E φiϊ00 Π C for n = 0,1,2, we have

znF(z)dμ(z) = O (rt = 0,l,2,. )

and by the F. and M. Riesz theorem the measure Fdμ is absolutely
continuous with respect to m. If dμ = hdm + dμs this amounts to
suppμs C{z: F{z)- 0}, since Fdμs is the zero measure. Hence

Fhdm = 0.
T

Since this is true for all F E φHx Π C we conclude that suppμ, CZ(φ)
and the measure hdm is in X Conversely, if ft E L1 and it annihilates
φH00 Π C, and μ5 is a measure whose support is contained in Z(φ), then
ftdm + dμs is in X.

Now, if ft E L 1 IΊX then

(*) f Fhdm = 0 (FE φH™ Π C)

and so by Lemma 3.4 we have that (*) holds for all F E φH00. Thus

ί F(φh)dm =0

for all F E H00 and an elementary argument shows that this is equivalent
to the vanishing of the Fourier coefficients (φh)A(n) for n =
0, - 1,-2, . Let HI denote the subspace of L1 consisting of those
functions whose nonpositive Fourier coefficients are zero, then the above
discussion shows that X Π Lι = φHι

0.
Let Xs denote the subspace of M(Γ) consisting of all measures with
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support contained in Z(φ). We now have X = φ/f ί0X ί where we
view ψHl as a subspace of M(Γ). Thus, for g G C

F,μ

gφFdm + gdμ S sup gdμ
JT JT μ J

where the supremum is taken over F E Hλ

0 and μ. E Xs with
+ dμ || = || J^||x -+- ||μ || = 1. Clearly then,

FEHo
I (gφ)Fdm Ίls II*

for all g in C If we consider the function gφ as determining a bounded
linear functional on H\ then the first supremum on the right hand side of
the above inequality is the norm of this linear functional. Using the
well-known fact that the dual of Ho can be identified with the quotient
space Lx/H°° we have

sup
FEHo

J (gφ)Fdm

since φ is unimodular. This completes the proof.

The above lemma is a direct generalization of Sarason's proof that
|| g + A || = || g + Hx\\ for g in C, which is all that is needed to show that
H°°+ C is closed in L00. Take φ = 1 to obtain Sarason's result. The
above lemma and Lemma 2.3 show that if Z(φ) is empty then ψH00 + C is
closed. This applies in particular to the case when φ is an inner
function.

By Lemma 2.3 and Lemma 3.5 we see that φH°° + C is closed if and
only if there is a constant K < oo with \\g ||z(φ) ^ X ||g + <pίΓ°|| for all g in
C. Using this fact and an argument paralleling the proof of Theorem 3.1
we have the following:

LEMMA 3.6. Let φ be a unimodular function. Then a necessary
and sufficient condition for φH" + C to be closed is that there exists an
ε > 0 such that

distλ(φ,

for all λ in Z(φ).

If φH™ Π C = {0} then Z(φ) = T. Thus, Lemma 3.6 and Theorem
3.1 can be combined to give the above statement in this case.
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We might also remark that if φ G H00 + C is unimodular, then
φHco+ C is closed if and only if Z(φ) is the empty set. This follows
from the fact that distλ (φ,HM) = 0 for all A, since φ is in H™ + C.

We mentioned earlier the fact that distλ (φ, H°°) vanishes for all
A g= Z(φ), and now we see that distλ (φ, Hx) must be bounded away from
zero on Z(φ) in order for φHx+C to be closed. Thus a natural
question is what relationship does the support of the function
A -> distλ (φ, ί Γ ) bear to the set Z(φ), aside from the fact that Z(φ) is
always the larger of the two.

If φ is an inner function with 0 < m (supp φ) < 1 then Z(φ)= T. To
prove this let F G /ί00, g E A, and assume that φ(z)F(z)= g(z) for all
I z I < 1 and consequently g must vanish on supp ψ. But supp φ has
positive measure so g must vanish identically. Since φ is continuous on
T\suppφ we clearly have distλ (φ, H°°) = 0 on this set. Now if
A G supp φ and F G Hx then

ess. limsup \φ(z)-F(z)\ = ess. limsup | 1 - φ(z)F(z)\

limsup | 1 - φ(z)F(z)\
z-+λ
\z\<l

since <p tends to zero on some sequence tending to A. Thus
distλ (φ9 H

00) g 1 on supp φ. Since distλ (φ9 H
00) g 1 for all A, we actually

have distλ (φ, H00) equal to the characteristic function of supp <p. So the
support of the function distλ (φ, H00) is equal to the set supp φ which is
strictly smaller than Z(φ).

The next lemma shows that the situation changes if φH" ΓΊ C/ {0}.

LEMMA 3.7. Let φ be unimodular and suppose φH°°ί) C^ {0} then
the support of the function A -» distλ (φ, H") is equal to Z(φ).

Proof. We first note that Z(φ) is a totally disconnected compact
subset of the circle since m(Z(φ)) = 0. Assuming that the support of
distλ (φ, H°°) is not equal to Z(φ) then it follows that there is a compact
subset K of Z(φ) and an open subset U of T containing K with
U Π Z(φ) = K and distλ (φ, H°°) vanishing on U. Let V be an open
subset with K C V and the closure of V contained in U. Let ψ G C be 1
on V and 0 on T\U\ then distλ (ψφ,H00) = 0. Now it is known [13] that
distA (F, H00) = 0 is equivalent with FeH™+C. Thus ψφ EH™+ C and
there is an F G /ί00 and a g G C with φ = F + g on V. By Theorem 3.2
there is a function h in A with ft = g on K since m (K) = 0. By
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replacing F with F+ h and by replacing g with g - h we have φ = F + g
on V where F E if00, g E C and g = 0 o n K Once again by Theorem
3.2 there is a function h in A with /ι Ξ= 1 on K and | /ι | < 1 on T\K Now
for positive integers n

(\g\\h\n on V
hn-φhnF\ = \φ-F\\h\n^ \

[c\h\n on T\V

where c = l + ||F||oo. Since g vanishes on K and | f t | < l on T\K it
follows that | |fcn-<pftπF||oo->0 as rc^oo, and hence \\hn + ||

By Lemma 3.5

lim sup || hn - h m + φH00 Π C ||

^ lim sup || hn - h m + φH001| + lim sup || hn - h m \\z{ψ)

and so the cosets {hn + ψHx Π C) form a Cauchy sequence in C/φH™ Π
C. But C/φH00 Π C is complete so there exists a continuous function h0

with || ho ~ hn + φJT0 Π C ||-» 0. By Lemma 3.5 we now have || h0 - hn +
φHx\\ -^0 and \\h0- hn\\z{φ)-+Q. Since we already know that ||/ι" +
φff001| -»0 it follows that h0 is in φHx Π C. By definition of Z ( φ ) we
have /zo = O on K But hn = l on iC for all n and /zn converges
uniformly on K to /z0 so h0 must be 1 on K. This is a contradiction
arising from the assumption that the support of distλ (φ, Hx) was properly
contained in Z(φ) and the proof is complete.

Lemmas 3.6 and 3.7 are our main results which we combine into the
following thoerem.

THEOREM 3.8. Suppose φ is unimodular and φH™ Π C^ {0}. A
necessary and sufficient condition for ψH"+ C to be closed is that there
exists ane > 0 with the range of the function λ -» distλ (φ, H00) contained in
the set {0} U (e, °°).

Proof. The proof is an immediate consequence of Lemmas 3.6
and 3.7.

In [4] Douglas and Rudin prove the unimodular functions of the
form ψιφ2, where the functions φ1 are inner, are uniformly dense in the
set of all unimodular functions. The first two corollaries are directed at
such functions.
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COROLLARY 3.9. Suppose φu φ2 are inner functions with disjoint
supports. Let ψ - φλψ2 then ψHx + C is closed if and only ifm (supp ψλ) =
0 or 1.

Proof. By the discussion preceding Lemma 3.7 and the fact that φx

is continuous on T\supp φ-x it follows that distλ (φιψ2, Hx) is equal to the
characteristic function of s u p p ^ . If m(suppφi)>0 then ψH°°ΠC =
{0}. For suppose ψ\φ2F = g for some F E H°° and g E C then φλF =
φ2g. Since φ2g is continuous in a neighborhood of supp φλ its harmonic
extension is also. But the harmonic extension of φxF is just ψx{z)F{z)
which tends to zero at each point of supp φx. Thus φ2g vanishes on
suppφi and hence log | JF | = log|φ 2g \ & L1 since m(suppφ>i) = 0. Thus
ψH" Π C = {0} in this case. By Theorem 3.1 we conclude that ψH™ + C
is closed if and only if m(supp<pi)= 1.

If m(supp<pi) = 0 then there is a nontrivial h EA with Ji = 0 on
supp ψι and hence ψφ2h = ψλh E C. So ψH™ Π C^ {0}, distλ (ψ, H00) is a
characteristic function, and by Theorem 3.8 we know that ψHx+ C is
closed. This completes the proof.

COROLLARY 3.10. Suppose φu φ2 are inner functions with supp^i
being a finite set. Then φxφ2H™ is closed. More generally, if ψ is
unimodular, ψH00 Π C^ {0}, and the support of distλ (ψ, H00) is a finite set
then φHx + C is closed.

Proof. If φ = ψιψ2 with φu φ2 as above then the proof of Corollary
3.9 shows that ψH°°ΠC/{0} and the support of distλ(ψ,H°°) have
measure zero. This seems to be related to the structure of functions in
ίΓ°+ C. Certainly the simplest example would be distλ (φ, ίΓ°) = 0 in
which case φ is in H00 + C.

One question that I have been unable to answer is whether the
hypothesis " ( p H ^ ί Ί C ^ O } " in Theorem 3.8 can be replaced by the
apparently weaker hypothesis that the support of the function
distλ (φ9 H°°) have measure zero. This seems to be related to the
structure of functions in H°° + C. Certainly the simplest example would
be distλ (φ, f/°°) = 0 in which case φ is in Hx+ C. We have just shown
that φ E Hx implies that φH°°+ C is closed and it seems reasonable to
conjecture that the same thing is true with φ E H°° + C. This situation is
discussed further in §4.

We remark that the local distance function distλ ( , H00) has been
useful in the study of Toeplitz operators, see Sarason [13].

We now give two examples where φ/Γ°+ C is not closed, φHxΠ
C y {0}, and distλ (φ,Hx) is supported on a convergent sequence. By
Corollary 3.10, we must have distλ (<p, H°°) supported on an infinite set in
order for φ ί F + C not to be closed.
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(i) If φ is unimodular and continuous except for a jump discon-
tinuity at λ of magnitude e > 0 then by approximating ψ at A by
constants we see that distλ (φ, if00) < 6. Since dist2 (φ, H00) = 0 for all
z / A we must have distλ (φ, H°°)>0. Otherwise, φ E H°° + C and this
is impossible since φ has a jump discontinuity.

Now let {λn} be a sequence in T converging to 1. Let φ be
continuous except for jump discontinuities at λn of magnitude en > 0,
where eπ--»0. Then 0 < distλ (φ, H°°) < en and so by Theorem 3.8,
φH00 + C is not closed.

(ii) Suppose {an} is a sequence with | α n | < l , α π ^ A G Γ , and
Σ'(l - I an I) < <*>. Let B denote the infinite Blaschke product determined
by this sequence. Let e > 0, then by a theorem of Frostman [5, pg. I l l ]
a E C can be chosen, with 0 < | α | < 1, such that the function

is also an infinite Blaschke product and \\B - B^ < e. We assume that
0 < e < 1 and then the support of Bi is the set {A}.

Let φ = BBX then dist2 (φ, if00) = 0 for z £ A, since B, Bλ are continu-
ous on T\{λ}, and distλ (<p, Hx) ^ distλ (<p, 1) ^ || B - Bj ||oc < e. Now sup-
pose F E ίΓ° then,

distλ (φ, F) = lim sup | Bj(z) - B (z )F(z) |

^ lim sup | B i ( α n ) - B ( α n ) F ( α n ) |
n

= lim sup |Bi(α n ) | = \a |
n

and we conclude that distλ (φ9 H
c°)>0. Notice that B can be factored

into the product B'B" where B" is the finite Blaschke product formed
from an initial segment of the sequence {an} and B' is an infinite Blaschke
product. Since B" is continuous and | B " | = 1 on T we see that
distz (BXB\ H00) = dist2 (<p, Hx) for all z in T. The point of this modifica-
tion is that we may assume that Σ(l - | an |) is arbitrarily small. We may
perform a similar modification on Bγ and thus we have proved the
following:

PROPOSITION. Suppose A E T and two positive numbers e and 8 are
given. Then there are two Blaschke products B and Bλ with zeros {an}
and {bn} such that
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(i) Both sequence {an} and {bn} converge to A.
(ii) 0 < distλ {BλB, H00) < e.

(iii) X ( l | J ) + Σ ( l | ί J ) < S

()
(iii)

Now let {λn} be a sequence in T converging to 1. Let {en} and {δn}
be two sequences of positive numbers such that en -» 0 and X8n < oo. By
the proposition we have Blaschke products {Bn} and {BnΛ} satisfying
(i)—(iii) for en and δn. Now by (iii) and the fact that Σδn <«> we can
define new Blaschke products B = ΠJ3n and Bι = UBnΛ. By letting
φ = BXB it is now clear that distλ (φ, H°°) < en. Since en —> 0 we have that
φHx+ C is not closed, by Theorem 3.8.

In both of these constructions we forced distλ (φ9 H°°) to be arbitrar-
ily small but positive on the sequence {λn} and identically zero
everywhere else except possibly at λ = 1. No conclusion was drawn
concerning the value of distλ (φ,Hx) at λ = 1. Suppose the following
had occurred: distλ (φ9 H

x) is bounded away from zero on the sequence
{λrt} and identically zero everywhere else with the possible exception of
A = 1. Assuming that φH™ Π CV {0} in this case we would have φHca +
C is closed if and only if disti (φ9 H

M) > 0. However, we observe that the
function distλ (φ9 H

00) is upper-semicontinuous and hence its value at 1
would have to be positive and φHx+ C is closed. Thus we have the
following extension of Theorem 3.8:

COROLLARY 3.11. Suppose φ is unimodular, φH00 Π CV {0}, and
distλ (φ, H™) is bounded away from zero on a dense subset of its
support. Then φH00 + C is closed.

4 Unimodular functions in H°° -f C Suppose φ is uni-
modular and Z(φ) is a finite set, then the support of distλ (φ,Hx) is a
finite set and by Corollary 3.10 we know that φH°°+ C is closed. In
particular this is true if Z(φ) is the empty set. If this is the case, then
distλ (φ, H°°) = 0 and so φ is in H°° + C. Conversely, suppose φ G Hx +
C and φH™ Π CΦ {0} then distλ (φ9 H") = 0 so Z(φ) is the empty set by
Lemma 3.7. Thus Z(φ) is empty if and only if φ is unimodular in
H°°+C and <pH°°nC^{0}.

The simplest way to exhibit such a function is to take F E /f00, g E C
with \Fg I = 1, and let φ = Fg. Clearly, φ EH^+C since H0 0 + C is an
algebra and Z(φ) is empty since φF = g"1 where g has no zeros. Our
next result shows that this is always the case (replace φ with ψ).

THEOREM 4.1. Suppose φ is a unimodular function in ff°°+ C with
φ//°°Π C?^ {0}. Then φ = Fg where F is in H™ and g is a continuous
function.
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Proof, By Lemma 3.7 we have Z(φ) is the null set. Since T is
compact and Z(φ) is empty we can find functions Fu , Fn in H00 and
gl5 , gn in C with φg, = F) for / = 1, , n and X | g, |2 > 0. Since the
gi's are continuous there is a positive integer m and functions hu

 m- ,hn

in A with

Now the function S/i^ is continuous and nonvanishing since

Let g = (Xfttf)"1 G C and F = Σ/i.F; E H" then

or φ = Fg and the proof is complete.
Suppose φ = Fg as in the theorem. From the inner-outer factoriza-

tion of H™ functions (see Hoffman's book [9]) we know that F = ψϋ
where ψ is an inner function and 0 is an outer function, i.e., ϋ is
described for | z \ < 1 by

ϋ{z) = exp ± j j^j log I ϋ(eη\ dt.

Then 101 = I g Γ1 a n d clearly O~ι is also in H00. In other words, the
function u - ΰg is an invertible function in the algebra H°° + C and
0 = φu.

In [12, pg. 293] Sarason has asked whether every unimodular
function in H°°+ C can be described in this way, i.e., as the product of an
inner function and an invertible function in H°° 4- C. Sarason shows that
every invertible in H00 and g is a nonvanishing continuous
function. Thus the desired factorization is equivalent to showing that
every unimodular function in H°° + C can be written as the product of an
H°° function with a continuous function. By Theorem 4.1 it suffices to
show that φH™ Π C/ {0} for all unimodular functions φ in H™ + C Our
main result shows that this is also equivalent to showing that φH™ + C is
always closed.

We have been unable to answer Sarason's question in general but we
do have an affirmative answer in the following special case.

We start by defining the support of a unimodular function φ in
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Hcc+ C in the same manner as we did for inner functions, i.e., suppφ
consists of those points λ E T for which there is a sequence {zn} with
I zn I < 1 on which the harmonic extension of φ tends to zero. Clearly
supp φ is a closed subset. Now Douglas [3] has shown that a function in
H°° 4- C is invertible if and only if its harmonic extension is bounded away
from 0 in some annulus r < | z | < 1. Thus a unimodular function φ in
H°° + C is invertible if and only if suppφ is empty.

LEMMA 4.2. Suppose φ is unimodular in Hx+C and AG
Γ\suppφ. If {zn} is a sequence with | z n | < l and zn —> λ then

Proof. Write φ = ψθ + g where φ is an inner function, 0 is an
outer function, g is continuous, and g(λ) = 0. Now λgzsupp^ since
g(λ) = 0 and hence | ^ ( z n ) | - > l . Let e > 0 and V = {\g \ < e} then Vis
an open neighborhood of A and

almost everywhere in V. For | z \ < 1, log| (9(z)| is equal to the Poisson
integral of the boundary function log|<5|. Since | €\ ̂  1 - e in V it
follows from well-known properties of the Poisson integral that

liminf
n

and hence

lim inf I ψ (zn) I = lim inf | ψ (zn) U(zn) + g (zn) |
n n

= lim inf \U(zn)\^l-e.
n

Thus, l iminf |φ(z n ) | g 1 since e is arbitrary and the proof is complete
since | |φ | |«= 1.

THEOREM 4.3. Suppose φ is a unimodular function in fί°°+ C with
m(supp<p) = 0. Then there is an inner function ψ and a function u
invertible in HM + C with φ = ψu.

Proof We have that φ = ψϋ + g with ψ an inner function, 0 an
outer function, g continuous, and by Theorem 3.2 we can assume g
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variables on supp φ. Let V = {\ g \ < \) then V is an open neighborhood
of supp φ. Let λ E V\supp φ and | zn \ < 1 with zn —> λ. Then by
Lemma 4.2,

liminf I φ{zn)O{zn)\ = liminf \ψ(zn)- g{zn)\S|>0
n n

and in particular λ is not supp φ. Thus supp ψ Π V Csupp φ and we can
factor ψ into the product φλφ2 where φu φ2 are both inner functions,
supp φι = supp φ ΓΊ V, and supp ι/̂2 is_disjoint from V.

Now g vanishes on supp ψ so ψig E C and since

i^φ = ψ2ϋ + φxg

we have φxφ is a unimodular function in H°°+C. But ^ φ has no
support in Γ\supp<p since φλ is continuous on this set. If λ Esuppφ
and zn —> λ (I zn I < 1) then | ψ2(zn)\ —> 1 and the harmonic extension of ψig
is continuous and vanishes at λ. If the harmonic extension of φxφ tends
to zero on the sequence {zn} we must therefore have | 0(zn)|-»O. But
the proof of Lemma 4.2 shows that this is impossible since g(λ) =
0. Thus the support of φγφ is invertible in H=o+ C Hence φ = φxu is
the desired factorization and the proof is complete.

In closing we remark that the factorization in Theorem 4.3 is not
unique since it is possible to have two relatively prime inner functions
(i.e., no common divisors in Hx) whose quotient is invertible in H°°+ C;
in fact, their quotient can be continuous. This seems to be one of the
major difficulties with this problem.
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