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ERGODIC ACTIONS OF PRODUCT GROUPS
CAROLINE SERIES

We apply the theory of virtual groups (ergodic groupoids) to
the study of commuting groups of transformations.

Introduction. Just as a conjugacy class of closed subgroups of a
locally compact second countable (l.c.s.c.) group G determines and is
determined by a transitive action of G, so a virtual subgroup of G
determines and is determined by an ergodic action of G. The details of
this principle are developed by Mackey in [10]. The following approach
to questions concerning group actions is indicated: (a) Consider the
problem in the case in which the action is transitive and reformulate this
as a question concerning closed subgroups of groups. (b) Solve this
group theoretic problem. (c) Translate the result back into the language
of transitive group actions. (d) Generalise to the properly ergodic case.

Although the theory of virtual groups has been investigated by
various authors (Hahn [8], Mackey [10], Ramsay [14], Westman [19]) this
procedure has not previously been applied except in the simplest cases
[10]. Here we investigate the following problem: consider an ergodic
action of the direct product of l.c.s.c. groups N and H on an analytic
Borel space S and describe this in terms of actions of N and H
separately, together with a suitable twisting. ‘We obtain by the proce-
dure indicated above a description of the required form whenever the N
action on S is smooth (i.e. whenever the space of N orbits is
analytic). The similarity of the results in the transitive and ergodic cases
is seen by comparing Theorems 3.12 and 4.10. The problem arises as a
first step in a scheme of reduction of group actions to actions of
comparatively simpler groups.

We assume some familiarity with the theory of virtual groups, c.f.
[8], [10], [14]. 1 contains preliminary results on group actions. In 2 we
introduce the kernel of a homomorphism of groupoids 7: S X H—> ¢, H
al.c.s.c. group, S an analytic Borel H space and ¥ an analytic measured
groupoid. 3 deals with steps (a)—(c) of the procedure outlined above,
and 4 contains the main result, Theorem 4.10, that the description
obtained in 3 is indeed valid, with some slight modifications, in the
properly ergodic case. This gives a description of actions of N X H in
the required form whenever the N action on S is smooth.

For basic definitions relating to Borel groups and Borel group
actions we refer to [1], [11], [12], [18]. For analytic Borel spaces X, u;
Y,v; Z,A and Borel maps P: X—= Y, Q: Z— Y with Pyu ~v~ QA
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520 CAROLINE SERIES

we define the fibre product X *Y or X #,,Y and the fibre product
measure as in [14] p. 265. 2B (X) denotes the Borel sets of X. M(X, n)
is the measure algebra of X,u [14] p. 261. v-g is the measure
v-g(E)=v(Eg) and [v] is the class of the measure v. We write

] fdv ~ f gdu if f fdv>0& f gdu >0. Measures are probability

measures unless otherwise stated.

The results of this paper formed part of the author’s doctoral thesis
(Harvard May 1976). She is happy to have the opportunity of acknow-
ledging her indebtedness to her advisor Professor George W. Mackey
who suggested the topic of investigation and whose support and guidance
gave constant encouragement.

1. Preliminaries.

1.1. It is well known that if G is a l.c.s.c. group and S an analytic
Borel G space with quasi-invariant measure v, then there is a standard
Borel space T and a Borel map P: S — T such that P,v a.a. fibres of P
are ergodic G spaces. T is moreover up to Borel isomorphism the
unique space with this property. T will be called the standard quotient
of S by the G action. We write S/G for the space of G orbits. An
action is smooth if S/G is analytic.

We shall make frequent use of the point realisation theorems of
Mackey [12] and Ramsay [14], §3. We also recall the uniqueness of the
Haar class on a l.c.s.c. group G, [18] Theorem 8.4, and of the quasi-
invariant classes on its quotients by closed subgroups, [18] Theorem
8.19. The natural class on a coset Hg of G is the class [vg] where [v] is
the Haar class on H. In the decomposition

® =f sdp s (5)
meG

of Haar measure u on G with respect to projection p, the measures u,
are a.a. in the natural class on p7'(s), [13] p. 104.

1.2. Let G be a l.c.s.c. group and let S be an analytic Borel space
with measure ». Let T C S X G be analytic and conull with respect to
vx Haar. Let m: T— S be a Borel map such that

m(m(s,g),h)=m(s,gh)  V(s,8),(m(s,8),h),(s,gh)ET
m(m(s,g),g™)=s V(s,8),(m(s,8),g)ET.

m is called an almost action of G on S.
For a.a. g€ G, {s€ S:(s5,g)E T} is conull. Therefore vg is de-



ERGODIC ACTIONS OF PRODUCT GROUPS 521

fined a.a. g € G. If vg ~ v whenever vg is defined, then v is said to be
almost quasi-invariant.

THEOREM 1.3. In the above situation, there exist a standard Borel G
space X, with quasi-invariant measure w, and an analytic conull subset
Y C S, a Borel isomorphism J: Y — X, such that J «(v) = o and

{(,8)ESXG:(s5,8)ET,s€EY,sg €Y, J(m(s,g))=J(s)g}
is conull in S X G.

Proof. LetK={g€ G:(s5,g)E T a.a.s €S}. Kisconull Define
amap U: K— U(L*S, v)) by

U(k)f(s) = f(m (s, k)Vpe(s)

where p, is the Radon Nikodym derivative of v - g with respect to ».

With respect to the strong operator topology on U(L*(S, v)), U is
Borel by [18] Theorem 8.10. By [18] Lemma 8.26 U extends to a Borel
homomorphism G — U(L*(S, v)). Therefore M(S,v) is a Boolean G
space. Now apply [12] Theorem 1 and [14] Theorem 3.5.

DEFINITION 1.4. Let G be a l.c.s.c. group and let S, S be almost
analytic Borel G spaces with almost quasi-invariant measures v, v’. Let
T: S — S’ be a measurable map such that {(s,g) ES X G: T(m(s,g)) =
m'(T(s), g)} is conull in S X G, where m, m’ define the almost actions in
S, S'. T is called almost equivariant. If in addition T is a measure
theoretic isomorphism, T is called an almost isomorphism.

THEOREM 1.5. Let H, G be l.c.s.c. groups and let S be an analytic
Borel G space with finite quasi-invariant measure v, and letj: H— G be a
continuous homomorphism with dense range. Then s -h =sj(h), s € S,
h € H, defines a Borel actionof Hon S. If A € B(S) is H invariant then
there is a G invariant set B € B(S) which differs by a null set from A. In
particular, if G acts ergodically so does H, and if in addition G acts freely
and j(H) is not closed then H acts properly ergodically.

Proof. That the H action is Borel is clear. Let A € B(S) be H
invariant. Given g€ G, let h, € H, j(h,)—>g. Let x» U, be the
representation of G on U(L*(S, v)) defined as in 1.3. By [2]p.23, U is
strongly continuous.

For x € G, Uxa = Xax - U.1 where 1 is the function which is
identically 1 on S.
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For h € H, xas = xa.
For any w € L*(S, v):

<XABUB 17 (.0> - <XAUg 1, w>
= (U;be w)— {[ng, Xaw)

= I:Lll] ((UA“XAy w)— (Uh,. 1, XAw»
= I;lgl ((xanUn 1, @) = (U, 1, xaw))

= I;lgl ((Uh,,l,XAw>*<Uh"1aXAw))
=(.

Therefore y,,U,1= y,U,1. U,lisnonzeroa.e. So (1): xag = Xa-

This implies that the Boolean algebra element in M(S, v) corres-
ponding to A is invariant under G, so by [12] Theorem 3 A differs by a
null set from a G invariant null set.

It follows easily that if the G action is ergodic, so is that of H.

Suppose v is ergodic and G acts freely, and suppose the H action is
essentially transitive. Let X C S be the H orbit supporting v. Pick
§ € G such that XN Xg = Then v-g is a measure supported on
Xg, and yet v-g ~v. This is a contradiction, so the H action must be
properly ergodic.

2. Kernels of homomorphisms. Although we presume
that the reader has some acquaintance with the theory of measured
analytic groupoids (virtual groups), we fix notation, to be referred to as
the standard notation, by recalling the basic definitions. For further
details we refer to [10], [14].

DEFINITION 2.1.  An (algebraic) groupoid is a set together with a
subset ¥9CYX Y and maps m: 49— 4, m(x,y)=xy;i: 4— 9,
i(x)=x"", with the following properties:

() There is a subset Uy, = U C 4 of units, so that to each x € €
there correspond unique left and right units r(x), d(x) respectively, and
(r(x),x), (x,d(x)) € 42; r(x)x = x = xd(x).

(i) (x,y)E4? & d(x)=r(y)

(i) (%), (,2)E%? & (xy,2), (x,y2)E 49 and (xy)z =x(yz)

(iv) i’=id, (i(x),x), (x,i(x)) € 99, i(x)x = d(x), xi(x)=r(x).

DEFINITION 2.2. A measured analytic groupoid 4, u is a groupoid
¢ which is also an analytic Borel space, together with a measure p such
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that
(i) Y°€B(9YxY9
(ii) The maps m: 49— 9, i: 94— Y, d,r: §— U are Borel.
(iii) (Quasi-invariance of u ).
(@ ixp~p
Set F*=r"'(s), s€ U. For x €,9, set T*: F*®¥— F'® T*(y)=
xy. Let u = f pidru(s) be a decomposition of u with respect to r,
U

r«p. Then
(b) There is a ryu null set NC U, such that x €9, d(x) € N,
r(x) €N > Tip®~p™.

2.3. It is always true that d,u ~r,u. p is symmetric if du =
r«u. There are always symmetric measures in [u], for example p +
iypu. We write g =r,pu.

Set F,=d'(s),s€ U. Letu= f wdd i (s) be a decomposition

U

of u with respect to d, d«u. For x €Y, set T,: F,oy— Fuy, T:(y)=
yx. It follows that there is a null set N'C U such that x € 4, d(x) € N,
r(x) €N = Toeph) ™~ Hae-

If Uy,C B(U) is conull, then 4|, ={x € 9: d(x)E Uy, r(x)E Uy}
with the restriction of the measure u is an analytic measured groupoid
called an inessential contraction (i.c.) of 4.

Notice ¥?=¥,, * 4. We always put the fibre product measure u @
on 94%.

2.4. A groupoidis principal if x,y € 4, d(x)=d(y), r(x)=r(y) >
=y. For any groupoid ¥, the associated principal groupoid P(%9) is
{(u,v)EUXU:u~v}. P:9—P(9), P(x)=(r(x),d(x)), induces on
P(%), P+p the structure of a measured analytic groupoid ([15] Theorem

6.8). Wewrite & =P,u. Letu = f M..di (u, v) be the decomposi-
P(%)

tion of u with respect to P, and set I',, = F* N F,.
By [15] Theorem 6.8, there is an i.c. of ¢ on which

2.4.1 I,Lu = ] . /,Lu,vdd *I«LM(U), My = f ,’Lv,udr*#u (v)
d(F*") r(Fu)

2'4‘2 ’I;'/'L'J(X) ~ l'l’l,d(X), T;f‘l'd(x),l ~ Mr(x)e
VxeY t~r(x)eU.

243 [ | wddepr@di@)= | | pdron)da ).
U d(F“) U r(Fv)
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A symmetric measure u such that u* u, etc. satisfy 2.4.1-2.4.3 on
all of ¢ will be called strictly quasi-invariant.

25. ForECU,set[E]={s€U:3¢€%d(¢é)=sr1(¢)EE} [E]
is called the saturation of E and is analytic whenever E is. E € B(U)is
negligible if [E] is null.

DEerFINITION 2.6. Let 4, w; i=1,2, be measured analytic
groupoids. A strict Borel homomorphism 7: 4,— %, is a Borel map =
such that

() (xy)EYP > (m(x), m(y) € 9 and w(xy) =7 (x)m(y).

7 induces a map 7: Uy, — U,

(i) E € B(Uy,), E negligible > 77 (E) null.
This definition is relaxed as follows:

A Borel homomorphism 7: 4,— %, is a Borel map which is a strict
homomorphism on some i.c. of 4,. (7 is not required to be everywhere
defined.)

An almost Borel homomorphism 7: 4,— %, is a Borel map defined
a.e. on %, such that

{(x,y) € GP: (m(x), m(y)) € 62 and m(x)7(y) = m(xy)}

is u® conull in 99.
A homomorphism is normalised if 7 .&,~ 1, and singular if
a(Im7)=0. Homomorphisms are frequently called cocycles.

The example which motivated the study of analytic groupoids is of
course the following:

Let G be a lcss.c. group and S an analytic Borel G space with
quasi-invariant measure ». Then S X G, v X Haar is an analytic meas-
ured groupoid, where

d(s,g)=sg r(s8)=s (s8)(sgh)=(s,gh), i(s,8)=(s88™")

In particular if K is a closed subgroup of the l.c.s.c. group G there is a
correspondence between the groupoid K\G X G and the group K. (C.f.
[14] p. 280). Moreover, if H is another l.c.s.c. group there is a
correspondence between conjugacy classes of continuous homomorph-
isms A: K— H and similarity classes of strict Borel cocycles r:
K\G X G — H. This is constructed as follows:

Given a homomorphism A: K — H, let a: K\G — G be a Borel section
of the projection map with a(K)={e}, [3] Lemme 3. Define
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m(A,a): K\GXG—H,7(A a)(s,g)= A(a(s)ga(sg)"). Upto simi-
larity 7 (A, «) is independent of the choice of a; conversely a strict Borel
cocycle m: K\G X G — H defines a homomorphism A.: K— H by
A,(k)=m(K, k). A, depends only on the similarity class of = and is
clearly Borel, hence continuous by [2] p. 23.

In [10] Mackey defined the kernel of certain cocycles 7: S X H—> G
(where S is an ergodic H space) as a virtual subgroup of H, i.e. as an
ergodic H space. This concept can be generalised to the case of an
arbitrary normalised Borel cocycle 7: §,— %,, where ¥, are analytic
measured groupoids. We shall sketch here only that part of the theory
relevant to our problem. For further details we refer to [16].

Let H be a lcs.c. group, S an analytic Borel H space with
quasi-invariant measure v, and 9, u an analytic measured groupoid. Let
7:S X H— % be a normalised Borel cocycle, strict on an i.c. K of
S x H. Set X(m)=S *,,% with fibre product measure w (7). Define
an almost action of H on X(m) by

(s, &)h = (sh, (s, h)'¢) (s,h)E K.

Now

o) = [ wdus)
w©(m)h = L TE9 W Oy (sh)
~ L Ty (sh)
= wrodne)

whenever h is such that (s,h) € K a.a. s €S. Therefore w () is almost
H quasi-invariant.

This almost action of H is called Ker 7. Notice that it is not in
general ergodic. In fact if we define D: X(7w)— U, D(s, &) = d (&), we
see that H leaves the fibres of D invariant so that Ker 7 cannot be
ergodic unless Im 7 = {pr}, i.e. unless ¥ is a group G.

According to [10] a cocycle 7: S X H — G has dense range if Ker 7
is ergodic. More generally, we make the following definitions:

DeriNiTION 2.7. 7 has dense range if D is an ergodic decomposi-
tion of Ker w. 7 has closed range if Ker 7 is smooth. 7 is surjective if
7 has dense closed range.

This is motivated as follows: the range closure of a Borel cocycle
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m: S X H— ¥ is defined in [16]. The condition that D be an ergodic
decomposition of Ker 7 is equivalent to requiring that ¢ be the range
closure of 7. In the case in which ¥ is a group we have the following:
(c.f. [10] §7).

ProrosiTION 2.8. Let H, K, G be l.c.s.c. groups and suppose K is a
closed subgroup of H. Let A: K — G be a continuous homomorphism.
Then A has dense (resp. closed) range if and only if each associated
cocycle w(A,a): K\H x H— G has dense (resp. closed) range, where
a: K\H — H is a Borel section with a(K) = {e}.

Proof. This is a straightforward calculation using Theorem 1.5, c.f.
[17] Propositions 1V, 2.1, 2.2.
The kernel we have defined may be thought of as the ‘left

kernel’. It is sometimes convenient to deal instead with the ‘right
kernel’ defined as follows:

X*(mw) =S *;,9, with fibre product measure w *(7).
(s, £)h = (sh,ém(s,h)) (5,6)E X*(7m), (sh)EK

Corresponding to D: X(w)— U we have R: X*(w)— U, R(s,¢) =
r(¢). The H equivariant isomorphism X (7)— X*(7), (s, &) (s, &7Y),

shows that these constructions are equivalent.
We shall need the following result:

LEmMA 2.9.

w(m)= f f Ao X ft oty (t')dji (1)
v JrF)
and
0*(m= | Axuddon @)z
U d(F')

are decompositions of w (), o *(7) with respect to D, R respectively, where

v= f Ad@(t) is the decomposition of v with respect to 7.
U
Proof.
[ ] Awedran@dao
u Jrry

- f f A X pdd  n ()G (F) by 243
U d(F")
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=f Ao X whdgi (t") by 2.4.1
U

= w(7)
and similarly for o*().

2.10. Quasi-equivalence of G spaces. In dealing with nonergodic
G spaces (in particular in connection with kernels) a notion weaker than
that of isomorphism is useful. Let S be an analytic Borel G space and
let I be the unit interval. S X I becomes a G space if we define
(s,a)g =(sg,a), sES, a€l, g€ G. Let S, S’ be analytic Borel G
spaces. S is quasi-equivalent (q.e.) to S, if there is a G isomorphism
T:SXI—S8"XI where SXI, S'XI are G spaces as described
above. Roughly speaking, this means that S and S’ have the same
ergodic components as G spaces but not necessarily with the same
multiplicities. Ergodic quasi-equivalent G spaces are necessarily G
isomorphic. This corresponds to the notion of quasi-equivalence for
von-Neumann algebras. The application of quasi-equivalence in the
context of kernels of cocycles is indicated by the following result, which
we shall not prove here.

THEOREM 2.11. Let w: S X H— 4 be a normalised Borel cocycle
and let A:4§—% be a normalised cocycle which is also a
similarity. Then Kerm is g.e. to Ker Ar.

REMARK 2.12. Let Z be an analytic Borel space with measure v.
Up to a null set, Z is Borel isomorphic to one of the following types:

(1) J,, an atomic space with n atoms, n € Z* U {0}

(2) Jo=1, the unit interval with Lebesgue measure

3 J.,.=1UJ,neZ" U{0}

We use J to denote any of these types J,.

Now suppose that S, S’ are G spaces and that S X J is G isomorphic
to S’. Thensince J XI=1I we have § Xx I =8’X I and hence S, S’ are
g.e. G spaces.

The following known result ([17] Proposition B.6) is useful in this
context:

ProrosiTION 2.13.  Let X be an analytic Borel space with measure .,
up to a null set isomorphic to I. Let Y be an analytic Borel space and let
p: X —Y be measurable. Let u =f wydp «(n)(y) be a decomposition

Y

of wu with respect to p. Suppose that for a.a. y the w, are of the same type
J. Then there is a measure theoretic isomorphism T: X —Y X J with
p =4qT a.e., where q: Y X J— Y is projection.
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3. Transitive actions of product groups. In this section
we take up the original problem and investigate (a)—(c) of the introduc-
tion in turn. Recall that our aim is to describe ergodic actions of a
product group N X H in terms of N and H separately. The reformula-
tion of this problem required in (a) is clear: since transitive actions of
N X H correspond to closed subgroups K C N X N we seek to describe
such subgroups in terms of closed subgroups (transitive actions) of N and
H separately. The algebraic solution of (b) is simple: the ‘twisting’
referred to in the introduction is in this case a homomorphism. The
topological problem is complicated by the possibility that the projection
of K on H, K,, may not be closed. We give a complete solution of the
problem only under the assumption that K, is closed. Finally we take up
(c) and reformulate our results in terms of transitive actions. The final
description, which will be generalised to the ergodic case in 4 is contained
in Theorem 3.12.

We begin by giving an algebraic description of subgroups of a direct
product. This description is due to Mackey; as far as we are aware it
does not appear in the literature.

THEOREM 3.1. Let N, H be groups. Let K,, L, be subgroups of N
with L, normal in K; and let K,, L, be subgroups of H with L, normal in
K,. Suppose ¢: K,/L,— K,/L, is an isomorphism. Let p;: K;— K,/L,
denote the projection maps. Then

A(K,, Ky, ¢) ={(n, k) E N X H: ¢px(h) = p:(n)}

is a subgroup of N X H.  Moreover all subgroups of N X H are obtained in
this manner.

Proof. We leave this as an exercise for the reader.

We turn to the topological part of the problem, namely the
characterization of closed subgroups of a direct product of lc.s.c.
groups. A partial answer is given by

THEOREM 3.2. Let N, H be l.c.s.c. groups and let K C N X H be a
closed subgroup. Define K, L, ¢ as in Theorem 3.1. Then L,, L, are
closed in N, H and K,, K, can be given l.c.s.c. topologies so that the
injections i,: K,— N, i,: K,— H are continuous and ¢ is a topological
isomorphism. If, for example, K, is closed, this topology coincides with the
one induced by N.

Proof. 1t is clear that L,, L, are closed in N, H. K/L, is a l.c.s.c.
group and
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K,— K/L,, h’_’(d)(pl(h))’h)

is an isomorphism. This induces a l.c.s.c. topology on K.

Similarly, K,— K/L,, n»(n,¢ '(p/(n))) is an isomorphism and
induces a l.c.s.c. topology on K.

With these topologies i,, i, are clearly continuous. If K, is closed
then i, is a continuous homomorphism onto K, topologized as a subspace
of N, hence by the closed graph theorem [9] p. 213 a homeomorphism.

To show that ¢ is a homeomorphism it is sufficient by the closed
graph theorem to show that ¢ has a closed graph. Since i, X i,: K, X K,
— N X H is continuous, K is closed in K, X K,. K is saturated with
respect to L, X L., therefore the image of K in K,X K,/L,XL, is
closed. Thisimage (with the order of factors reversed) is the graph of ¢.

We would like to know the circumstances under which the sub-
groups A(K,, K, ¢) of Theorem 3.1 are closed. One possibility is that at
least one of K,, K, is closed:

THEOREM 3.3. Let N, H be lc.s.c. groups. Let L, be a closed
subgroup of N and let K,, L, be closed subgroups of H. Let K, be a
subgroup of N which has a lc.s.c. topolegy so that i;: K,— N is
continuous. Suppose L; is normal in K. Let ¢: K,/JL,— K,/L, be a
topological isomorphism. Then A(K,,K,, ¢) is a closed subgroup of
N X H.

Proof. By Theorem 3.1, A(K,, K,, ¢) is a subgroup of N X H.

Let K, be the closure of K, in N. Regard ¢ as a continuous
homomorphism K,/L,— K,/L,. The graph of ¢,

G(d)={(u,d(u)) € Ky/L, X IZI/LI}
is closed. (p.X p\)"'(G(¢)) is closed in K, X K,.
Therefore (p, X p,)"'(G(¢)) is closed in H X N.  On reversing fac-

tors we have precisely the set A(K,, K, ¢). O
If N is compact, this result is complete:

ProposITION 3.4. Let N X H be a direct product of l.c.s.c. groups
and suppose that N is compact. Let KCNXH be a closed
subgroup. Then K,, the projection of K on H, is closed.

Proof. This is a standard compactness argument.

When neither K, nor K is closed in N, H the subgroup A(K,, K-, ¢)
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of N X H may or may not be closed:
ExamrLE 3.5, N=H =R, K,=K,=0Q, L,=L,={0}, ¢ = id.

A(K}, K, ¢) is not closed.
ExampLE 3.6. N =H =R, 8 €R irrational.
K={nB+mnB+n+m)ERXR: nm €Z}

K is closed but neither K, nor K, is closed.

In the case in which K, is closed, Theorems 3.2 and 3.3 give a
complete solution of (b) of the introduction, that is a description of all
possible K CNXH in terms of subgroups of N and H and a
homomorphism between them. We now turn to (c) and reformulate this
description in terms of group actions.

DEerFiNiTION 3.7. A closed subgroup of a product of l.c.s.c. groups N
and H is reduced if K, = N, K,=H. A reduced subgroup K C N X H is
representable if there are a l.c.s.c. group G, and continuous homomorph-
isms A;: N— G, A;: H— G with dense range so that the N X H action
on G given by g-(n,h)= A,(h)'gA(n) is transitive with Stab{e}=
K. More generally a subgroup K is representable if it is representable
regarded as a subgroup of K, x K.

Now with the notation of Theorem 3.2 with K, closed, set G =
IZl/L_l. As in Theorem 3.2 we have a continuous map ¢:: H,— G. Let
¢.: K,— G be projection. Consider the action of K,x K, on G given
by g-(nh)=d¢:(h)'gh(n), g €G, (nh)EK,x K, This is clearly
transitive and Stab {e} = A(K,, K,, ¢) = K. Therefore K is represent-
able. Notice that Ker¢, = L,, Ker¢,= L,.

We next show that representable subgroups are defined by N X H
actions of a special form which we call models.

DermNiTION 3.8, Let N, H, G be lc.s.c. groups. Let S, S, be
standard N, H spaces with quasi-invariant measures v, v,
respectively. Let 7 S, X N— G, 7,: S, X K — G be strict Borel cocy-
cles with dense range. Define an NXH action on 2=
2(S, 7,8, m,G)=85, X85, XG:

(x,y,8)n = (xn,y,gm(x,n))  (x,y,g)EX, n€EN
(x,y,8)h = (x,yh, m(y, h)'g) h € H.

An N X H action of this form will be called a model and be denoted by
M = M(S,, 7, S,, 7, G). We always put the measure class [v, X v, X
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Haar] on 3. It is clear that this class is invariant under the N X H
action.

The next result shows that representable subgroups give rise to
model actions.

THEOREM 3.9. Let K C N X H be a representable closed subgroup of
the product of l.c.s.c. groups N, H defined by continuous homomorphisms
A;: K, — G for some l.c.s.c. group G. Let a;: K\N— N, a;: K;\H — H
be Borel sections of the projection maps with o;(K)=e. Set m =
m(A,a)asin 2. Then M(K\N, m, K;\H, m,, G) is a transitive action of
N X H with Stab{K,,K,,e} =K.

Proof. This is a routine check from the definitions.

To pass to the ergodic case, we need to have a description of K,
which generalises to group actions. This is given by

ProposiTION 3.10. Let N, H be l.c.s.c. groups and let S be a standard
transitive N X H space defined by the closed subgroup K. Then the
standard quotients of S by the N and H actions are K,\H, K\N
respectively.

Proof. We prove the result for the N action.

We have a measure theoretic isomorphism K\N X H =
K\N x K, x K,\H, where we have the natural measure class on each
factor. The projection P: K\N X H — K.\H is N-equivariant. The N
invariant sets in K\N X K, are precisely the K, invariant sets in K,, so
that by Theorem 1.3 they are either null or conull. Hence P is an
ergodic decomposition of the N action.

We can now state our results in a form which can be immediately
generalised to the ergodic case.

ProrosiTION 3.11. Let KC N X H be a closed subgroup of the
product of l.c.s.c. groups. K is representable whenever K\N X H/N is
analytic, hence in particular whenever N is compact.

Proof. Immediate from 3.4, 3.8, 3.10.

THEOREM 3.12. Let N, H be l.c.s.c. groups and let K C N X H be a
representable closed subgroup of their product. Then there exist a transi-
tive standard Borel N space S,, a transitive standard Borel H space S,, with

quasi-invariant measures v,, v,, a l.c.s.c. group G and Borel cocycles
m: SiIXN— G, m,: $; X H— G, so that M(S,, m\, S,, 75, G) is the transi-
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tive action of N X H determined by K. S, m, G have the following
properties

(i) S. v, and S,, v, are standard quotients of S = K\N X H by the
H and N actions respectively.

(i)  m,, 7, have dense range.

(iii) 7, (resp. ) is surjective < S/N (resp. S/H) is standard.

(iv) Kerm, (resp. Ker m,) is q.e. to the N (resp. H) action on S.

Proof. The isomorphism of the N XH action on S with
M(S,, 7, S,, m, G) follows from Theorem 3.9, setting S, = H,\N, S, =
K,\H. The equivalence of measures follows from 1.1. (i) follows from
Proposition 3.10. (ii) follows from the definitions of 7; given in
Theorem 3.9 and Proposition 2.8. (iii) By Proposition 2.8 and the
definition of 7, 7, is surjective <& A, is surjective & K, isclosed. As
in 2.10, S/N = K,\H, and the result for 7, follows. The proof for 7, is
similar. (iv) follows immediately from the definitions of Ker 7, and of
quasi-equivalence, and the isomorphism of the N X H action on S with
M(S,, 71, Sy, m2, G).

REMARK 3.13. Notice that the condition that K, be closed is not
necessary for K to be representable. In fact it is not hard to show that K
is representable whenever it is normal in K, X K.

4. Ergodic actions of N <X H. The results of 3.11 and 3.12
were presented in such a way as to make sense in the properly ergodic
case. Indeed, if we merely replace the word ‘transitive’ by ‘ergodic’ the
results still have content. In this section we investigate (d) of the
introduction, namely to what extent these results remain true in the
ergodic case. Suppose N X H is the direct product of the l.c.s.c. groups
N and H and S is an analytic Borel N X H space with quasi-invariant
ergodic measure v. Guided by Proposition 3.11 we shall look for results
in the case in which the N action is smooth. The following modifica-
tions are necessary in Theorem 3.12: G is replaced by an analytic
measured groupoid ¢ and 2 = §, X §, X G is replaced by a suitable fibred
product S,*S,* 4.

We begin with a detailed description of the class of ergodic actions of
N X H which we will call models. Throughout N and H are l.c.s.c.
groups and S, S, are analytic Borel N and H spaces respectively, with
quasi-invariant ergodic measures v,, v,. % u is a measured analytic
groupoid, u symmetric, and 7,: S, X N — 4, m,: §, X H— % are normal-
ized Borel cocycles with dense range. We use the standard notation of
2 for ¢, u.

X(m,) = S,*,,,% with fibre product measure w (7).
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Define D: X(m,)— Uy, D(s,&)=d(§) as in 2.

By [14] p. 265, D «(w(m)) = f.

Set 2(Sy, 7, S», ma, §) = S, *;, p X (17,) with the fibre product measure
m =m(S,, m, S, 7, 9).

LemMa 4.1. 3(S,, 7, S5, m, 9) is in a natural way an analytic Borel
H space and m is quasi-invariant, whenever 7, 7, are Strici.

Proof. H acts on X () preserving w(,) asin2. Define an action
of H on 2 by (s,w)h =(s,wh) w € X(,), s €S,, h € H. This action
clearly makes X an analytic Borel H space.

To see that m is quasi-invariant it is sufficient to see that if

w(m)= [ wdiw

is the decomposition of w(r,) with respect to D, a, then w, *h ~ w, a.a.
u € U. This follows since D '(u)h C D7 '(u) and w(m:) - h ~ w(m).

LEMMA 4.2. Whenever m,, m are strict, 2 is an analytic Borel N
space and m is N quasi-invariant, moreover the actions of N and H
commute.

Proof. Our method is to exhibit X in a more symmetrical form:
(a) Alternative definition of X:
Clearly

2={(51,5,8)E S XS, X G: 7 (s)) = d(§), mis,) = r(€)}.

Let v, = f vidi(u), 1 = 1,2, be decompositions of v, with respect to 7,
i
@. Let P: 99— P(%), £ (r(£),d(€)) be the map of 4 onto its as-
sociated principal groupoid P(¥9). (cf.2.4). Let u =J' W..di (U, v)
P(9)
be a decomposition of u with respect to P, P,y = &. M, 1S @ measure
on I',, = P'((u, v)).
For u,v € U with u ~ v:
v, X viX u,, is @ measure on 7 '(v) X 75" (u)x T,

For A, € B(S.), C € B(%), the function

(u, v) P V(A )V i(A)u..(C)
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is measurable on P(%) with support contained in 3. Therefore m =
f vy X viX w,di(u, v) is a measure on 2.
P($)

(b) m=m:
The fibering of w(m;) with respect to D, g is

w(m) = fu LF) v2X p,,dr «(w,)(u)da (v) by Lemma 2.9.

Therefore

I

m

v ([ L v aadr(n) () di )

J,
f viX vIX w,dix(u,v) by2.4
U

I
3

(¢) == X*(m)*r5S, (with the order of factors altered).
This follows by symmetry, recalling that

X*(m)=8,%,,49 and R(s ¢&)=r(¢) SES, EEY.

There is a natural action of N on X *(s,) which extends to an N
action on X = X*(m)* S, preserving [m] exactly as the H action on
X(r,) is extended in Lemma 4.1. It is clear that the N and H actions
commute.

DEFINITION 4.3. M = M(S,, 7, S,, 7, 9) is the N X H action on
2(S,, m1, Sy, 71, 9) defined in Lemmas 4.1, 4.2 above, namely:

(51, 82, E)n = (sin, 85, &mmy(5y, 1)) SES, (€Y heH neN
(51,52, E)h = (51, $:h, To(52, h)7'E).
An action of this kind will be called a model.
Notice that in the case ¥ = G, al.c.s.c. group, these actions reduce to
the models of 3.8.

If 7\, 7, are only almost cocycles, then the maps 7, 7, are defined
a.e. S;, S,, so that the fibre product S,*S,* % may still be defined.

LEmMMA 4.4. If in Definition 4.3, m, and m, are replaced by almost
Borel cocycles, then M(S,, m,, Sz,_ 5, 9) is an almost N X H space.

Proof. By [14] Theorem 5.1, we may alter 7, and 7, on null sets and
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find conull sets E, € B(S, X N), E.€ B(S,X H), on which 7, 7, are
strict.

4.4.1 (s, 5., &)n  is defined whenever (s,n)€E€E,.
4.4.2 (s, 52, €)h  is defined whenever (s,, h)E E..
It is clear that
{(s;,80,E, 0 R)ESXNXH: (s,n)€ E,, (s, h) € E,} is conull in X.

It is easy to check as in Lemmas 4.1, 4.2 that 4.4.1, 4.4.2 define an almost
action of N X H on X and that m is almost quasi-invariant.

If m,, @, are not strict, Lemma 4.4 and 1.1 enable us to find a
standard Borel space 3 and an action M of Nx H on 3, almost
isomorphic to the almost N X H action of 2.4 on . Such an action will
again be called a model.

Lemmas 4.5-4.8 below are proved under the assumption that 7, 7,
are strict Borel cocycles. The results are equally valid, mutatis mutandi,
for the almost action M(S,, 7, S,, 7, §) obtained if 7, 7, are not strict
or the corresponding action M.

LEmMMA 4.5. S, v, and S,, v, are analytic quotients of 2 by the H
and N actions respectively.

Proof. We prove this for S, v,.

Since 7, has dense range, D is an ergodic decomposition of
X(m,). Let w(m):f w,dp (u) be the decomposition of w(7r,) with
respect to D, ga. For lajl.a. u€ U D' (u), w, is an ergodic H space.

Let q,: 2— S, be projection and let m = mdv,(t) be a decom-
position of m with respect to q,, v,. By [14] p. 226, fora.a.t €S, q:'(1),

m, is isomorphic to D ~'(7,(1)) X {t}, Wz
Therefore ¢, is an ergodic decomposition of the H action on X.

CoROLLARY 4.6. 2 is an ergodic N X H space.

Proof. By assumption N acts ergodically on S,. This together with
4.5 gives the result.

LEmMmA 4.7. 3/N (resp. 3/H) is analytic & m, (resp. m,) has
closed range.
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Proof. 2/N = X*(m)/N *8S,.
Therefore

3/N is analytic & X*(m))/N is analytic & i, has closed range.

LemMma 4.8. Kermr, (resp. Ker m,) is quasi-equivalent to the action
of N (resp. H) on X.

Proof. 'This follows immediately from the following general result:

PROPOSITION 4.9. Let X, Y, Z be analytic Borel spaces wiih proba -
bility measures A, u, v respectively. Letp: X —Z, q: Y — Z be Borel
maps such thatp ,(A)~ v ~ q«(n). Suppose there is a Borel action of the
Lcs.c. group G on X such that p"(z)GCp™'(z) VZEZ, and X is
quasi-invariant. Then (x,y)g = (xg,y) defines a Borel action of G on
F = X #, Y so that the fibre product measure A * u is quasi-invariant, and
this action is quasi-equivalent to the action of G on X.

Proof. That (x,y)g = (xg,y) defines a Borel action is clear; that
A *u is quasi-invariant follows as in the proof of Lemma 4.1.

By 212 gq'(z)=J, for some n€N, VzeZ Let Z =
{z€Z:q7'(2)=l.}, X, =p ' (Z,), Y.=q '(Z,), F, = X, %2, Y,

F = UF, and each F, is G invariant. It is therefore sufficient to
show that F, X I =X, X I Vn, where F, X I, X, X I are G spaces with
trivial actions on the second factors. By 2.13 there is an isomorphism
T.:Y,—2Z,%XJ, and pT,=q where p:Z,xXJ,—>Z, is
projection. Therefore F, = X, X J,, with trivial G action on F,. This
gives the result.

We are now able to state our generalisation of 3.11 and 3.12.

THEOREM 4.10. Let N, H be l.c.s.c. groups and let S be an analytic
Borel N X H space with quasi-invariant measure v. Suppose that S/N is
analytic. Then there exist an analytic Borel N space S, and an analytic
Borel H space S, with quasi-invariant ergodic measures v,, v,; an analytic
measured groupoid 9, w; and normalised Borel cocycles m:
S\ ¥N—>Y . S; X H— %, such that M(Sl, Ty, Sa, 72, 9) is isomorphic to
the action of NXH on S. S, m, 9 have the properties:

(i) S, vi and S,, v, are analytic quotients of S by the H and N
actions respectively.

(ii) 7y, 7, have dense range.

(ili) 7, is surjective. 1, is surjective & S/H is analytic.

(iv) Kerm, (resp. Kerm,) is g.e. to the N (resp. H) action on S.

Proof. 'This is the content of the remainder of this section.
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Construction of the groupoid 4. The following general result is
used at various points of our argument. The proof is related to that of
[14] Theorem 6.17.

PROPOSITION 4.11.  Let Y, u be a measured analytic groupoid and let
X be an analytic Borel space which is also algebraically a groupoid. Let
T: Y — X be a surjective Borel map such that

i) (xy)EXYP=>3(EM)E Y® such that T(¢)=x, T(n)=y.

(i) (Em)EYIS(T(E), T(n)E XY and T(E)T(n)=T(én).

(iii) The fibre measures u* are strictly quasi-invariant and

Tu)=Tw) > Tipu"~Tipn"  Vu,veE U,
Then X, T.(u) is a measured analytic groupoid.

Proof. It is routine to check that all the groupoid operations on X
are Borel.
Clearly [T 4] is invariant under iy, the inversion on X.

Let g =f w,dT . be a decomposition of g with respect to T,
Ux
T .
Define A* = f - Tip'dw,(s), u € Ux. By direct integration one
verifies T

Ton =j AT o ().

Ux

By (iii), A“ ~ T,u* Vs € T'(u). For x € X, pick £ € T"'(x). Then

TiA O ~TiTpu®®~ T~ A" where T*(y) = xy, y € F&®,
Thus T,u 1s a quasi-invariant measure on X.

CorOLLARY 4.12. Suppose that in the situation of 4.11, (iii) is
replaced by

(iti) The w" are strictly quasi-invariant and Yu,v € Uy u ~ v,
Tu)=T(v) > 3EEY with T(()€ Ux and d(¢)=u, r(¢§)=v. Then
(i) is automatically satisfied.

Proof. Suppose T(u)= T(v). Pick £ €Y such that T(¢{)€ Uk,
d(¢)=u,r(€)=v. By 4113, Tou’ ~TiOT " =T p" since TTO =
id

We need some results about the stabilising subgroups of a group
action. Let G be a l.c.s.c. group and let X be an analytic Borel G
space. The stabiliser in G of a point x € X is known to be a closed
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subgroup o(x)C G, [1] p. 16. Let X (G) denote the set of closed
subgroups of G. Z(G) can be given a separable compact Hausdorff
topology [6] and hence is also a standard Borel space. The action of G
on 2(G) by conjugation is jointly continuous, [1] p. 68. The map
o: X —2(G) is Borel and G equivariant, [1] 1.58.

Returning now to the situation of Theorem 4.10, we simplify matters
with the following lemmas:

LEMMA 4.13. There are analytic quotients S,, S, for the H and N
actions on S so that after removing an N X H invariant null set from S, S is
analytic and

(@) The spaces S,, S, are analytic Borel N X H spaces, where the H
action on S, and the N action on S, are trivial.

(b) The projection maps p; are Borel, N X H equivariant and surjec -
tive.

Proof. Find by 1.1 a standard quotient S| of S by the H action,
which is an ergodic N space. Let H act trivially on S{. The projection
map p; is a.e. defined, Borel and almost N X H equivariant. By [14]
Theorem 3.6 we may remove an N X H invariant null set Y from S so
that S — Y is analytic, and find a Borel N X H equivariant map p;:
S—Y—> S sothat py=pja.e. Removing an N X H invariant null set
from S, pi1 may be assumed surjective. S/N is an analytic quotient S, of
S by the N action. S, is clearly an analytic Borel H space.

From now on we assume S, p, S are as in Lemma 4.13.

LEMMA 4.14. Let o: S — %(N) assign to each point of S its stabilis-
ing subgroup in N. By removing an N X H invariant Borel null set from S
we may assume that S is analytic and that there is a Borel N equivariant
map &: S,— 2(N) such that o = ap,.

Proof. o(s)=o(sh)Vs €S, h € H Therefore o induces a Borel
map &: S, — 3(N) such that 6p,(s) = o(s)a.a. s €ES. Since p, and o are
N equivariant, & is almost N equivariant. Removing an N invariant
null set E from S, and altering & on a null set we may assume S, is
analytic and & is Borel and N equivariant. p;'(E)is Borel, null, N x H
equivariant, and has analytic complement in S, therefore may be

removed.
From now on we assume o, & are as in Lemma 4.14 and write o

for 4.
Set o ={(t,o(t)n): t €S,,n € N}. 4 is given the structure of an
algebraic groupoid by defining:

d(t,o(t)n) = tn, r(t,o(t)n) =1, (to(@n)'=(@no(n)n™),
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(t,o()n)(tn,o(tn)n’)=(t,a(t)nn’) for tES,, n,n' € N.

We write s,, s, for p,(s), p.(s) respectively if s € S.

LEMMA 4.15. There is a conull Borel Set S* C S, so that sf, = A |
is an analytic Borel space. (For the definition of o °|s; c.f. [14] p. 265,
290).

Proof. P(SXN)={(s,0(s)n):s€S,n € N} may be identified
with the image of S X N in § X § under the Borel map P: (s, n)— (s, sn),
and is therefore an analytic Borel space.

By von Neumann’s selection lemma there are a conull Borel set
STC S, and a Borel map q: ST— S with

piq(t)=t tESH

B: A, — S XS, B(t,o(t)n)=(q(t),q(t)n), is well defined and injective.
Set

A={(s,sn)eESXS:s€S,nE€N,s,,s;n €S%}
C=P(q(ST)XN)

A and C are analytic and B(«,)= C N A.
Therefore B™' induces an analytic Borel structure on .

PrROPOSITION 4.16. &, is an analytic measured groupoid with meas -
ure v, on the units S7.

Proof. We seek to apply 4.11. Set A =S XN |71y T: A1— A,
T(s,n)=(s;,o(s)n). T is surjective.

BT(s,n)=(q(s)), q(s))n). Therefore BT is Borel, hence so is T.

We check the conditions of 4.11:

i)  ((o@n), (o)) AP & 1'= . ((q(1),n), (4(t)n,n")
ed® and T(q@),n)=(a(t)n); T(q@)nn')=(no(tn)n’)=
(t,o(t)n’).

@) ((s,n),(sn,n)EA® > (T(s,n), T(sn,n"))e AP and
T(s,n)T(sn,n')= T(s,nn").

(iii) Let A denote the natural measure on &/;. The measures A*
are quasi-invariant Yu € p7'(S7).

Suppose u, v € p;'(S¥) with T(u)= T(v).

A* is in the restriction of the Haar class on N to A“=
{(nEN:(u,n)E A} T(u)=T(v) > A* = A*. Therefore T, A* = T, A"
_ 411 now shows that &, T4\ is a measured analytic groupoid, and
TiA=Tyv=r,.
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A, 1s algebraically a groupoid suitable for our purposes and we could
at this point proceed to define the cocycles . However these cocycles
would not necessarily be normalised, a condition which is crucial for the
fibre product construction of §,* §,*%. This difficulty is circumvented
by restricting & to a suitable subset of S, (c.f. [14] p. 265 and p. 290)
which will ensure that r, and m, are normalised.

The appropriate set is a Borel set which intersects cach N orbit on S,
at most couniably often. More precisely: Let G be a l.c.s.c. group and
let 8 be an analytic Borel G space with quasi-invariant measure
v. E € RB(S)isa canonical section for the action of G on § if there 1s a
conull Borel set S*C S, and a Borel map T: $*— E with T(s) = sg for
some g € G, Vs € §*, and so that E intersects each G orbit at most
countably many times.

REMARK (1). Set w = T4(v). Since the relation induced on E is
countable, by {4] Theorem 1, for A € B(E):

w(A)=0 w([A])=0e »(T'(A]) =0 A is negligible {2.5),

i.e., the null sets of w are precisely the v negligible sets of E.

REMARK (2). It is not hard to prove that if there is a canonical
section for the G action on S, and if 7 C S 1s conull, then there 1s a
canonical section contained in T.

The existence of canonical sections for actions of l.c.s.c. groups was
proved by the author in [17] whenever the map o:S—>2(G) is
continuous. The result has since been extended in [S5] to the general
case.

Choose a canonical section Z C S¥, a conull Borel subset $**C S,
and a Borel map a: $7*— N, so that @(s)=sa(s)EZ Vs € S7*. Set
A= s, § = |;.

ProrosiTion 4.17. 4 is an analytic measured groupoid with mea-
sure @ y(v,) on the units Z.

Proof. This follows from Theorem 6.17 of [14].

We modity the measure on % to ensure that it is symmetric. and use
the standard notation of 2.

The cocycles m, and ..

The following Lemma is useful:
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LeEmMMA 4.18. Let X, Y be standard Borel spaces and let Z be an
analytic Borel space. Let F: X XY —Z be a Borel map. Suppose
A € B(X XY), and that the projection of A on X is X. Suppose that

(% y)(xy)EA = F(x,y)=F(x,y).

Thenf(x)=F(x,y),(x,y) € A, is a well defined Borel function X — Z.

Proof. 1t is clear that f is well defined. Suppose E € B(Z).
f(E)=P(F(E)NA), where P: X X Y — X is projection. Therefore
f7(E)is analytic. Also X —f(E)=f"(Z - E) and so is analytic. By
the separation theorem [1] p. 6, f'(E) is Borel.

ppi'(ST*)) is analytic and conull in S,, so by von Neumann’s
selection lemma there is a conull Borel set S5 C S, and a Borel map
6:8,— S so that

p6(t)=t and &(t)Epi(ST¥) Vie S3.

Define €: S5 — N, €(t)=ap,8(t) and é: ST— Z, é(t) = ap,8(?).
LEMMA 4.19.  €.(v,) is absolutely continuous with respect to & (v,).
Proof. For E € B(Z):

avi(E)=0= v(E)=0=>v(p(E)=0= v(pi'(E))=0

= oxvllpi(E)) =0
> P1*6*V2([E]) =0 ayp14x641(E)=0> é,v(E)=0.

Now modify «, € to maps a’, €' so that @ 4(v,)~ € 4+(».) as follows:
find y: Z— N such that y(z)=e, z € supp € «(12); zy(z) € supp € «(v2).

’

Set a’'=vyoa, € =vyoce. Write a, € for a’, €.

4.20. Construction of m, and m,. Set L = S, X N|g.. L is an i.c. of
S, X N. Define 7: L > 9, m(u,n)=(a(u),o(a(u))a(u)'na(un)). m
can easily be checked to be Borel (c.f. 4.17). Moreover a@(u)€ Z and
a(u)a(u)'na(un)=a(un) € Z, so that = (u,n) € %.

Set K=S,xH|s,, K isani.c. of S;xH. For (th)EK:

p26(th)=th = p,8(t)h = p,(6(t)h).

Since S$,=S/N, 8(th)€ 8(t)hN. Let A ={(t,h,n)E K X N: §(th)=
8(t)hn}. Write B(t, h) for any element of N such that (t,h, B(t,h)) € A.
A is Borel. Set F: K X N— 4, F(t,h,n) = (é(t),0€(t)e(t) 'ne(th)). It is
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easy to check that F(t,h,n)€ 9. Moreover one verifies that (¢, h, n),
(t,h,n)EA => F(t,h,n)= F(t,h,n'). Therefore by Lemma 4.18 and
the definition of the Borel structure on ¥, w,(t,h)=

(€(t), 0 (€(r))e(t)'B(t, h)e(th)) is Borel.

LEmMA 4.21. @i L — % and m,: K — % are strict normalized Borel
cocycles.

Proof. (a)

(u,n)eL,(un,n'yE L = m(u,n)m(un,n')
=(a(u),o(a(u))a(u) 'na(un))(a(un), o(a(un))a(un)'n'a(unn’))

=(a(u),o(@(u))a(u)'nn’a(unn’)) = m (u, nn')

(b)

(L h)EK, (th,h) E K > mi(t, h)m(th, h')

= (€(1), o (€(1))e(1)'B (1 h)e(th))
X (€(th), o (&(th))e(th) ™' B(th, h")e(thh"))

= (&(r), o (€(1))e(t)'B(t, h)B(th, h")e(thh")).
Now
S(thh")y= 8(th)h'B(th,h')= 8(t)hB(t,h)h'B(th,h")
= 8(t)hh'B(t,h)B(th,h").
Therefore we may choose B(t,hh’)= B(t,h)B(th,h'), so that
m(t,hh') = (€(t), o (€(t))e(t)'B(t, h)B(th, h")e(thh'"))
= my(t, h)m(th, h').

(C) ﬁ;*V) = &*V] -~ ,(I and 7}2*1’2 = E*Vz"" &*V) by Lemma 4.19.
Now define 2 = §,*S,* % asin4.1. % isan almost N X H space by
Lemma 4.4.

Isomorphism of S with 3. We show that the N X H space S is
almost isomorphic to the almost N X H space 3.

4.22.  Construction of the almost isomorphism P.Let J = S X N |53,
and A ={(s,n) € J: (8pAs))n = s}. Now
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P:0p:(s) = ps) Vs € py'(S7),
8p.(s) E sN Vs € p;'(S%).
Therefore the projection of A on p;'(S%)is p>'(S%). A is Borel. Set
F:J—S, F(s,n)=qée(s,)e(s;)'n. F is Borel and (s, n), (s;n)EA >
s = 8pi(s)n = 8pAs)n’' > nn'"'E o (s) = o(q(€(s1))e(s:)") = F(s,n) =
F(s,n').
Write k(s) for any element of N such that (s, k(s))€ A. By
Lemma 4.18, f: p3'(S%)— S, f(s) = q(é(s.))e(s,) 'k (s), is Borel.
Set T=p;'(S5)Npi'(S%*). T is conull in S Let R=
SH*+S§*¥+x 4G C3. R isconull in 2. Define P: T— R,

P(s) = (si, 823 €(52), o (€(s2))€(s52) 'k () (51))-
We check that P(s)E€ R:

sET > s, ESTH, s, ESH.
ma(s2) = €(s2), mi(s1) = a(sy),
r(€(s2), o(E(s:))e(s2) 'k (s)a(s) = €(s2),
d(€(s2), o (E(s2))e(52) 'k (s)a (51)) = E(s2)€ (52) "k (s)x(s1)
= pi8(s:)k (s)a(s) = pi(8(s2)k (s))a(s)) = pi(s)a(s) = a(s)).
P is Borel © p,Xp,X(B-P):S—>8§X85X5%XS is Borel &
s P (g€ (s2), g€ (s2)€(s2) 'k (s)a(s))) is Borel & s (qé(sy), f(s)a(s))) is

Borel.
g, € f, a are already known to be Borel, hence so is P.

LEmMA 4.23. P: T — R is bijective.

Proof. For (x,y;€(y), o(€(y))m)E X note that
4.23.1 a(x)=é(y)ym, ie., x=¢e(y)ma(x)"
Define Q: R—T by

Qx,y;€(y), o(e(y)m)=8(y)e(y)ma(x)™.

Since o(£(y)) = o(p.8(y)e(y)) = o(6(y)e(y)) this is well defined. For
seT:

QP (s) = Q(s1, 52 €(52), o (€(s2))€ (52) 'k () (1))
= 8(s,)e(s2)e(s) 'k (s)a(s)a(s) " = 8(s)k(s) =s.



544 CAROLINE SERIES
For (x,y;é(y),o0(E(y))m)ER:

PQ(x,y; é(y), o(&(y))m) = P(8(y)e(y)ma(x)™).
p(8(y)e(y)ma(x)™") = pid(y)e(y)ma(x)”
= €(y)ma(x)”
=X by 4.23.1
pA8(y)e(y)ma(x)")=p.8(y) =y.
Also since  Op,(8(y)e(y)ma(x)")=8(y) we may take
k(8(y)e(y)yma(x)"')=e(y)ma(x)"'. Therefore
P(8(y)e(y)ma(x)") = (x,y; &(y), o(€(y)e(y) 'e(y)ma(x) a(x))
=(x,y;€(y), o(E(y))m).

LEMMA 4.24. Pisalmost N equivariant and almost H equivariant.

Proof. (a) s€T = 8(s,)€ T and

P(8(s:))k(s) = (p18(s2), 523 €(52), o (€(s2))€ (52) " ap18(s2))k (5)
= (P18 (s2)k(s), 52
€(s:), o (€(s2))e(s:) ' a (p18(s52))ap.6(s2) 'k (s)a(pi8(s2)k (5)))
= (51, 525 €(52), o (E(52))€ (52) "k (s)ax (51))
= P(s).

Therefore s€T, meEN, sm€ET > P(sm)= P(8p(sm))k(sm)=
P(8(s,))k(s)ym = P(s)m.

(b) sSET,heH, sheT

= €(s52)€(52)7'B (52, h)e(s:h) = p,8(5,)B (52, 1 )e(s5h)
= p:8(s;h)e(s;h) = €(s,h)
= P(s)h = (s1, 525 €(52), 0 (€(s52))e(52) 'k () (5)))h
=(s), $;h;
(€(s52), o (€(52))€(52) ' B (52, h )€ (5:h)) (€ (52), T (€(52))e (52) 'k () (1))
= (81, $;h; €(s:h), a(E(s:h))e(s:h) "B (52, h) 'k (s)a (5)))
= (51, ;5 €(5:h), o (€(s:h))e(s:h ) "k (sh)a(s,)) = P(sh)
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the penultimate equality following because

sh = 8(s))k (s)h = 8(s.)hk (s) = 8(s:h)B (s, h ) 'k (5)

so that we may take k(sh)= B(syh)'k(s).
To complete the proof that P is an almost isomorphism we need

ProrosITION 4.25. P.v~ m.

Proof. We have q,P =p, where q.:2—S, is projection and
P: T— R satisfies P(sn)=P(s)n; s,sn€T and P(sh)= P(s)h;
s,sh € R. Therefore v, = p,,v = q.+P,v. By [14], p. 266, q..m = v,

so it is sufficient to show that if m = f mdv,(t) and v = f vdvs(t) are
S2 S2

decompositions of m with respect to p,, g, respectively then m, ~ P v,
aa. teSs.,.

The level sets of ¢, are the intersections of N orbits with R ; hence
the level sets of g, |y are orbits and g is an ergodic decomposition. The
measures v, m, are quasi-invariant by [1] p. 72. Hence P.m, is
quasi-invariant and therefore equivalent to v, a.a. t.

We are finally in a position to prove the main result:

Proof of Theorem 4.10. Construct S,, S,, m, m, % 2 as in
4.11-4.21. The isomorphism of the N X H action on S, v with
M(S,, 71, S,, 72, G) follows from 4.23, 425, 424 and 1.1.

(i) This is clear by construction.

(i)) We show r, has dense range.

As in 4.25, g, is an ergodic decomposition of the N action on . Let
R: X*(m)—Z, R(u,&)=r(¢). By [14] p. 266, R (w(m))=ru =
a. Letw(m)= L w,di (v) be a decomposition of w (7r,) with respect to
R, f.

q:'(t) = {t} X (S, *44F:,) where F;,,= d'(é(t)), and by [14] p. 266 m,
is the measure w;(ya.a. t € Z. Moreover the almost N actions on q;'(),
m, and R 7'(&(?)), we. may clearly be identified. Hence R is an ergodic
decomposition of X *(m)).

(iii) As in 4.25, the almost N action on g;'(t), m, is essentially
transitive so that 7, is surjective.

r, is surjective & X(m,)/H is analytic

& S, *(X(m,)/H) is analytic
& 3/H is analytic & S/H is analytic.
(iv) This is Lemma 4.8.
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5. Concluding remarks.

RemMaRk 5.1. If N is compact any action of N is smooth. In
particular, if S is an ergodic N X H space, S/N is analytic (compare
Proposition 3.4). Moreover in this case ¥ may be taken to be a l.c.s.c.
group G and the fibre product S,*S,* % reduces to a direct product
SiX 8, xG. S, is a transitive G space. Let one of the stabilising
subgroups be J. All stabilising subgroups of the N action on S are
conjugate. (Consider o: S — X(N) which is constant on H orbits and
use the fact that 3(N) is smooth, [1] Appendix A.) Let L be one such
stabiliser with L CJ. Then L is normal in J and we may take
G =J/L. The proof of 4.10 is simplified considerably in this case.

ExampLE 5.2. Let N, H be l.c.s.c. groups, S, an ergodic N space,
S,={pt}, G=H, 7:S$XN—->G -a Borel cocycle with dense
range. Then the N X H action M(S,, 7, pt,id, H) restricted to N is
Ker m, often called the skew product of S; with G by #. If H is compact
and abelian, these actions are the compact abelian group extensions of
Parry.

REMARK 5.3. For an N X H action to be representable, the N
action need not necessarily be smooth. (c.f. Remark 3.13). E.g.:

ExamMprLE 54. N =H =R; G =T? the two dimensional torus;
S,=S,=pt; m: R->T, m(t) = (e, e’™); m: R=>T?, my(t) = (e”, e’™)
where 1, 27, 27ra are independent over Q.

The R X R action on T?, M(my, 7, T?), is a model but neither /N
nor 2/H is analytic.

More generally whenever S, = S, = {pt.} representable actions are
those of the form M(m,, m,, G) where 7;: N— G and m,: H— G are
homomorphisms with dense range. Such actions are closely related to
actions with pure point spectrum.

REMARK 5.5. ¥ cannot always be replaced by a l.c.s.c. group
G. At the opposite extreme we have the following example, in which ¢
is principal:

ExampLE 5.6. Let Z act on T by rotation through an irrational
angle . Let 4={(6,0 +na)ETXT:0E€T,n€Z}; $,=85,=T; N=
H =1Z; let the actions of N, H on T be rotations by «a; and let
(0, n) = m,(0,n) = (6,6 + na).

Then Z32={(0,06+na)ETXT:0€T,n€ Z}(6,6 + na)(n,n,)=
(6 + nyay, 0 + na + ny,a;). It is clear that there is no group such that
3 =TXTxG. Notice that in this case both 3/N and 2/H are analytic.
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Example 5.6 can be regarded as a fibering of T with itself over an
equivalence relation on itself. More generally whenever ¥ is principal,
M is a fibering of S, and S, over an equivalence relation on Us. The
general model is a combination of this situation with that of Example
5.4. Above each point of the space S,*S, is a subset I',, of ¢ (c.f.
2.4). In particular if (x,y) € S,* S, and 7,(x) = 7,(y) = u then if we set
Q(x,y)={s€3:si=x,5=y}, on(x)XoH(y)CNXH fixes Q(x,y)
and the action is of the type described in 5.4.

REMARK 5.7. % isin general not unique. This is seen for example
by the arbitrariness in the choice of Z on p. 41. % is however unique up
to similarity.

It would be of interest to give a complete description of closed
subgroups along the lines of 3 and to see to what extent this generalised
to the ergodic case.
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