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POLYHEDRALITY OF INFINITE
DIMENSIONAL CUBES

THOMAS E. ARMSTRONG

There are several definitions o! polyhedrality for infinite
dimensional convex sets. We consider each of these in turn and
ask whether infinite dimensional cubes are examples. We find
that only the concept of polyhedrality put forth by Alfsen and
Nordseth admits infinite dimensional cubes as examples. In
some sense this concept of polyhedrality is singled out as the only
one which properly generalizes the finite dimensional notion of
polyhedrality.

1. Cubes. By a cube we shall mean the unit ball of an
Λί-space of Kakutani with unit or any affine isomorph. All cubes are
affinely equivalent to the unit ball, Π(X), of <# (X) for a suitable compact
Hausdorff space X or to D+(X) = D(X) 0 % +(X).

By a compact cube we mean a cube which is compact under some
Hausdorff locally convex topology. D(X) is compact iff ^(X) is a dual
Banach space by a theorem of Dixmier [5], [17]. The predual of ^(X) is
unique by a theorem of Grothendiek, [21, Theorem 27-4-1]. X must be
hyperstonian by another theorem of Dixmier, [6]. Consequently, X is
extremally disconnected or Stonian, [6], and the signed normal measures,
Jf(X), on X must separate ^(X). The unique predual to ^(X) is the
L-space Jf(X) [21, Theorem 27.3.1]. The topology on O(X) making it
compact is the weak topology σ(cβ{X),N{X)). (In general by σ(S, A)
we mean the coarsest topology on the set 5 rendering all functions in A
continuous on S).

An alternative characterization of a compact cube is as the unit ball
of L°°(SyΣ, μ) for a localizable positive measure space. This is because
L00 is an M-space with unit which is the dual of Lι(S,Σ,μ) because of
localizability, [20]. Hence the unit ball of L00 is a compact
cube. Conversely, if X is a compact Hausdorff space with D(X) a
compact cube ^(X) may be represented, via Kakutani's representation
theorem for L-spaces, as L\S,Σ,μ) for a localizable positive measure
space. In fact 5 may be taken to be a dense open set in X, Σ the locally
Borel sets and μ a positive Radon measure on 5 built from normal
measures on X. This was done in essence by Dixmier in [6].

One example of a cube which isn't in general compact is the unit ball
of the J3(S,Σ) of all bounded Σ-measurable functions on the measurable
space (5,Σ). B(S, Σ) equipped with the uniform norm is an M-space
with unit which is σ-reticulated or Dedekind σ-complete, [21]. It may
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be represented as ^(X) for a compact Hausdorff X. The Dedekind
σ-completeness of ^(X) is equivalent with the property of X known as
basic disconnectedness. X is basically disconnected, [9] or ω-
extremally disconnected, [21], iff the closure of every Baire open set is
open, iff the interior of every Baire compact set is compact.

Every basically disconnected space X is totally disconnected in that
it possesses a base of clopen sets. A compact Hausdorff space X is
totally disconnected iff it is the Stone space of its Boolean algebra of
clopen sets iff D(X) is the norm closed convex hull of its set, £(D(X)), of
extreme points. Such cubes will be called Boolean cubes.

2. Polyhedrality. If anything should be an infinite dimen-
sional polyhedron a compact cube should be. We might also expect that
a Boolean cube be an infinite dimensional polyhedron under a suitable
concept of polyhedrality. We don't believe that the other cubes should
be called "polyhedral" since they don't have enough extreme
points. We examine the concepts of polyhedrality extant and determine
whether or not cubes are examples. We shall be primarily interested in
compact cubes.

Phelps, in [18], defines two classes of polyhedra which contain
Choquet simplexes. These are the a -polytopes and the β-
poly topes. An a -poly tope is defined as finite codimensional slice of a
Choquet simplex. A β-polytope is defined as an affine image of a
Choquet simplex under a map with finite dimensional fibers. Phelps
shows that no infinite dimensional centrally symmetric convex compact
set is either an α-polytope or a β-polytope. Hence we have the
following proposition.

PROPOSITION 1. No infinite dimensional cube is either an a -polytope
or a β-polytope.

REMARK. Phelps shows in [18] that the polyhedra of [2] are
β -poly topes.

Before we examine other notions of polyhedrality let us recall, from
[1], the notion of a face of a convex set S. A convex subset F of 5 is a
face of 5 iff whenever {x, y}C5 and α E (0,1) are such that ax +
(1 - a)y EF then {JC, y} CF. Thus F contains any closed line segment in
S for which it contains an interior point. The extreme points, ξ(S), are
precisely those JC E 5 with {x} a face of S. Both φ and 5 are faces of
5. Faces are preserved under arbitrary intersection and under increas-
ing unions. The faces of 5 form a complete lattice when ordered by
inclusion. There is for any A C S a smallest face of 5, face(A),
containing A. If x E S, face(x) is defined to be face({x}). Any face of a
face of 5 is a face of S. If / is an affine function on 5 the set
{/ = sups/} C 5 is a face of S. In particular if H is a supporting
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hyperplane to 5 in the ambient vector space then H Π S is a face of 5
and all faces arise in this fashion. If 5 is given an affine topology τ
rendering convex combination continuous the τ-closed faces of 5 are an
important object of study. τ-closed faces include φ and 5 and are
closed under arbitrary intersection. The set of τ-closed faces of 5 form
a complete lattice when ordered by inclusion. \i ACS clτface(Λ)
denotes the smallest τ-closed face of S containing A. If x G A let
clτface(jc) = clτface({jc}). If r is To all elements of ξ(S) give rise to
τ-closed faces of 5. If / is a τ-continuous affine function an S the face
{/ = sups/} is r-closed but in general not all τ-closed faces of 5 arise in
this manner.

Klee, in [11], defined a convex set S to be polyhedral, or Klee-
polyhedral, iff S Π M is a polyhedron in M for every finite dimensional
affine variety M in the ambient vector space. In [16], Lindenstrauss
defines a Banach space to be polyhedral iff its ball is Klee-polyhedra. In
[16], Lindenstrauss shows that no dual Banach space is
polyhedral. Thus, no infinite dimensional compact cube is Klee
polyhedral. In [15], Lazar shows that a Lindenstrauss space E (i.e. one
whose dual is isometric to an L-space) is polyhedral iff it contains no
subspace isometric with ^(JVUH) (where NU{°°} is the one point
compactification of the positive integers N). Furthermore Lazar shows,
in [15], that the Lindenstrauss space E is polyhedral iff the unit ball of Ef

has no proper infinite dimensional σ(E\ E) closed faces.

PROPOSITION 2. (a) No infinite dimensional cube is Klee polyhedral
(b) // X is an infinite compact Hausdorff space then ^(X) isn't

polyhedral.
(c) A Lindenstrauss space E is polyhedral iff it contains no subspace

isometric with ^(X) for any infinite compact Hausdorff space X.
(d) IfX is an infinite compact Hausdorff space % (X) has a subspace

isometric to

Proof, (b). The positive face of the unit ball of M (X) = [<£ (X)]'
consisting of positive Radon measures on X of norm 1 is known to be
σ{M{X), ^(X)) closed, is infinite dimensional since X is infinite, and is
proper. This suffices, in view of Lazar's results, to establish (b).

That (b) implies both (a) and (d) is immediate hence both (a) and (d)
are valid.

(c) If a Lindenstrauss space E contains a subspace isometric with
^(X) where X is an infinite compact Hausdorff space it must contain a
subspace isometric with ^(N U {<*>}), since ^(X) isn't polyhedral. This
establishes one implication of (c). The other implication is immediate.

To proceed further with our examination of polyhedrality of cubes
we need to examine the facial structure of cubes. In particular we are
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interested in norm closed faces of cubes, and compact faces of compact
cubes. We are interested in faces F which are centrally symmetric in
that there is a center c such that the reflection, 2c - F, of F in c is equal
to F. Finally, we are interested in determining face(jc) and clτface(jc)
where τ is either the norm topology, n, or a compact topology on the
cube.

To facilitate the discussion of the faces of a cube it is convenient to
use the notion of an order interval in a partially ordered set (X, S ) . A
closed order interval is of the form [α, b] = {x E X: a S x g b) for
{a,b}CX while an open interval is of the form (α, b) = {JC E X: a < x <
b}. By an interval we shall mean a subset Y such that Y is both an
increasing and a decreasing family in X and such that if {α, b} C Y then
the closed interval [a, b] is a subset of Y. In general open intervals may
fail to be intervals only because they aren't increasing or decreasing. If
the partially ordered set has the Riesz Interpolation Property so that
x < fe, and y < b implies the existence of a z with x g z <b and
y ^ z < b and x > a, y > a implies the existence of a z with a < z ^ x
and a < z ^ y then open intervals are intervals. If X is a lattice it has
the Riesz Interpolation Property. This is the case for X = <#( Y) with Y a
compact Hausdorff space.

LEMMA 3. Let X be a compact Hausdorff space and let D denote the
unit ball of ^(X).

(1) // ACBCX the order interval DA,B = {f\χA -χA< ^ / ^
XB ~ XBC} is a norm closed face of D. All norm closed faces of D arise in
this fashion.

(2) If F is a face of D, B = U{{/= 1}:/E F}, and Ac =
U {{/ = - 1}: f £ F} then A is a closed set in the open set B and ΏA,B is
both the norm closure of F and the smallest norm closed face of D
containing F. If C is a closed subset of the open set D and DC,D = ΏA,B

then C = A and D = B.
(3) Any face of D is an order interval.
(4) The closed order interval [/, g] in D is a face of D iff f =

XA ~XAC and g = χB ~XBC where A CB are clopen sets.
(5) The centrally symmetric faces of D are precisely the faces DA,B

with A CB clopen sets.
(6) // D is compact under a separated affine topology τ the r-closed

faces are just those faces Π\A,B with A CB clopen sets.
(7) Let f E D, A = {/ = 1}, B = {/ > - 1}. Let n denote the norm

topology on D and r a separated compact affine topology on D.
(a) c
(b) c

(8) IfF is any face of D the norm closure ofF is a face of D and, if τ
is a separated compact affine topology on D, the τ-closure of F is a face
ofΏ.
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Proof. (3) If F is a face of • and {/, g} CF then \[f v g + / A g] =
i[/ + g]GF. Consequently {fvgjΛg}CF. This shows that F is both
increasing and decreasing in the order of ^(X). If / ^ g are in F and
f^h^g for some ft E D the reflection, (/+ g ) - ft = ft', of ft through
§[/+g] also satisfies f^h'^g. Consequently £[ft + ft'] = £[/ + g] E F
so {ft, ft'}CF. Thus, since ft is arbitrary, F contains the entire closed
order interval [/, g]. This suffices, by the arbitrariness of / and g, to
establish (3).

(1) That DΛ,B is uniformly closed is immediate. Let / E OΛ,β be
equal to afx + (1 ~ α)/2 for some α E (0,1) and {/h/2}CD. We have

/, = α' 1 / - (1 - a)a~ιf2 * [aιf - (1 - α ) * " ^ ] v ( - 1)

^ [a-χχA - a~ιχAc - (1 - α ) α M 1] v (- 1)

= XA - XA<

Similarly fx^χB -χB< so fγ E GA.B In a similar fashion we may show
that f2 E DA,B- Since, /,/i,/2, α are arbitrary GΛ,B is a face of D. This
establishes the first assertion of (1). The second assertion of (1) follows
from (2).

(2) We first establish the uniqueness assertion. If D Λ β = OQD
then χA-χAc^f^χB-χBc iff χc - χcc ^ / ^ χD - χD, for / in
^(X). Since χA — χA

c is upper semi continuous and χB — χB< is lower
semi continuous χA — χAc is the pointwise infimum of DA,B? by known
"betweenness" theorems for semi continuous functions on
compactspaces. Similarly χc - χc< = inf(DCD). This easily implies that
XA ~ XAC = Xc ~ Xcc hence that A = C. Similarly B = D.

Under the ordering of ^(X) F may be considered as either an
increasing net or a decreasing net. We will show that inf(F) = χΛ — χA^
and that sup(F) = χB — χBc. It follows from this that ΠΛ,B is the uniform
closure of F. To see this observe that if ft E DΛ,B and / ^ g are in F
then /v(ftΛg) is in F. Dini's lemma implies, since ftΛg is the
pointwise infimum of / v (ft Λ g) as / decreases in F, that ft Λ g is in the
closure of F for any g in F Since ft is the pointwise supremum of ft Λ g
as g increases in F Dini's lemma shows that ft is the uniform limit of
ftΛg as g increases in F. Thus ft is in the uniform closure of F and,
since ft is arbitrary, GΛ,B is in the uniform closure of F Since F C Q Λ β

so is its uniform closure. This establishes our assertion.
To show that inf(F) = χA ~ χA< we show that A =

Π{{/= 1}:/EF}. Since Ac = U{{/= -1}:/EF} this will establish
both this statement and the assertion that A is closed. Let x E X and
f E F with f(x)< 1. We set f0 = f and inductively define a decreasing
sequence {/0, * , /„} C F which terminates when /n (x) = - 1. If
{/i>' * >Λ-i} have been defined and /k_!(x)> - 1 set /* = /k_i+ 1 - |/k-i|
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and Λ = / k - i - l + |/k-i|. We have U / ^ / , . ^ / ^ - 1 and /*_, =
§[/*+/*] E R T h us, since F is a face of D, {f , / J C F If / k(x)> - 1
then Λ-I(JC)>0 and Λ-i(x) - Λ (x) = 1 - Λ_I(JC). Similarly,
f,-i(x)-fl(x)=l-fM(x) for all l S / S k . We have l-/*(x) =
[1 - /^(x)] + [/k-i(x) - Λ(x)] = 2[1 - Λ-i(x)]. By induction we have 2 >
l-/ k (x) = 2*[l-/0(x)]. Consequently, if / k ( x ) > - l , then fc<
Iog2(2[l--/o(jc)]~1). This shows that the inductively defined sequence
{/o, * ,/n} terminates in at most n = [Iog2(2[l -/oίx)]"1)]* 1 s t e P s with
/„(*) = - 1 . Thus, we have x E Ac i f /(x)<l for some f E F. This is
enough to show that Λ = Π {{/= 1}:/E F} hence that χA - χA< =
inf(F).

In a similar fashion we may show that Bc is the closed set
Π {{/ = - 1}: / e F}, that B is the open set U {{/ > - 1}: / G F}, and that

sup(F) = χB - χB<=. This establishes (2).
7 (a) is easily established by the same means as we used to

establish 2.

(4) If [/, g] is a face it is norm closed. By the proof of 2, [/, g] is of
the form DΛ,B with χA - χA< = inf([/, g]) = / and χB - χB< = sup([/, g]) =
g. Thus χA - χA< and χB - χB< are continuous, hence A CB are clopen
sets.

(5) j^et F be a symmetric face of D with center γ. The norm
closure, F of F is a centrally symmetric face of D with center γ. It is
immediate that face (γ) = F but face(γ) CF so F = F. Consequently F
is norm closed and of the form DA (B with χA - χA< = inf(F) and
XB ~XB< =sup(F). Since F = 2γ-F χB - χB< = suρ(2γ - F) =
2γ - inf (F) = 2γ - (χA - ^ A . ) . Thus, 2 γ = ^ B - XB< + XA ~ XA< =
2χA -2χBc. Since γ is continuous A and B c are clopen sets.

If A CB are clopen sets and χA - χA* ^ / S χB - χB< it is easily seen
that the reflection, /', of / through γ = χA - χB* also satisfies χA - χA< ^
f = χB ~ XBC- Thus DΛ,B has center γ.

(6) If r is a compact Hausdorff affine topology on D it is of the
form σ{%(X), Jί(X)) where Jf(X) is the predual of «(X). Considering
^(X) as L\μ) and ^(X) as Lx(μ) for some localizable measure μ, r is
of the form σ(L00(μ),L1(μ)). Any bounded monotone net in L°°(μ) is
σ(Lx(μ),Lι(μ)) convergent. Consequently if F is a r-compact face of
D, {suρ(F), inf (F)} CF. When F is a τ-compact face of D it is a norm
closed face of D hence suρ(F) = χB - χB<= and inf (F) = χA - χA< where
A CB. Since {χA -χA^χB -Xβc}Cf CD, A and B are clopen sets.

If A CB are clopen sets the face DΛ,B =
[(XA~ XAc) + 2Π+]Π[χB-χBc)-2O+]. Since • is τ-compact so are
2D+ and DA.B

7 (b) If D has a compact topology X is extremally dis-
connected. If A is closed in the open B then A0 and B are clopen
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sets and DA°,B is a τ-closed face of D which is the smallest containing
•AB = clnface(/). This shows that clτface(/) = ΠA°,B.

(8) That the norm closure of any face is a face follows from (2). If
F is a face let DA,B be its norm closure with A closed in the open set
B. If r is a compact topology on D we must show, after the proof of (7),
that DΛ°,β is the τ-closure of DΛ,B which will show that it is the τ-closure
of F. Now T = σ ( « ( X ) , ^ ( X J ) and all of the elements of Jf{X) are
normal measures which annihilate sets of first category in X. If μ E
Jf(X) then μ(dA) = μ (A\A°) = 0 = μ (B\B) = μ(dB). The increas-
ing net DΛ,B has limit χB - χB

c> Consequently the limit, for all μ in

N(X\ as / increases in OA,B of I (xn - X§c) * fdμ is zero. Thus

XB ~ X(Bf E DA,β. Similarly χA<> - χ{A°r E ΠA,B. Finally, a similar
analysis shows that when h E DΛ

( ),B then h is the r-limit of / v ( h g) as /
decreases in ΠA,B and g increases in DΛ,B Consequently, DΛ,B

 =
 ΠΛ°,B

which establishes (8).

REMARKS. (1) If D is an infinite dimensional cube there are faces
which aren't norm closed and norm closed faces which aren't centrally
symmetric. The second assertion follows from the existence of open
sets in X which aren't closed. The first assertion follows upon the
observation that a strictly increasing sequence of open sets {Bn} exists in
X. The faces Fn = D φ β r ι are norm closed and increasing so U *=1 Fn is a
face. If F = U*=iF n were norm closed it would be OΦ,B where
B = U ; = 1 J 3 n . One may find gn£Fn with_gn not identically 0 in
jBn\Bn-1. The function g = Σ;=12"ngn lies in F but not in any Fn.

(2) One criterion for the total disconnectedness of X is that • be
the norm closed convex hull of ξ (D). Another characterization in terms
of faces of D is that any norm closed face be the norm closure of an
increasing union of symmetric faces.

(3) Any centrally symmetric face of a cube is a cube. The
compact faces of a compact cube are compact cubes.

We now return to our examination of the polyhedrality of
cubes. In [19], Rajagopalan and Roy introduced a generalization of the
notion of a β -polytope. They called the members of this class of convex
sets generalized polytopes. We shall call them generalized β-t

polytopes. Under their definition a compact convex set is a generalized
β -polytope iff for any point x there is a maximal representing measure,
μx, for x such that, in the convex compact set Jίx of representing
measures for x, face(μx) = Mx. Such μx are called maximal core repre-
senting measures. They show that all β -polytopes are generalized
β-polytopes and that no infinite dimensional centrally symmetric com-
pact convex set is a generalized β -polytope. The following proposition
follows immediately.
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PROPOSITION 4. No infinite dimensional cube is a generalized β-
polytope.

Lau, in [12], introduces a generalization of the notion of
an a -poly tope. These are called L -poly topes. Up to afϊine
homeomorphism L-polytopes are obtained in the following
manner. Take the unit ball O of a dual L-space with its weak* topology
(Such balls could be called compact octahedra). Select {hu *m

9hn} a
subset of A (O), the continuous affine functions on O. The subset of
O given by Π"=1{/ι{=0} is an L-polytope. Lau shows that all
a -poly topes are L-polytopes. He also shows that no maximal proper
face of an L-polytope is centrally symmetric. If K = Π |*al {hi = 0} is an
L-polytope and KQ is a proper closed face of K. Lau shows, after Lazar,
that there is a proper closed face Δ of O such that K0 = Δ Π K Since
Lau also shows that all proper closed faces of Δ are Choquet simplexes,
Ko is an a -polytope. Consequently, from Phelps' result on a -polytopes,
if 5 is a compact convex set with an infinite dimensional proper closed
centrally symmetric face it isn't an L-polytope. These facts make the
proof of the following proposition simple.

PROPOSITION 5. No infinite dimensional cube is an L-polytope.

Proof. We need only consider compact cubes D. Let X be a
compact Hausdorff hyperstonian space with D the unit ball of %!(X)
under its compact Hausdorff affine topology. Select A an infinite
proper clopen subset of X. By (5) and (6) of Lemma 3, the proper closed
face ΏΦΛ of D is centrally symmetric hence • isn't an L-polytope.

In [4], Bastiani introduced a notion of polyhedrality for convex sets
in a separated locally convex space (£, r). Of particular importance was
the case when r is the finest locally convex topology on E. In this case
all linear functional on E are continuous and any face of a convex set is
relatively closed. If 5 is a convex set and s E 5 the set cone(5, S) is the
smallest convex cone with vertex s containing S. If (£, T) is separated
and locally convex S is Bastiani polyhedral for τ iff cone(s, S) is r-closed
in E for all s E S. If cone(s, S) is r-closed so is its reflection,
cone(s,2s — S), through 5. The set cone(s, S)Γ) cone(s, 2s — S)Π S is
easily verified to be face (s). Consequently if 5 is τ-closed and Bastiani
polyhedral for τ every face of the form face(s) with s E S must be
τ-closed. We use these facts to establish the following propositions.

PROPOSITION 6. (a) No infinite dimensional cube is Bastiani
polyhedral for the norm topology.
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(b) No infinite dimensional compact cube is Bastiani polyhedral for
it's compact topology.

Proof. Suppose that the unit ball D of ^(X) is Bastiani polyhedral
for the norm topology. Let A be a compact Gδ in X and let / E D+

with {/ = 1} = A. We have face(/) = DA,X by 7 (a) of Lemma 1. If A
isn't a clopen set there are infinitely many nonempty θn = {1 - 2"n < / <
1 - 2~n~2}. For θn empty set gn = 0. For θn nonempty let gn E D+ with
||gn|| = 2-/2 and with supp(gn)^^. Let / = / - ΣUgn E <€(X). The
reader may verify that 1 ^ / ^ — 1. Thus / E D . Since f = f on A,
f^χA-χAc. Consequently /EDΛ,x SO /Eface(/). There is some
e > 0 with / + € ( / - / ) E D. Consequently / + e Σ:= 1 gn ^ 1 on X for
some e > 0 . In θn there is a point jtn with /(*„)+ e Σ*=igπ(xn)^
/(*„) + 6gπ (xn) ^ (1 - 2"") + e2"n/2, as long as θnέ φ. Consequently e ^
l-2~ n + e2~n/2 if 0n is nonempty. For all n with 0n nonempty e^=
2~n/2 xhu^ ^ i s empty if n>-21og 2 (e). Thus A is a clopen
set. Since all compact Gδ's in X are clopen sets X is ω-extremally
disconnected. Suppose that X is infinite so there exists a strictly
increasing sequence of compact-open sets {An: n E N}. The union of
this sequence is an open Kσ whose complement is a compact Gδ hence is
a clopen set. Thus U "=i An is compact. There is a finite integer m
with Am = U*= iAn. This contradicts the strict monotonicity of
{An:nE. N}. Consequently, X is finite. Thus, if the unit ball of ^(X)
is Bastiani polyhedral for the norm topology X is finite. This is
equivalent to assertion (a) of the proposition.

For (b) we note that if D is an infinite dimensional compact cube
with norm topology n and compact topology r there is by (a) an / E D
with face (/)£cln face (/) Cclτ face (/).

Alfsen and Nordseth showed, in [3], that the only Choquet simplexes
which are Bastiani polyhedral are the finite dimensional ones. Lau, in
[12], has established the same result for L-polytopes. To render
simplexes polyhedral Alfsen and Nordseth weakened Bastiani's condi-
tion and only required that for s an extreme point of the convex set S
cone (5, 5) be closed. This definition was made for S which are compact
for some separated locally convex topology r on the ambient vector
space but may be made for arbitrary 5. Such a convex set S will be said
to be Alfsen-Nordesth polyhedral for r. Lau, generalizing the result of
Alfsen and Nordesth for simplexes, shows in [12] that all L-polytopes are
Afsen-Nordseth polyhedral. We now establish the same result for
cubes.

PROPOSITION 7. (a) All cubes are Alfsen-Nordseth polyhedral for
the norm topology.
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(b) All compact cubes are Alfsen-Nordseth polyhedral for their
compact topology.

Proof. We let X be compact and Hausdorff. The positive
cone^+(X) is affinely homeomorphic to cone(e, D) for any e E £(•) for
the norm topology. To see this note that if e = χA - χA< for some
clopen set A, then /-» e •/+ 1 is an affine isometry of ^(X) carrying
cone(e,D) onto «+(X). If «(X) is the dual of Jf(X) then these maps
are σ{cβ{X\J{{X)) homeomorphisms as well. Thus, to establish a) we
need only show that ζβ+(X) is norm closed, which is immediate. To
establish (b) we need only show that 9Γ(X) is σ{ζβ{X\J{{X)) closed
which is well known.

Concluding remark. We see that the Alfsen-Nordseth criterion for
polyhedra is the only one extant which includes all cubes. It would
appear to define a universally acceptable class of polyhedra including
simplexes, L-polytopes and cubes. Dual to the L-polytopes we could
define a class of M-polytopes which are finite codimensional slices of
compact cubes. These are easily shown to be Alfsen-Nordseth
polyhedra and have in common with the L-polytopes only the finite
dimensional polyhedra. It would be interesting to determine whether
generalized β -polytopes or Klee polyhedra are Alfsen-Nordseth
polyhedral.
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