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FINITE GROUPS WITH A STANDARD COMPONENT
OF TYPE /4

LARRY FINKELSTEIN

In this paper, it is shown that if G is a core-free group
with a standard component A of type J4, then either A is
normal in G or the normal closure of A in G is isomorphic
to the direct product of two copies of J4.

l Introduction* Janko [17] has recently given evidence for
the existence of a new finite simple group. In particular, Janko
assumes that G is a finite simple group which contains an involution
z such that H = C{z) satisfies the following conditions:

(i) The subgroup E = O2(H) is an extra-special group of order
213 and CH(E) ^ E.

(ii) H has a subgroup Ho of index 2 such that HJE is isomor-
phic to the triple cover of M22.

He then shows that G has order 221 33 5 7.1Γ 23 39 31 37 43
and describes the conjugacy classes and subgroup structure of G.
In this paper we shall assume that J4 is a finite simple group which
satisfies Janko's assumptions and shall prove

THEOREM A. Let G be finite group with O(G) = 1, A a standard
component of G isomorphic to J4 and X = (AG). Then either X = A
or X = A x A.

Our proof follows the outline given in [6] and makes use of
two key facts; namely, that J4 has a 2-local subgroup isomorphic to
the split extension of E2u by Mu and that J4 has one class of ele-
ments of order 3 with the centralizer of an element of order 3 iso-
morphic to the full cover of M22. We also make use of the charac-
terization of finite groups with a standard component isomorphic to
ikf24 which was recently obtained by Koch [18].

2* Properties of J4* In this section, we shall describe certain
properties of J4 and its subgroups which will be required for the
proof of Theorem A. Most of these properties are found in [17]
and will be listed without proof. A will denote a group isomorphic
to /4.

(2.1) A has 2 classes of elements of order 2 denoted by (2L) and
(22). If t e (2J and E = O2(C(t))f then E is isomorphic to an extra
special group of order 213, C{E) = Z(E), O2t3(C(t))/E has order 3 and
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C(t)/OUC(t)) = Aut (M22). Moreover, if (β) e Syl3 (0>f8(C(t))), then </3>
acts regularly on E/Z(E). For xe(22), C{x) is isomorphic to a split
extension of 2£2u by Aut (ikT22) with C(a?) acting indecomposably on
Of(C(a0).

(2.2) A has one class of elements of order 3. If 7 6 A has order
3, then C(7) is isomorphic to the 6-fold cover of M22.

(2.3) A has two classes of elements of order 7. If deA has
order 7, then CA(8) = Z7 x Sδ and δ Φ h~\

(2.4) Let To e Syl2 (A). Then To has precisely one 2?au subgroup,
denoted by U. N(U) = £/# where Jί ^ ΛfM. The orbits of K on
U* are (2X) n *7 of order 7.11-23 and (22) Π EΓ of order 4-3-23.

In the above, U is isomorphic to the so-called "Fischer" module
for Mu. The following is an important property of the Fischer
module.

(2.5) Let (*) 1~-»J?~* y - > ί7~->l be an extension of l̂ Af* mod-
ules where R is a trivial module of dimension 1 and U is isomorphic
to the Fischer module. Then the extension splits.

Proof. Let fj and V be the F2MU modules dual to U and V
respectively. Then we have the extension (*) 1—> ΰ—> V—*R—>1.
It suffices to show that (*) splits. Since Z7 is not a self dual module
and since there exists precisely 2 nonisomorphic F2MU modules of
dimension 11 (see James [16]), U is isomorphic to the so-called
Gonway module [5]. Thus Mu has 2 orbits on (Ϊ7)#. If uλ and u2

are representatives of these 2 orbits, then CM^{u^ = Hoi (jBlβ) and
Cjfjws) = Aut (M12).

Since | F | = 212, there exists a vector veV — U such that i; is
fixed by a Sylow 23 subgroup S of ikί24. The orbit of Mu on (F)*
which contains v has order [ikf24: C ^ v ) ] and is not divisible by 23.
Therefore, by examining the list of maximal subgroups of M2i [5],
together with [Mu: CM2A(v)] ^ 212, we see that CMu(v) contains a sub-
group L isomorphic to M2Z. Consider the action on V of an M22

subgroup M of L. Then M has no fixed points on Ϊ7#, so in fact
Cψ(M) = (v). Therefore NMJM) ^ Aut (M22) fixes (v) as well. Finally
<L, NM2i(M)} = Mu centralizes (v) and the extension splits.

We shall denote by E2u M2i a split extension of E2u by Mu in
which E2n is F2ikΓ24 isomorphic to the Fischer module.

(2.6) Let M= UK be isomorphic to E2wMu with U = O2(M)
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and K = Mu. Then the classes of elements of order 2 and 3 of M
and the orders of the centralizers in M of ar representative X are
as follows

Glass |CUλ)| \CM(X)\

(20
(22)

(20
(20
(20
(20
(30
(30

2"

2U

2r

27

26

2β

25

23

221 33 5
219 32 5 7 11
217 3 7
217 3
215 3 5
2 ι 5 3 5
28 3S 5
2β 32 7

Moreover, if λέ e (3,) n K then CM(\) = CWλ^C^λ,.) with C*0O iso-
morphic to the 3-fold cover of A6, C^(λ2) = Zz x L2(7) and where

acts faithfully on C^(λ,), i = 1, 2.

Proof. Let λ be an involution of M — U, έ?lf έ?2, , #n the
orbits of CM(XU/U) on λC^(λ) and α* an element of ^ , i - 1, , n.
Then α̂  is conjugate to a5 in Λί exactly when i — j and also
ICjfίαJI = |C J f(λϋ') |/ |^i | . Now i ί has 2 classes of involutions with
representatives λ and 57 having centralizers in K of order 210 3 7
and 29 3 5 respectively. Noting that the action of K on U is dual
to the action of K on the Con way module, it is easy to see that
\Cu(X)\ = 27 and \Cu(η)\ = 26. Observe that U has 8 orbits on xCπ(X)f

each of which has length 16. Moreover an element of order 7 of
Cjf(λ) fixes 2 points of Cπ(X) and therefore must permute 7 of these
orbits. Since \CM(X)\ = |Cjr(λ)| |Cσ(λ)| = 217 3 7, it then follows that
CM(XU/U) acting on λC^(λ) has one orbit of length 16 and one orbit
of length 7-16 = 112 with X an element of the orbit of length 16.
This accounts for the classes (23) and (24). Similar reasoning ac-
counts for the classes (25) and (26). We already know from (2.4)
that M has orbits on U* of lengths 4-3-23 and 7-11-23 and thus
the classes of involutions of M are as described.

Let 7 and τ be representatives of the classes of element of
order 3 of K with CK(Ύ) isomorphic to the 3-fold cover of AQ and
Cκ{τ) = Z3 x L2(7). Clearly T and τ are representatives of the 2
classes of elements of order 3 of M. It suffices to determine the
orders of Cπ{y) and Gπ{τ). As before, we may appeal to the action
of K on the Con way module to obtain | CV{Ί) \ = 25 and | CJτ) \ = 23

as required.

NOTATION. If H is a simple group, then nH will denote a proper



44 LARRY FINKELSTEIN

n-ΐolά covering of H. If the multiplier of H is cyclic, then nH is
unique up to isomorphism. Also let ES2 SAβ be the group isomor-
phic to the centralizer of an element of order 3 of the class (3J of
E2u*M2i. Note that Ed2'SA6 is isomorphic to a 2-local subgroup of
6M22.

(2.7) The Schur multiplier of J4 is trivial.

Proof. See Griess [14].

(2.8) Aut (J4) ^ /4.

Proof. Let A = Ji and suppose that a e Aut (A). We may imbed
A in Aut (A) and assume by way of a contradiction that a $ A but
ap e A for some prime p. Set G = <A, α>.

By (2.4), we may assume that aeNG(U) where U is an 2?2u
subgroup of A, iV (̂*7) = UK = Etn Mu and if = Mu. Since Aut (if) =
K, we may further assume that NG(U) = Nβ(U)/U = (a) x JBΓ. It
is known [16] that C7 is an absolutely irreducible F2K module, hence
by a result of Schur, we have [a, U] — 1. Two cases now arise;
namely [a, K] = 1 and [α, if] Φ 1.

If [α, ϋΓ] Φ 1, then it is clear that a is a 2-element. Also the
fact that ΰ\{ U, a)) is a proper K invariant subgroup of U forces
ΰ\(U, a)) = 1. Hence (U, a) = E2i2 and K acts indecomposably on
{U, a). Without loss, we may assume that a is centralized by a
Sylow 23 subgroup of K. By arguing as in (2.5), it then follows
that Cκ{a) ~ M2Z. Therefore in either case, we have that Cuκ{a) ^
UK0 where Ko is an M25 subgroup of K.

Let 7 be an element of order 3 of Ko. Then Cκp) = Z3 x A5

implies that C (̂7) = E32 by (2.6). Also CA(J) ^ 6M22 and m2{CjΊ)) = 5
[4] gives O2(C (̂7)) ̂  C^(7). Setting U (̂7) =_C£(7)/Z(C^(7)) = ikf22, we
conclude that a centralizes a subgroup of CA(Ί) isomorphic to a split
extension of El6 by Aδ. But no nontrivial automorphism of Af22
centralizes such a subgroup [9] and therefore [a, CA(7)] ^ Z(CA(Ύ)).
Bv the 3-subgroup lemma, we then have GA{Ί) ^ CA{a). Since 7 is
inverted by an element of KQ <: CA(a), it follows that NA((7)) ^ C (̂α)
as well.

Finally, let (t) = O2(C (̂7)) so that C^(0 = E-NA((Ύ)) by (2.1),
where £; = O2(CA(t)) is extra special of order 213. Observe that CA(J)
acts irreducibly on E/(t}. Combining this with [CA{Ί), a] = 1 and
Cjs.(α) ^Uf)E>(t),we conclude that E ^ C^(α). Therefore we are
in the position where CA(a) ^ CA(t) and Cuκ{a) = i7iro or ?7if with
ίΓ0 = Λfjβ. But CA(t) contains a Sylow 2 subgroup of NA(U) implies
that Cuκ(a) - UK and this gives GA{a) ^ (ί/ίΓ, CA(t)). An easy argu-
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ment shows that CA(ά) is simple with CCA{a)(t) — CA(t). Thus by
Janko's theorem [17], \CA(a)\ = \A\ which of course gives A = CA(a),
a contradiction.

3* Preliminary results* In this section we present certain
technical results which are necessary for the proof of Theorem A.

(3.1) Let G be a group, A a standard component of G with
C(A) of 2 rank 1. Let S e Syl2 (N(A)). Assume that S <£ Syl2 (G) and
Z(S) ^ AC(A). Then [A, O(G)] = 1.

Proof. See Seitz [19].

(3.2) Let M be a group containing an involution z such that
C(z) = O(C(z)) x <z> x Z7ϋΓ where i£ ̂  ikf24 and ?7 is F2K isomorphic
to the Fischer module. Let V = (z, U) and N = JV( V). Then either

(i) zeZ(N) or
(ϋ) i\Γ = o(N) x TFif where W = (z)Y is special of order 22δ

with Z(W) = Z7 and where F is a homocyclic abelian group of order
222 invariant under K with F/U F2K isomorphic to U.

Proof. Assume that z £ Z(N) and let N - N/O(N). By (2.2),
the orbits of K on Z7* are ί* of order 1771 and xκ of order 276
with Cκ(x) = Aut (ikί22). Moreover both t and x are squares in UK,
hence s* Π U — 0 . Now the orbits of C(z) on F # are precisely

Orbit {z} tκ xκ (zt)κ (zx)κ

Length ϊ 1771 276 1771 276

Since z $ Z(N) and zN Π U — 0, zN must be a union of some of the
sets {z}9 {zt)κ, (zx)κ. But \zN\ is a divisor of |Zr12(2)| then gives
zN = zU.

Representing JV on zN = zU, we have \N\ = 2n\NH(V)\, hence
\N\ = 223|ilί24|. Moreover ί7 is generated by those involutions of V
not conjugate to z so that U<]N.. Assume that CN(U) = O(N)V.
Then N/V acts faithfully on TJ and is therefore isomorphic to a
subgroup of I/u(2). Let SeSy\lx{K) so that JV#(S) is isomorphic to
a Frobenius group of order lO l l . Since S fixes 2 points of zN, it
follows that I CHS) I = 2\Cz«β, S))\ = 23 11. Hence a Sylow 11 sub-
group of N/V has centralizer of even order which contradicts the
fact that a Sylow 11 subgroup of Ln(2) has centralizer of odd order.
We conclude that CN{U) properly contains O(N)V.

It is easy to see from the action of K on CN(U) that CN(U) =
O(N)W where W/U = E2i2. Furthermore, Cw(z) = F implies that
Z(W) = U and [s, T7] = ί7. Thus T7 is a special 2-group of order
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223 with Z(W) = U. We will in fact show that N = O(N) x WK.
To see this, observe that V(KN) covers N together with [VK, O(N)] =
1 implies that N = O(N)CN(O(N)). A simple argument establishes
that O2'(CN{O(N))) = WK and therefore N = O(iSΓ) x TOT. For the
remainder of the proof, we may assume that 0(N) = 1.

Consider the homomorphism φ: W—+U by φ(w) = [2, w]. It is
easy to see that φ induces an F2K isomorphism between W/V and
U. But then W/U is an F2K module which satisfies, the hypotheses
of (2.5) and thus W/U = F/ί7 x Γ/Z7 where Y/U is F 2 # isomorphic
to U. It remains for us to show that Y is a homocyclic abelian
group. Assume not. Then by the action of K on Y, Z{Y) = C/.
Let L be a subgroup of K isomorphic to Aut (Af22). It follows from
the properties of the Fischer module that | CY/U(L) | = | Cu{L) \ = 2
with CY/U(L) and Cπ{L) the unique proper L invariant submodules of
Y/U and Ϊ7 respectively. Let (yU) = CY/U(L) so that L normalizes
<j/, t/>. Since ?/ί Z{Y), 1 Φ[y, Y] <U and since L normalizes
[<τ/, U), Y] = [?/, F] we must have [#, Γ] = CΌ{L). This in turn
implies that [Y: Cγ{y)\ — 2. But L normalizes Cγ((y, U)) - Cγ(y),
hence Cγ(y)/U as well and this gives a contradiction.

(3.3) Let Y = E222 and M a subgroup of Aut(Y) such that
M=M1xMi with M^M^Mu. Then Γ - Γ ^ Y ; where [Y;, AT,] =
Yt and [Γ^M.J-O, i ^ j .

Proof. Let 7 be an element of order 23 of Aut(Γ). If 7 acts
regularly on Y, then CAut(r>O0 is isomorphic to GL2(2n) or is cyclic.
Otherwise dim (CF(7)) = 11 and CATlt(F)(7) ^ ^1023 x Lu(2). Let 7, eM,
be an element of order 23. Then it is clear that dim (Crfy)) = 11.
If we set Yi — Cγ{Ίό), i Φ j , then an easy argument verifies that
Y, and Y2 satisfy [Yi9 Mά] = 0, ί Φ j and [Yi9 Mt] = Γif i = 1, 2 as
required.

In the next result, we list certain properties of 2M22 which are
required for (3.5).

(3.4) Let D = 2M22, T e Syl2 (D). Then
( i ) D has 3 classes of involutions.
(ii) Z(T) has order 4 and contains representatives of the classes

of involutions of D.
(in) T has precisely 2 EZ2 subgroups, say F1 and F2. Each is

normal in T and self-centralizing in D. Also N(F1)/F1 = A6 and
N(F2)/F2 ~ S5.

Proof. See Burgoyne and Fong [4].

(3.5) Let Γ be a group with an involution z such that C(z) =
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O(C(z))D(z) with D = E(C(z)) and D/O{D) = 2M22. Assume further
that Γ has a 2-subgroup R* = {Rx x R2)(z) where R2 = 5" has type
2M22 and # = 1 ^ x R2^O\Γ). Then Γ = O(Γ)E(Γ)(z) withE(Γ)/O(E(Γ)) =
2M22 X 2ikf22.

Proof. By assumption and (3.4)(iii), J? has a normal subgroup
7 = V, x F 2 where F, <\ Rt and F, = Ed2, ί = 1, 2. If α is an in-
volution of i?, then m2(CΓ.(6t)) ^ 3 , i = 1, 2, gives maίC^α)) ̂  7.
Since m2(C(^)) = 6, it follows that zΓ Π R = 0 . Also all involutions
of j?* — R are conjugate to z which then implies that zΓ Π R* = z22*-
Since (?*.(«) 6 Syl2 (C(s)), we see that i2* e Syl2 (Γ). Furthermore by
the Thompson transfer lemma and assumption, z £ O\Γ) and R e
Syl2 (O2(Γ)). Let Λ = O\Γ).

We now examine the structure of C{D). Observe that CciD)(z) =
O(C(z))(z, ί> where <ί> = O2(D). By a result of Suzuki, C(D) has
dihedral or semidihedral Sylow 2 subgroups. Let Z e Syl2 (CΛ(D)) so
that <Z, ^> 6 Syl2 (C{D)). Since CΛ(«) 6 Syl2 (D) and Z(B) = CB(CB(z)) 6
Syl2 (CΛ(CR(z)))f we may assume that Z ^ E'(JB). Therefore ^ is ele-
mentary abelian by (3.4)(ii) and we have either <Z, >̂ = D8 and
Z = E,y or Z = <ί>. Let N = N(Z) and N -= N/Z. In either case,
(z) e Syl2 (C^(D)) and Cφ) ^ iSTiv(S) together imply that D _is a
standard component of N. By Theorem A [8] and (3.1), E(N) =
<5^>, Z(E(N)) has odd order and E(N)/Z(E(N)) = ikf22 x Λί22. Let
if = ί p f ) have components ^ and K2 with ϋΓf = K2 and KJZ{K^) =
M22. Then Z> = C^φ) and D/O(D) ^ 2ikf22 implies that K/O(K) =
2M22 x 2Λf22. Thus \Z\ = 4 and ΛΓ = O2/(C^(Z)).

Note that R <L K. Without loss, we may assume that Rt <= Kif

i = 1, 2. By (3.4iii), let F* and TFi be the 2 U782 subgroups of Rt

with C^ίF,) - 0 ( ^ ) 7 , , CKt(Wt) = OίϋΓ,)^, N^VdlG^iV,) ~ S5 and
NKt(Wt)/CXi(Wt) = A6, i = l,2. Set ΐ Γ ^ TFX x TΓ2, ikf^ JV(TΓ) and M =

Then J i n ίΓ= E(Mf) K)0(MΓι K) with S(Mfl K)/0(E(Mf] K)) =
x Λ . Since W\ - T72, C ^ T Γ ) - N((z, W)) - TΓC^). Also JKΓ =

with E î = ίΓ2 implies that C^n^ί^) involves Aβ. Hence by
(3.4iii), CM(Z) = (z) x 0(CM(Z))(D n M) where D n Af = E(CM{Z)) and
D Π M/0(D n l ) = Λ>. It now follows that D Π ϋί" is a standard
component of M and we have from Proposition 2.3 [7] and (3.1)
that M = 0(M)E_(MKz) with E(M)/0(E(M)) = A6 x A6. Furthermore

Π K) = E'ίM") then implies that £ = GW(E(M)) and this yields

Our next goal is to show that Z0(Γ) <\ Γ. Towards this end,
observe that W, Wx x F 2 , Vx x W2 and Vx x F 2 are the only JE72io
subgroups of R and that S5 is not involved in NΛ{W) whereas Sδ

is involved in NA(WX x F2), iVjί^ x W2) and ΛΓ^^ x F2). This
prevents W from fusing in Λ to W^x F 2, V\ x W2 or F x x F 2 and
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yields W <j NΛ(R). Now Z(R) contains representatives of the classes
of involutions of K by (3.4i), hence of A as well. Since Z ^ Z(R),
Z fails to be strongly closed in R with respect to A only when
Zλ Π Z(R) §£ Z for some λ e A. If in fact this happens, then we
may choose XeNΛ(R). But W <\ NA{R) implies that XeNΛ(W) and
Z<\NA(W) then gives Zλ = Z, a contradiction. Applying Goldschmidt's
theorem [11], we conclude that ZO(Γ) <| Γ. This in turn yields Γ —
O(Γ)N.

Since K = Ĵ iST) - O2\N), it suffices to show that [K, O(Γ)] = 1.
Recall that E(C(z)) = D = Cκ(z). Let T = CR(z) e Syl2 (D) and Z(T) =
<ί, tx}^Z{T)^Z{R). Then for X=O(Γ), we have X=Cjr(«)Cx(«ί1)Cjr(ί1).
Now Cz(z) ^ O(C(s)) and [O(C(z)), D] = 1 gives Cx(z) ^ C ^ ) . Also
z ; = ztx for some λ e Z(R), hence t,^ tίeDλ = E{C(ztx)). By the

same reasoning, Cz{zQ <; C ^ ) and so [ίlf X] = 1. But <ίf > = Z"
and therefore [if, X] = 1 as required.

The next result will be used in conjunction with (3.5).

(3.6) Let Γo = Λ x Γ2 with Γ, = Γ2~ 6M22 and suppose H =
i?! x iί2 is a perfect subgroup of Γo. Then by reindexing if neces-
sary H, ̂  Λ and ίί2 ̂  Γ2.

Proof. Let Γo = /VΓj. and observe that Jϊ = ΊΪjί2 where Άi is
perfect and [Hιy H2\ — 1. Since Γo = 6̂ 22 and 6ikf22 contains no sub-
group which is the central product of two proper perfect subgroups
(see Conway [5], p. 235), H Φ 1 and either H, ̂  Λ or H2 ̂  Λ.
Assume that Hx ̂  ΓΊ. Then by the same reasoning applied to Γo/Γ2,
we have H2 ̂  Γ2.

4. Proof of Theorem A* Let G be a group with 0(G) = 1,
A a standard component of G with A/ϋΓ(A) = J4 and X — <Aβ>.
Furthermore, let K=C(A) and i? e Syl2(iO. It follows from (2.7) that
Z(A) = 1 and from (2.8) that N(A) = ifA. We shall assume that G
is a minimal counterexample to Theorem A. Thus X Φ A whereupon
X is simple and G ^ Aut (X) by Lemma 2.5 [1].

(4.1) \R\ = 2. Consequently G = <X, R).

Proof. Let geG - N(A) be chosen so that Q = Kg Π N(A) has
a Sylow 2 subgroup T of maximal order. If m(R) > 1, then by
([3], (3.2) and (3.3)), R is elementary abelian and we may choose g
so that T = i?*7. On the other hand, if m(R) = 1 and Γ is trivial,
then Ωt{R) is isolated in CiΩ^R)), hence β^jβ) is contained in Z*(G)
by [10] contradicting F*(G) is simple. Thus in either case, we may
assume that T is nontrivial.
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Now Q = N(A) = K x A implies that T is isomorphic to a sub-
group of A under the projection map π: N(A) —> A. An easy argu-
ment shows that Q is tightly embedded in QA. Moreover, π(Q)a =
π(Qa) for α 6 A then implies that π(Q) is normalized by <C4(α): a e
π(TY). Assume first that m(R) > 1 so that R is elementary abelian
and T = iί* Let α€ττ(T)#. Then π(Q) Π (^(α) is a normal subgroup
of CA(a) with Sylow 2 subgroup ττ(Γ) = T. The structure of C (̂α)
is given in (2.1) and from this we conclude that a belongs to the
class (22) of A and π(Q) n C4(α) = ττ(Γ) ^ E2n. But π:(Γ) also contains
involutions of the class (2J and this gives a contradiction.

Assume finally that m(T) = 1 and let (a) = ^(^ίT)). Arguing
as before, π(Q) Π CA(a) is a normal subgroup of CA(a) with Sylow 2
subgroup 7r(Γ), hence by (2.1), π(T) has order 2. Since π(T) s ϊ7,
we may set T = <rα> with 1 Φ a e A and r eR. Now [A, R] = 1
gives iV^T) = (^(r) and since iSΓ^Γ) = Γ by [2, Theorem 2], we
conclude that i? has order 2 proving the result.

Since G is a minimal counterexample to Theorem A and A is a
standard component of (R, X}, with X = <AX>, it follows that <iί, X)
is also a counterexample to Theorem A. Hence G = <X, J?>.

NOTATION. By (4.1), we may set (z) = R so that G = <X, z>.
Also C(β) - O(C(«)) x <s> x A by (2.7) and (2.8). Let Γo 6 Syl2 (A),
Γ = <z> x Γo 6 Syl2 (C(z)) and {F} = {<̂ > x U} = ^1 2(Γ) where [7 =
g^Γo). Recall from (2.4) that iV^^F) = 0(C(2» x O> x ί/iί where
UK=NA(U), K = M2i and U is F 2 i ί isomorphic to the Fischer
module.

(4.2) zσf] A = 0 .

Proof. Note that 55 is not a square in G whereas every involu-
tion of A is a square by (2.1).

(4.3) Let N=N(V). ThenzσnV = zU. N = O(N) x WK where
W = 0 > Γ is special of order 223 with Z(TF) = Z7, Γ is a homocyclic
abelian group of order 222 invariant under K and Y/U is JP2E" iso-
morphic to U.

Proof. Since C (̂«) = O(C(z)) x <̂ > x UK, it suffices, in light of
(3.1), to show that z $ Z(N). Assume in fact that z e Z(N). Then
V = J(T) and T e Syl2 (N) together imply that T e Syl2 (G). Further-
more V is weakly closed in N with respect to G and so N controls
fusion of C(V) = O(N) x F. But V contains representatives of the
classes of involutions of C(z) and therefore z is isolated in C(z).
Applying the Z* theorem [10], we then have zeZ*(G) which is in-
compatible with G g Aut (X).
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We continue our analysis using the structure and notation for
N set up in (4.3). In order to eliminate the ambiguity in the struc-
ture of Y we need the following result.

(4.4) Let <<5> e Syl7 (A), Δ = C(δ) and Δ = Δ/O(Δ). Then either
Δ ^ Sδ I Z2 or 1 = E(Δ)(z} where E(Δ) = E/3(5), L3(5) or L2(25).

Proof. According to (2.3), CA(δ) = <δ> x D where D = S5. More-
over if e and <Z are involutions in D' and D — D' respectively, then
by (2.1), e e (22) and d e (2J. We shall first show that z fuses to zd
and ze in Δ. We know from (4.3) that z fuses to both zd and ze
in G. Set i ϊ = C(z) and assume that (zd)9 = z, geG. Now CH(zd)9 =
C((z, zd))' = C«s', s » = CH(s'). Since zσ Π H = {z} \J (zd)H U (se)* and
CH(zd) & CH(ze), we may replace g by #&, heH, if necessary, to
insure that z9 = 2d. Thus C^Osd)' = C^(«d). Let J5 = O2\CH{zd)) =
<2;> x CΛd) and J8 = JB/O2,3(S) = Aut (Af,,). Since 5 f f - 5 and (3) e
Syl7(J5), we may assume that <δ>ff = <<5>. If δ̂  — δ"1, then g induces
an automorphism of O\B) = M22 in which an element of order 7 is
inverted, a contradiction. Therefore δtt ~ δ in 17 and again we may
replace g by #6, k δ , if necessary to obtain δg = δ as required.
We may prove that z fuses to ze in Δ in the exact same way making
use of the fact that O2'(CH(zd))/O2(CH(zά)) = Aut (M"22) by (2.1).

Returning to the structure of Δ = Δ/O(Δ), we have C-4(z) =
O(iί) x (z) x 5 so that 5 ' is standard in Δ. Since I has sectional
2 rank at most 4 by a result of Harada [14], we may apply the
main theorem of [13] to conclude that E{Δ) is isomorphic (i) Aδ,
(ii) Aδ x A5, (iii) L3(4), (iv) Λf18, (v) C73(5), (vi)_L3(5), (vii)__L2(25), or
(viii) A7. Furthermore except in case (i), Δ <; Aut {E(Δ)). Since
zd ~ z ~ ze in Δ, and d φz rf* e" by (4.2), we may easily eliminate
cases (i), (iii), (iv) and (viii) and show that in case (ii), Δ^Sδl Z2.

REMARK. If E(Δ) is simple then both 02>,E(Δ) and Δ - O2,ίΈ(Δ)
contain one class of involutions. In particular, z g O2r>E(Δ) and d φ
z Φ e together imply that the classes (2J and (22) of A fuse in G.

(4.5) Y = E222.

Proof. I t follows from (4.3) that either the result is true or
Y is homocyclic of exponent 4. Assume the latter for purpose of a
contradiction. We know that N = O(N) x WK. Thus if (δ) e
Syl7 (K), and Δ = C(<5), then the structure of Δ = z//O(J) is given by
(4.4). Now CF(<5) = ^ 4 x Z 4 and C^(δ) contains an element of order
3 which acts regularly on Cγ(δ). This implies that O\Δ) contains a
Z± x Zi subgroup and we conclude from (4.4) that / = E(Δ)(z) with
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E{Δ) = L3(5). Since E(Δ) has wreathed Sylow 2 subgroups of order
25 and z acts as the graph automorphism, z must invert Cγ(d). But
the set of all elements of Y inverted by z forms a subgroup of Y
properly containing U and invariant under K which forces z to
invert Y.

We claim that Y is the unique (Z4)
n subgroup of N. In fact

let Yx be another such subgroup of N. Then WK= WK/V = E2u M24

together with m^Ϋ,) = 11 gives Ϋx = W. Therefore Y, ̂  W = <z> Γ
and since 2 inverts Y, we must have Y — Yγ. This in turn implies
that W must be the unique subgroup of N of its isomorphism type
as well. In particular, if N — N(W), then W is weakly closed in
its normalizer with respect to G. Hence N contains a Sylow 2 sub-
group of G and this in turn forces N to control fusion of C(W) =
O(N)U. Now the 2 N classes of involutions of U are the sets
(2J n U and (22) Π 17 of A. Also in the remark following (4.4), we
observed that the classes (2J and (22) of A fuse in G if E(Δ) ~ L3(5).
Thus JV must act transitively on U which is clearly not the case
and we conclude that N < N(W).

We now investigate the structure of N{W). First observe that
C(W) ^ C(V) gives C(W) = UO(N). Set N(W) = N(W)/U and con-
sider the action of N(W) on W. Since F is characteristic in W, Y
is normal in ~N(W). Also Cwrm^) = N = <z) x O(N) x Ϋ^. There-
fore we may apply (3.1) to conclude that N(W) = O(N) x "PΓ*ϋ:
where W* is a 2-group containing W invariant under K, W = (z) Y*
where Y* contains Y and is invariant under K with F*/F Ĵ ϋΓ iso-
morphic to Ϋ.

But Γ*/Γ, Γ/Ϊ7 and U are all i^2ίΓ isomorphic, hence \Cγ(δ)\ = 26

and this in turn gives | Cw*(δ) \ = 27 which contradicts | Δ |2 = 2β.

(4.6) T7eSyl2(C(?7)). Hence ΓeSyl2(C(Γ)).

Proof. The second statement follows easily from the first. Now
zGf]Y=0 together with zN = zU by (4.3) gives (zG Π W) = F.
Thus F is weakly closed in W with respect to G. This implies that
tfo^ίW) = Nf)C{U) = O(N) x T^ by (4.3), hence T^eSyl2(C(C7)) as
required.

(4.7) Let M= N(Y) and M = M/Y. Then
(i) Cjr(2) =_N" - O(ΪNΓ) x <z> x X.
(ii) zί

Proof. Suppose za e zY, aeM. Since zanW= zw -zU by (4.3),
aw normalizes V, hence ate; 6 N. This in turn implies that a e N
and we see that N — CM(z) = O(iV) x (z) x Jϊ, proving (i).
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To prove (ii), let b be an involution of UK — U. Since z fuses
to za for any involution aeA by (4.3), there exists geG such that
z9 - zb. By (2.4), we see that m2(C(zb)) = 12 and all E2u subgroups
of C(zb) are conjugate. Therefore (zb, Cγ(zb)) = V9h for some h e
C(zb). Observe that Cγ(zb) is generated by those involutions of
(zb, Cγ(zb)} which are not conjugate to zb. Hence Ugh = Cγ(zb).
Also PΓeSyl,<C(EO)by (4.6) implies that Wgh eSγ\2(C(Cγ(zb))). Since
<Γ, sδ> e Syla (C(CF(sδ))) as well, there exists keG such that Wghk ==
<Γ, zδ>. Finally, s'** e z* n <Γ, zδ> = (zδ)F implies that zghkl = zδ for
Γe<Γ, zδ>. Setting g' = ghkl, we have s"' = zb and PP = <Γ, zb).
Therefore Y9' — Y and 2 ~ zb in if. We have shown that z ~ zb
in M and thus z g Z*(M).

(4.8) i f - O(if)(ifx x M2)(z) where Mf = M2 = Etn-Mu.

Proof. If follows from (4.7) that C*(z) = <z> x ^ and z £ Z*(K).
Therefore, by a result of Koch [18] and (3.1), M = O(M)E(M)(z)
where E(M) ~ Mu x Mu. Let Mt and M2 be the minimal normal
subgroups of M which map onto the direct factors of E(M). By
(3.2), Y = U, x U2 where [Mif U,] = U, and [Mif Uβ] = 1, i Φ j . It
is clear that either Oc,{M%) = Ui or O2(Mt) — Y, i = 1, 2. Assume
the latter happens and set if,. = MJU^ Since il^ is perfect and !72

is central in Mlf Mλ is a perfect central extension of E2u by if^.
But this contradicts the fact that M2i has trivial multiplier [4].
Therefore O2(Mi) = Ui9 i = 1, 2. Now if1 n M2 ̂  O^i^) Π O2(if2) =
U, n Ϊ72 - 1 gives ifxifa = ifx x M2. Finally if* = if2 = CMlM2(z) =
E2n-M2i proving the result.

NOTATION. From (4.8), let MQ = (M1 x M2)<^> with M2 = ifj =
E2u Mu. Set M; = ί/i^ with C7, = O^ikfJ, ^ = M24 and set if2 =
Ϊ72E:2 with U2 = Ul, K2 = X;. Furthermore, let UK = C ^ ^ ) with
U=CUιUt(z) and K = CKιKt(z). Finally, let SUSyl^M,), S2 = S[e
Syl 2 (M 2 ) , S= S,x S2 a n d S* - <S, ^> 6 Syl 2 (ikf0).

(4.9) S* 6 Syl2 (G), S = S * n l € Syl2 (X) and z$X.

Proof. First observe that all involutions of S* ~ S are conju-
gate in S* to z and C^z) e Syl2 (C(z)). Furthermore, it is easy to
see that zσ Π S = 0 . In fact, if s is an involution of S, then
Cγ(s) = CYl(s) x CΓ2(s) has order at least 212 gives m2(Cγ(s)) ^ 13
whereas m2{C(z)) = 12 by (2.4), Therefore 2** = ^ n S and we have
at once that S* 6 Syl2 (G). It is clear from the Thompson transfer
lemma that z$O\G). Since G = <X, «>, we have X= O\G). Thus
β ί l . Also S ^ O2(if0) ^ X gives S = S * n X e Syl2 (X).
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(4.10) Let 7 be an element of order 3 of A and Γ = C(i). Then
Γ = O(Γ)E(Γ)(z) where E(Γ) = Γ1xΓ% and Γ* = Γ 2 = 6M22.

Proo/. First observe from (2.2) that CΓ(z) = 0(C(s)) x <z> x C^(7)
where C^(7) = 6M22. Also by (2.2) we may assume that 7 belongs
to the class (3:) of UK. Thus we may write 7 = Ί{ϊ2 where 72 = Tx

and 7έ belongs to the class (3X) of Mί9 i = 1, 2. Applying (2.6) gives
C*o(7) = (C^fy) x CMpJ)(z> where C^f t ) ' = CM2(72) s # 3 2 3A6. Since
CMι(7^ is isomorphic to a 2-local subgroup of 6M22 which contains a
Sylow 2 subgroup of 6M22, we may set R* e Syl2 (CMo(Ύ)) where i2* =
(Rι x # 2 )<», i22 6 Syl (CMpx)) and i22 = SJ has type 2ikf22. Also 22χ x
Λ2 ^ O\Γ). Thus by (3.5), Γ = O(Γ)E(Γ)(z) where E(Γ)/0(E(Γ)) =
2Jkf22 x 2ikf22. But (C^0(7))(oo) = CMp) x C^(7) ̂  E(Γ) then gives

^ Γ,x Γ2 where Γ2 = Π = 6M22.

(4.11) Let 7; and r< be representatives of the classes (3X) and
(32) respectively of Mi with Ί\ = 72 and rj = r2. Let 7 = Ί{ί2 and
r = Γ^ . Then Ίxτ2, rx72, τ and 7 are conjugate in X

Proof. We know that r is conjugate to 7 in A by (2.2). Since
z leaves Ίx invariant under conjugation and {τ{Y2)

z = 7xr2, it suffices
to show that τxΊ2 fuses to 7 in X. This in turn may be proved by
verifying that τγ fuses to Ίx in Cz(72). Let Pi e Syl3 (Mi) with PJ =
P2, Z(P,) = <7,> and assume that τ, 6 P€, ΐ = 1, 2. Since CJlfo(7)(co) =
CMpi) x CM2(72) is contained in E(Γ) = Γλ x Γ2, it follows from (3.6),
that subject to reindexing, if necessary, C^.(7j ^ Γif i = 1, 2. In
particular, P, e Syl3 (Γ^) and <7̂ > — O3(Γi)f i = 1, 2. Now Pi contains
an ί/g subgroup <7X, 7f> all of whose elements of order 3 are conju-
gate in Mι to 7lβ On the other hand, ikΓ22 contains one class of ele-
ments of order 3, hence τt is conjugate in Γx to an element of
<7W Ί*>. Therefore, Ύ1 is conjugate to τx in <Λfif /\> ̂  Cz(72) as
required.

(4.12) I(Si) =Ufn I(S).

Proof. Since S has type J4 x J4, Γ = J(S) by (2.4). Therefore
NX(Y) controls fusion of Y and we have that Uf Π Γ = J7O i = 1, 2.

We now observe from (2.6) that every involution of MtM2 — Y
centralizes an element of order 3 of MtM2 which is conjugate to
τ{c2 = r, 7,72 = 7, r,72 or 7,r2. Also CMp%) = Cup%)CKpx) s E^SA,
and Cjf/rJ = ^.(rJC^. fo) = Es(Ld(2) x Z3). In the course of proving
(4.11), we showed that up to reindexing, it may be assumed that
CMpi) ^ Γif i = 1, 2. Let R = R,x R2e Syl2 (^Γ,) where i2, 6 Syl2 (Γ, )
and i2, ̂  0^.(7,), i = 1, 2. By (3.4), Z(J?,) has order 4 and contains
representatives of the 3 classes of involutions of Γif i — 1, 2. But
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then every involution of Rt is conjugate to an element of
whereas every involution of R — Rt is conjugate to an element of
Z(R) - Z(R%). Since Γ n R = (U.ΠR,) x (U2f]R2) with U,nΛ< = EZ2,
we have Z(R,) ^ U4 and Z(R) - Z{R%) Q U - Ut. Therefore Uf Π
Y = U, then yields ^(i?,) x Π ̂ ( # ) = ^ ( ^ ) We now conclude that
I(R%) = Uf Π I(R), i = 1, 2 and this in turn gives I(Γt) = Uf n I(Γ),
i = 1, 2.

Our next objective is to show that I{CM.(ττ)) = Uf Π I(CMlM2(τ)),
i = 1,2. By (4.11) there exists # e X such that τ* = 7, hence
(CMιMp)Y ^ GX{Ί). Since O 2 '(C^ 2(τ)) = C^fo)' x C^2(r2)', we have
( ^ ( τ , ) ' ) 3 x (CM2(τ2YY = O*'(CMlM2(τ)Y <ί O2'(CX(7)) - ΓJΓ% by (3.5). Fur-
thermore by (3.6), GUi(τtf ^ Γ5. with j \ ̂  j 2 . But O1(CXi(τi)

f) =
C^(r{) s J58 combined with Uf n Λ = 7(Λ) yields (CMi(r,)')g ^ Γt,
Therefore I(CM.{τ%)g)= UfΓ\I(CMlM2(τ)9) and this implies that I(CMi(τt)) =
Uf Π I(CMίM2(τ)), i — 1,2. The same argument then gives I(CM.(Ti)) =
Uf Π /(C^ 2 (τA )) and 1(^(7,)) = Uf Π 1(0^,(7A)), i ^ i, λ = ^i
or 75 . Since a conjugate of every involution of MtM2 centralizes
7, τ, Ίxτ2 or τ ^ , we see at once that I(MX) = Uf Π /(MA), ί = 1, 2.
Therefore !(£*) = Uf Π /(S), i = 1, 2 proving the result.

(4.13) The following holds:

(i) S, is a Sylow 2 subgroup of O2(CΣ(Sj)) and O2(CZ(U, )), i ^ i .
(ii) Every involution of St is conjugate in Cx(Sj) to an element

of Uί, i Φ j .

Proof. Since Uά <\ S, St x Ud e Syl2 (CX(U, )), i Φ j . By Gaschutz's
theorem we may write Cx(Uj) — CjUj where C3 is a complement to
Uj in ^ ( U , ) . Also Ud is central in Cx{Uά) gives CZ(U, ) = C, x Uy.
Clearly O2(CX(U, )) ^ C, . Also S, ^ ikf, and [Mi9 Sd] = 1 yields S, ^ Cy.
It now follows directly that St eSγl2 (O2(Cx(Uj))). The same proof
may be used to verify that Si e Syl2 (O2(Cx(Si)) and this completes
the proof of (i).

In order to prove (ii), first observe that S3 = ΩXS/), hence by
(4.12), Sj is weakly closed in S with respect to X. Therefore Nx(Sj)
controls fusion of Cx(Sj). Since St e Syl2 (O2(CX(S, ))) by (i), the
Frattini argument gives NX(S,) = CAS^N^S). Now NX(S) £ NX(Y)
where Nx{Y) = MnX= 0(M)(ML x M2). Clearly S is self nor-
malizing inMΓiX=MΓi X/0(M) and this yields NX(S) = O(NX(S))S.
Consequently Nz(Sj) = C^S^Sj. But [S,, S, ] = 1 implies that C^S,)
controls fusion of S{ x ^(Sj ) e Syl2 (Cx(Sj)) and the result now follows
from (4.12).

(4.14) Si is strongly closed in S with respect to X, i — 1, 2.
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Proof. By symmetry, we need only prove the result for SL.
Assume in fact that Sλ is not strongly closed in S with respect to
X. Let si e Sλ be an element of minimal order of S1 such that sf Π
SgSj. Then s{ = s[s'2 for some geX, s^eS, i = 1, 2, and s2 Φ 1.
By (4.12), we may assume that |s x | > 2. Also (sl)g — (sO^sO2 together
with the minimality of | sx | implies that s2 is an involution. By
(4.13ii), s2 is conjugate in GX{S^) to an element of U2, so we may
further assume that s'2 e U2. But U2 is weakly closed in S with
respect to X by (2.4) and (4.12), therefore NX(U2) controls fusion of
CX(U2). A contradiction may now be established by observing that
s.eS.eSγl.iOXCAUz))) whereas s[s2e O\Cx{n,)) by (4.13i).

We are now in the position to complete the proof of Theorem
A. By (4.14) and the Aschbacher-Goldschmidt theorem [12], X is
not simple. This of course contradicts our condition that X is simple
and G ^ Aut X.
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