FINITE GROUPS WITH A STANDARD COMPONENT OF TYPE J_{4}

Larry Finkelstein

In this paper, it is shown that if G is a core-free group with a standard component A of type J_{4}, then either A is normal in G or the normal closure of A in G is isomorphic to the direct product of two copies of J_{4}.

1. Introduction. Janko [17] has recently given evidence for the existence of a new finite simple group. In particular, Janko assumes that G is a finite simple group which contains an involution z such that $H=C(z)$ satisfies the following conditions:
(i) The subgroup $E=O_{2}(H)$ is an extra-special group of order 2^{13} and $C_{H}(E) \leqq E$.
(ii) H has a subgroup H_{0} of index 2 such that H_{0} / E is isomorphic to the triple cover of M_{22}.

He then shows that G has order $2^{21} \cdot 3^{3} \cdot 5 \cdot 7 \cdot 11^{3} \cdot 23 \cdot 39 \cdot 31 \cdot 37 \cdot 43$ and describes the conjugacy classes and subgroup structure of G. In this paper we shall assume that J_{4} is a finite simple group which satisfies Janko's assumptions and shall prove

Theorem A. Let G be finite group with $O(G)=1, A$ a standard component of G isomorphic to J_{4} and $X=\left\langle A^{G}\right\rangle$. Then either $X=A$ or $X \cong A \times A$.

Our proof follows the outline given in [6] and makes use of two key facts; namely, that J_{4} has a 2 -local subgroup isomorphic to the split extension of $E_{2^{11}}$ by M_{24} and that J_{4} has one class of elements of order 3 with the centralizer of an element of order 3 isomorphic to the full cover of M_{22}. We also make use of the characterization of finite groups with a standard component isomorphic to M_{24} which was recently obtained by Koch [18].
2. Properties of $J_{4^{*}}$. In this section, we shall describe certain properties of J_{4} and its subgroups which will be required for the proof of Theorem A. Most of these properties are found in [17] and will be listed without proof. A will denote a group isomorphic to J_{4}.
(2.1) A has 2 classes of elements of order 2 denoted by (2_{1}) and $\left(2_{2}\right)$. If $t \in\left(2_{1}\right)$ and $E=O_{2}(C(t))$, then E is isomorphic to an extra special group of order $2^{13}, C(E)=Z(E), O_{2,3}(C(t)) / E$ has order 3 and
$C(t) / O_{2,3}(C(t)) \cong \operatorname{Aut}\left(M_{22}\right)$. Moreover, if $\langle\beta\rangle \in \operatorname{Syl}_{3}\left(O_{2,3}(C(t))\right)$, then $\langle\beta\rangle$ acts regularly on $E / Z(E)$. For $x \in\left(2_{2}\right), C(x)$ is isomorphic to a split extension of $E_{2^{11}}$ by $\operatorname{Aut}\left(M_{22}\right)$ with $C(x)$ acting indecomposably on $O_{2}(C(x))$.
(2.2) A has one class of elements of order 3. If $\gamma \in A$ has order 3 , then $C(\gamma)$ is isomorphic to the 6 -fold cover of M_{22}.
(2.3) A has two classes of elements of order 7. If $\delta \in A$ has order 7, then $C_{A}(\delta) \cong Z_{7} \times S_{5}$ and $\delta \nsim \delta^{-1}$.
(2.4) Let $T_{0} \in \operatorname{Syl}_{2}(A)$. Then T_{0} has precisely one $E_{2^{11}}$ subgroup, denoted by $U . N(U)=U K$ where $K \cong M_{24}$. The orbits of K on U^{\sharp} are $\left(2_{1}\right) \cap U$ of order 7.11.23 and $\left(2_{2}\right) \cap U$ of order $4 \cdot 3 \cdot 23$.

In the above, U is isomorphic to the so-called "Fischer" module for M_{24}. The following is an important property of the Fischer module.
(2.5) Let $\left(^{*}\right) 1 \rightarrow R \rightarrow V \rightarrow U \rightarrow 1$ be an extension of $F_{2} M_{24} \bmod -$ ules where R is a trivial module of dimension 1 and U is isomorphic to the Fischer module. Then the extension splits.

Proof. Let \tilde{U} and \tilde{V} be the $F_{2} M_{24}$ modules dual to U and V respectively. Then we have the extension ($\tilde{*}$) $1 \rightarrow \widetilde{U} \rightarrow \widetilde{V} \rightarrow R \rightarrow 1$. It suffices to show that ($(\underset{*}{ })$ splits. Since U is not a self dual module and since there exists precisely 2 nonisomorphic $F_{2} M_{24}$ modules of dimension 11 (see James [16]), \widetilde{U} is isomorphic to the so-called Conway module [5]. Thus M_{24} has 2 orbits on $(\tilde{U})^{\sharp}$. If u_{1} and u_{2} are representatives of these 2 orbits, then $C_{M_{24}}\left(u_{1}\right) \cong \operatorname{Hol}\left(E_{16}\right)$ and $C_{M_{24}}\left(u_{2}\right) \cong \operatorname{Aut}\left(M_{12}\right)$.

Since $|\widetilde{V}|=2^{12}$, there exists a vector $v \in \widetilde{V}-\widetilde{U}$ such that v is fixed by a Sylow 23 subgroup S of M_{24}. The orbit of M_{24} on $(\tilde{V})^{\#}$ which contains v has order $\left[M_{24}: C_{M_{24}}(v)\right]$ and is not divisible by 23 . Therefore, by examining the list of maximal subgroups of M_{24} [5], together with $\left[M_{24}: C_{M_{24}}(v)\right] \leqq 2^{12}$, we see that $C_{M_{24}}(v)$ contains a subgroup L isomorphic to M_{23}. Consider the action on \tilde{V} of an M_{22} subgroup M of L. Then M has no fixed points on $\widetilde{U}^{\#}$, so in fact $C_{\breve{V}}(M)=\langle v\rangle$. Therefore $N_{M_{24}}(M) \cong \operatorname{Aut}\left(M_{22}\right)$ fixes $\langle v\rangle$ as well. Finally $\left\langle L, N_{M_{24}}(M)\right\rangle=M_{24}$ centralizes $\langle v\rangle$ and the extension splits.

We shall denote by $E_{2^{11}} \cdot M_{24}$ a split extension of $E_{2^{11}}$ by M_{24} in which $E_{2^{11}}$ is $F_{2} M_{24}$ isomorphic to the Fischer module.
(2.6) Let $M=U K$ be isomorphic to $E_{2^{11}} \cdot M_{24}$ with $U=O_{2}(M)$
and $K \cong M_{24}$. Then the classes of elements of order 2 and 3 of M and the orders of the centralizers in M of a representative λ are as follows

Class	$\left\|C_{U}(\lambda)\right\|$	$\left\|C_{M}(\lambda)\right\|$
$\left(2_{1}\right)$	2^{11}	$2^{21} \cdot 3^{3} \cdot 5$
$\left(2_{2}\right)$	2^{11}	$2^{19} \cdot 3^{\cdot} \cdot 5 \cdot 7 \cdot 11$
$\left(2_{3}\right)$	2^{7}	$2^{17} \cdot 3 \cdot 7$
$\left(2_{4}\right)$	2^{7}	$2^{17} \cdot 3$
$\left(2_{5}\right)$	2^{6}	$2^{15} \cdot 3 \cdot 5$
$\left(2_{6}\right)$	2^{6}	$2^{15} \cdot 3 \cdot 5$
$\left(3_{1}\right)$	2^{5}	$2^{8} \cdot 3^{3} \cdot 5$
$\left(3_{2}\right)$	2^{3}	$2^{6} \cdot 3^{2} \cdot 7$

Moreover, if $\lambda_{i} \in\left(3_{i}\right) \cap K$ then $C_{M}\left(\lambda_{i}\right)=C_{U}\left(\lambda_{i}\right) C_{K}\left(\lambda_{i}\right)$ with $C_{K}\left(\lambda_{1}\right)$ isomorphic to the 3 -fold cover of $A_{6}, C_{K}\left(\lambda_{2}\right) \cong Z_{3} \times L_{2}(7)$ and where $C_{K}\left(\lambda_{i}\right) /\left\langle\lambda_{i}\right\rangle$ acts faithfully on $C_{U}\left(\lambda_{i}\right), i=1,2$.

Proof. Let λ be an involution of $M-U, \mathscr{O}_{1}, \mathscr{O}_{2}, \cdots, \mathscr{O}_{n}$ the orbits of $C_{u}(\lambda U / U)$ on $\lambda C_{U}(\lambda)$ and α_{i} an element of $\mathcal{O}_{i}, i=1, \cdots, n$. Then α_{i} is conjugate to α_{j} in M exactly when $i=j$ and also $\left|C_{M}\left(\alpha_{i}\right)\right|=\left|C_{M}(\lambda U)\right| /\left|\mathscr{O}_{i}\right|$. Now K has 2 classes of involutions with representatives λ and η having centralizers in K of order $2^{10} \cdot 3 \cdot 7$ and $2 \cdot 3 \cdot 5$ respectively. Noting that the action of K on U is dual to the action of K on the Conway module, it is easy to see that $\left|C_{U}(\lambda)\right|=2^{7}$ and $\left|C_{U}(\eta)\right|=2^{6}$. Observe that U has 8 orbits on $\lambda C_{U}(\lambda)$, each of which has length 16. Moreover an element of order 7 of $C_{K}(\lambda)$ fixes 2 points of $C_{U}(\lambda)$ and therefore must permute 7 of these orbits. Since $\left|C_{M}(\lambda)\right|=\left|C_{K}(\lambda)\right|\left|C_{U}(\lambda)\right|=2^{17} \cdot 3 \cdot 7$, it then follows that $C_{m}(\lambda U / U)$ acting on $\lambda C_{U}(\lambda)$ has one orbit of length 16 and one orbit of length $7 \cdot 16=112$ with λ an element of the orbit of length 16 . This accounts for the classes (2_{3}) and (2_{4}). Similar reasoning accounts for the classes (2_{5}) and (2_{6}). We already know from (2.4) that M has orbits on $U^{\#}$ of lengths $4 \cdot 3 \cdot 23$ and $7 \cdot 11 \cdot 23$ and thus the classes of involutions of M are as described.

Let γ and τ be representatives of the classes of element of order 3 of K with $C_{K}(\gamma)$ isomorphic to the 3 -fold cover of A_{6} and $C_{K}(\tau) \cong Z_{3} \times L_{2}(7)$. Clearly γ and τ are representatives of the 2 classes of elements of order 3 of M. It suffices to determine the orders of $C_{U}(\gamma)$ and $C_{U}(\tau)$. As before, we may appeal to the action of K on the Conway module to obtain $\left|C_{U}(\gamma)\right|=2^{5}$ and $\left|C_{U}(\tau)\right|=2^{3}$ as required.

Notation. If H is a simple group, then $n H$ will denote a proper
n-fold covering of H. If the multiplier of H is cyclic, then $n H$ is unique up to isomorphism. Also let $E_{32} \cdot 3 A_{8}$ be the group isomorphic to the centralizer of an element of order 3 of the class (3_{1}) of $E_{2^{11}} \cdot M_{24}$. Note that $E_{32} \cdot 3 A_{6}$ is isomorphic to a 2-local subgroup of $6 M_{22}$.
(2.7) The Schur multiplier of J_{4} is trivial.

Proof. See Griess [14].
(2.8) $\operatorname{Aut}\left(J_{4}\right) \cong J_{4}$.

Proof. Let $A \cong J_{4}$ and suppose that $\alpha \in \operatorname{Aut}(A)$. We may imbed A in $\operatorname{Aut}(A)$ and assume by way of a contradiction that $\alpha \notin A$ but $\alpha^{p} \in A$ for some prime p. Set $G=\langle A, \alpha\rangle$.

By (2.4), we may assume that $\alpha \in N_{G}(U)$ where U is an $E_{2^{11}}$ subgroup of $A, N_{A}(U)=U K \cong E_{2^{11}} \cdot M_{24}$ and $K \cong M_{24}$. Since Aut $(K) \cong$ K, we may further assume that $\overline{N_{G}(U)}=N_{G}(U) / U=\langle\bar{\alpha}\rangle \times \bar{K}$. It is known [16] that U is an absolutely irreducible $F_{2} K$ module, hence by a result of Schur, we have $[\alpha, U]=1$. Two cases now arise; namely $[\alpha, K]=1$ and $[\alpha, K] \neq 1$.

If $[\alpha, K] \neq 1$, then it is clear that α is a 2 -element. Also the fact that $\sigma^{1}(\langle U, \alpha\rangle)$ is a proper K invariant subgroup of U forces $\delta^{1}(\langle U, \alpha\rangle)=1$. Hence $\langle U, \alpha\rangle \cong E_{2^{12}}$ and K acts indecomposably on $\langle U, \alpha\rangle$. Without loss, we may assume that α is centralized by a Sylow 23 subgroup of K. By arguing as in (2.5), it then follows that $C_{K}(\alpha) \cong M_{23}$. Therefore in either case, we have that $C_{U K}(\alpha) \geqq$ $U K_{0}$ where K_{0} is an M_{23} subgroup of K.

Let γ be an element of order 3 of K_{0}. Then $C_{K_{0}}(\gamma) \cong Z_{3} \times A_{5}$ implies that $C_{U}(\gamma) \cong E_{32}$ by (2.6). Also $C_{A}(\gamma) \cong 6 M_{22}$ and $m_{2}\left(C_{A}(\gamma)\right)=5$ [4] gives $O_{2}\left(C_{A}(\gamma)\right) \leqq C_{U}(\gamma)$. Setting $\overline{C_{A}(\gamma)}=C_{A}(\gamma) / Z\left(C_{A}(\gamma)\right) \cong M_{22}$, we conclude that α centralizes a subgroup of $\overline{C_{A}(\gamma)}$ isomorphic to a split extension of E_{16} by A_{5}. But no nontrivial automorphism of M_{22} centralizes such a subgroup [9] and therefore $\left[\alpha, C_{A}(\gamma)\right] \leqq Z\left(C_{A}(\gamma)\right)$. Bv the 3 -subgroup lemma, we then have $C_{A}(\gamma) \leqq C_{A}(\alpha)$. Since γ is inverted by an element of $K_{0} \leqq C_{A}(\alpha)$, it follows that $N_{A}(\langle\gamma\rangle) \leqq C_{A}(\alpha)$ as well.

Finally, let $\langle t\rangle=O_{2}\left(C_{A}(\gamma)\right)$ so that $C_{A}(t)=E \cdot N_{A}(\langle\gamma\rangle)$ by (2.1), where $E=O_{2}\left(C_{A}(t)\right)$ is extra special of order 2^{13}. Observe that $C_{A}(\gamma)$ acts irreducibly on $E /\langle t\rangle$. Combining this with $\left[C_{A}(\gamma), \alpha\right]=1$ and $\left.C_{E}(\alpha) \geqq U \cap E\right\rangle\langle t\rangle$, we conclude that $E \leqq C_{A}(\alpha)$. Therefore we are in the position where $C_{A}(\alpha) \geqq C_{A}(t)$ and $C_{U K}(\alpha)=U K_{0}$ or $U K$ with $K_{0} \cong M_{23}$. But $C_{A}(t)$ contains a Sylow 2 subgroup of $N_{A}(U)$ implies that $C_{U K}(\alpha)=U K$ and this gives $C_{A}(\alpha) \geqq\left\langle U K, C_{A}(t)\right\rangle$. An easy argu-
ment shows that $C_{A}(\alpha)$ is simple with $C_{C_{A}(\alpha)}(t)=C_{A}(t)$. Thus by Janko's theorem [17], $\left|C_{A}(\alpha)\right|=|A|$ which of course gives $A=C_{A}(\alpha)$, a contradiction.
3. Preliminary results. In this section we present certain technical results which are necessary for the proof of Theorem A.
(3.1) Let G be a group, A a standard component of G with $C(A)$ of 2 rank 1. Let $S \in \operatorname{Syl}_{2}(N(A))$. Assume that $S \notin \operatorname{Syl}_{2}(G)$ and $Z(S) \leqq A C(A)$. Then $[A, O(G)]=1$.

Proof. See Seitz [19].
(3.2) Let M be a group containing an involution z such that $C(z)=O(C(z)) \times\langle z\rangle \times U K$ where $K \cong M_{24}$ and U is $F_{2} K$ isomorphic to the Fischer module. Let $V=\langle z, U\rangle$ and $N=N(V)$. Then either
(i) $z \in Z(N)$ or
(ii) $N=O(N) \times W K$ where $W=\langle z\rangle Y$ is special of order 2^{23} with $Z(W)=U$ and where Y is a homocyclic abelian group of order 2^{22} invariant under K with $Y / U \quad F_{2} K$ isomorphic to U.

Proof. Assume that $z \notin Z(N)$ and let $\bar{N}=N / O(N)$. By (2.2), the orbits of K on $U^{\#}$ are t^{K} of order 1771 and x^{K} of order 276 with $C_{K}(x) \cong \operatorname{Aut}\left(M_{22}\right)$. Moreover both t and x are squares in $U K$, hence $z^{N} \cap U=\varnothing$. Now the orbits of $C(z)$ on $V^{\#}$ are precisely

Orbit	$\{z\}$	t^{K}	x^{K}	$(z t)^{K}$	$(z x)^{K}$
Length	1	1771	276	1771	276

Since $z \notin Z(N)$ and $z^{N} \cap U=\varnothing, z^{N}$ must be a union of some of the sets $\{z\},(z t)^{K},(z x)^{K}$. But $\left|z^{N}\right|$ is a divisor of $\left|L_{12}(2)\right|$ then gives $z^{N}=z U$.

Representing N on $z^{N}=z U$, we have $|N|=2^{11}\left|N_{H}(V)\right|$, hence $|\bar{N}|=2^{23}\left|M_{24}\right|$. Moreover U is generated by those involutions of V not conjugate to z so that $U \triangleleft N$. Assume that $C_{N}(U)=O(N) V$. Then \bar{N} / \bar{V} acts faithfully on \bar{U} and is therefore isomorphic to a subgroup of $L_{11}(2)$. Let $S \in \operatorname{Syl}_{11}(K)$ so that $N_{K}(S)$ is isomorphic to a Frobenius group of order 10•11. Since S fixes 2 points of $z N$, it follows that $\left|C_{\bar{N}}(\bar{S})\right|=2\left|C_{\bar{N}}(\langle\bar{z}, \bar{S}\rangle)\right|=2^{3} .11$. Hence a Sylow 11 subgroup of \bar{N} / \bar{V} has centralizer of even order which contradicts the fact that a Sylow 11 subgroup of $L_{11}(2)$ has centralizer of odd order. We conclude that $C_{N}(U)$ properly contains $O(N) V$.

It is easy to see from the action of K on $\overline{C_{N}(U)}$ that $C_{N}(U)=$ $O(N) W$ where $W / U \cong E_{2^{12}}$. Furthermore, $C_{W}(z)=V$ implies that $Z(W)=U$ and $[z, W]=U$. Thus W is a special 2 -group of order
2^{23} with $Z(W)=U$. We will in fact show that $N=O(N) \times W K$. To see this, observe that $V\left\langle K^{N}\right\rangle$ covers \bar{N} together with $[V K, O(N)]=$ 1 implies that $N=O(N) C_{N}(O(N))$. A simple argument establishes that $O^{2^{\prime}}\left(C_{N}(O(N))\right)=W K$ and therefore $N=O(N) \times W K$. For the remainder of the proof, we may assume that $O(N)=1$.

Consider the homomorphism $\varphi: W \rightarrow U$ by $\varphi(w)=[z, w]$. It is easy to see that φ induces an $F_{2} K$ isomorphism between W / V and U. But then W / U is an $F_{2} K$ module which satisfies, the hypotheses of (2.5) and thus $W / U=V / U \times Y / U$ where Y / U is $F_{2} K$ isomorphic to U. It remains for us to show that Y is a homocyclic abelian group. Assume not. Then by the action of K on $Y, Z(Y)=U$. Let L be a subgroup of K isomorphic to Aut $\left(M_{22}\right)$. It follows from the properties of the Fischer module that $\left|C_{Y / U}(L)\right|=\left|C_{U}(L)\right|=2$ with $C_{Y / V}(L)$ and $C_{V}(L)$ the unique proper L invariant submodules of Y / U and U respectively. Let $\langle y U\rangle=C_{Y / U}(L)$ so that L normalizes $\langle y, U\rangle$. Since $y \notin Z(Y), \quad 1 \neq[y, Y]<U$ and since L normalizes $[\langle y, U\rangle, Y]=[y, Y]$ we must have $[y, Y]=C_{U}(L)$. This in turn implies that $\left[Y: C_{Y}(y)\right]=2$. But L normalizes $C_{Y}(\langle y, U\rangle)=C_{Y}(y)$, hence $C_{Y}(y) / U$ as well and this gives a contradiction.
(3.3) Let $Y \cong E_{2^{22}}$ and M a subgroup of Aut (Y) such that $M=M_{1} \times M_{2}$ with $M_{1} \cong M_{2} \cong M_{24}$. Then $Y=Y_{1} \oplus Y_{2}$ where $\left[Y_{2}, M_{i}\right]=$ Y_{i} and $\left[Y_{i}, M_{j}\right]=0, i \neq j$.

Proof. Let γ be an element of order 23 of $\operatorname{Aut}(Y)$. If γ acts regularly on Y, then $C_{\mathrm{Aut}(Y)}(\gamma)$ is isomorphic to $G L_{2}\left(2^{11}\right)$ or is cyclic. Otherwise $\operatorname{dim}\left(C_{Y}(\gamma)\right)=11$ and $C_{\mathrm{Aut}(Y)}(\gamma) \cong Z_{1023} \times L_{11}(2)$. Let $\gamma_{i} \in M_{i}$ be an element of order 23. Then it is clear that $\operatorname{dim}\left(C_{r}\left(\gamma_{i}\right)\right)=11$. If we set $Y_{i}=C_{Y}\left(\gamma_{j}\right), i \neq j$, then an easy argument verifies that Y_{1} and Y_{2} satisfy $\left[Y_{i}, M_{j}\right]=0, i \neq j$ and $\left[Y_{i}, M_{i}\right]=Y_{i}, i=1,2$ as required.

In the next result, we list certain properties of $2 M_{22}$ which are required for (3.5).
(3.4) Let $D \cong 2 M_{22}, T \in \operatorname{Syl}_{2}(D)$. Then
(i) D has 3 classes of involutions.
(ii) $Z(T)$ has order 4 and contains representatives of the classes of involutions of D.
(iii) T has precisely $2 E_{32}$ subgroups, say F_{1} and F_{2}. Each is normal in T and self-centralizing in D. Also $N\left(F_{1}\right) / F_{1} \cong A_{6}$ and $N\left(F_{2}\right) / F_{2} \cong S_{5}$.

Proof. See Burgoyne and Fong [4].
(3.5) Let Γ be a group with an involution z such that $C(z)=$
$O(C(z)) D\langle z\rangle$ with $D=E(C(z))$ and $D / O(D) \cong 2 M_{22}$. Assume further that Γ has a 2 -subgroup $R^{*}=\left(R_{1} \times R_{2}\right)\langle z\rangle$ where $R_{2}=R_{1}^{z}$ has type $2 M_{22}$ and $R=R_{1} \times R_{2} \leqq O^{2}(\Gamma)$. Then $\Gamma=O(\Gamma) E(\Gamma)\langle z\rangle$ with $E(\Gamma) / O(E(\Gamma)) \cong$ $2 M_{22} \times 2 M_{22}$.

Proof. By assumption and (3.4)(iii), R has a normal subgroup $V=V_{1} \times V_{2}$ where $V_{i} \triangleleft R_{i}$ and $V_{i} \cong E_{32}, i=1$, 2. If α is an involution of R, then $m_{2}\left(C_{V_{i}}(\alpha)\right) \geqq 3, \quad i=1,2$, gives $m_{2}\left(C_{R}(\alpha)\right) \geqq 7$. Since $m_{2}(C(z))=6$, it follows that $z^{\Gamma} \cap R=\varnothing$. Also all involutions of $R^{*}-R$ are conjugate to z which then implies that $z^{\Gamma} \cap R^{*}=z^{R^{*}}$. Since $C_{R^{*}}(z) \in \operatorname{Syl}_{2}(C(z))$, we see that $R^{*} \in \operatorname{Syl}_{2}(\Gamma)$. Furthermore by the Thompson transfer lemma and assumption, $z \notin O^{2}(\Gamma)$ and $R \in$ $\operatorname{Syl}_{2}\left(O^{2}(\Gamma)\right)$. Let $\Lambda=O^{2}(\Gamma)$.

We now examine the structure of $C(D)$. Observe that $C_{C(D)}(z)=$ $O(C(z))\langle z, t\rangle$ where $\langle t\rangle=O_{2}(D)$. By a result of Suzuki, $C(D)$ has dihedral or semidihedral Sylow 2 subgroups. Let $Z \in \operatorname{Syl}_{2}\left(C_{A}(D)\right.$) so that $\langle Z, z\rangle \in \operatorname{Syl}_{2}(C(D))$. Since $C_{R}(z) \in \operatorname{Syl}_{2}(D)$ and $Z(R)=C_{R}\left(C_{R}(z)\right) \in$ $\operatorname{Syl}_{2}\left(C_{A}\left(C_{R}(z)\right)\right.$), we may assume that $Z \leqq Z(R)$. Therefore Z is elementary abelian by (3.4)(ii) and we have either $\langle Z, z\rangle \cong D_{8}$ and $Z \cong E_{4}$, or $Z=\langle t\rangle$. Let $N=N(Z)$ and $\bar{N}=N / Z$. In either case, $\langle\bar{z}\rangle \in \operatorname{Syl}_{2}\left(C_{\bar{N}}(\bar{D})\right)$ and $C_{\bar{N}}(\bar{z}) \leqq N_{\bar{N}}(\bar{D})$ together imply that \bar{D} is a standard component of \bar{N}. By Theorem A [8] and (3.1), $E(\bar{N})=$ $\left\langle\bar{D}^{\bar{N}}\right\rangle, Z(E(\bar{N}))$ has odd order and $E(\bar{N}) / Z(E(\bar{N})) \cong M_{22} \times M_{22}$. Let $K=E(N)$ have components K_{1} and K_{2} with $K_{1}^{z}=K_{2}$ and $K_{1} / Z\left(K_{1}\right) \cong$ M_{22}. Then $D=C_{K}(D)$ and $D / O(D) \cong 2 M_{22}$ implies that $K / O(K) \cong$ $2 M_{22} \times 2 M_{22}$. Thus $|Z|=4$ and $K=O^{2^{\prime}}\left(C_{\Lambda}(Z)\right)$.

Note that $R \leqq K$. Without loss, we may assume that $R_{i} \leqq K_{i}$, $i=1,2$. By (3.4iii), let V_{i} and W_{i} be the $2 E_{32}$ subgroups of R_{i} with $C_{K_{i}}\left(V_{i}\right)=O\left(K_{i}\right) V_{i}, C_{K_{i}}\left(W_{i}\right)=O\left(K_{i}\right) W_{i}, N_{K_{i}}\left(V_{i}\right) / C_{K_{i}}\left(V_{i}\right) \cong S_{5}$ and $N_{K_{i}}\left(W_{i}\right) / C_{K_{i}}\left(W_{i}\right) \cong A_{6}, i=1,2$. Set $W=W_{1} \times W_{2}, M=N(W)$ and $\bar{M}=$ M / W. Then $\overline{M \cap K}=E(\overline{M \cap K}) O(\overline{M \cap K})$ with $E(\overline{M \cap K}) / O(E(\overline{M \cap K})) \cong$ $A_{6} \times A_{6}$. Since $W_{1}^{z}=W_{2}, C_{m}(z W)=N(\langle z, W\rangle)=W C_{m}(z)$. Also $K=$ $K_{1} K_{2}$ with $K_{1}^{z}=K_{2}$ implies that $C_{M \cap K}(z)$ involves A_{6}. Hence by (3.4iii), $C_{\bar{M}}(\bar{z})=\langle\bar{z}\rangle \times O\left(C_{\bar{M}}(\bar{z})\right)(\overline{D \cap M})$ where $\overline{D \cap M}=E\left(C_{\bar{M}}(\bar{z})\right)$ and $\overline{D \cap M} / O(\overline{D \cap M}) \cong A_{6}$. It now follows that $\overline{D \cap M}$ is a standard component of \bar{M} and we have from Proposition 2.3 [7] and (3.1) that $\bar{M}=O(\bar{M}) E(\bar{M})\langle\bar{z}\rangle$ with $E(\bar{M}) / O(E(\bar{M})) \cong A_{6} \times A_{6}$. Furthermore $E(\overline{M \cap K})=E(\bar{M})$ then implies that $Z=C_{W}(E(\bar{M}))$ and this yields $Z \triangleleft M$.

Our next goal is to show that $Z O(\Gamma) \triangleleft \Gamma$. Towards this end, observe that $W, W_{1} \times V_{2}, V_{1} \times W_{2}$ and $V_{1} \times V_{2}$ are the only $E_{2^{10}}$ subgroups of R and that S_{5} is not involved in $N_{A}(W)$ whereas S_{5} is involved in $N_{A}\left(W_{1} \times V_{2}\right), N_{A}\left(V_{1} \times W_{2}\right)$ and $N_{A}\left(V_{1} \times V_{2}\right)$. This prevents W from fusing in Λ to $W_{1} \times V_{2}, V_{1} \times W_{2}$ or $V_{1} \times V_{2}$ and
yields $W \triangleleft N_{A}(R)$. Now $Z(R)$ contains representatives of the classes of involutions of K by (3.4i), hence of Λ as well. Since $Z \leqq Z(R)$, Z fails to be strongly closed in R with respect to Λ only when $Z^{\lambda} \cap Z(R) \nsubseteq Z$ for some $\lambda \in \Lambda$. If in fact this happens, then we may choose $\lambda \in N_{A}(R)$. But $W \triangleleft N_{A}(R)$ implies that $\lambda \in N_{A}(W)$ and $Z \triangleleft N_{A}(W)$ then gives $Z^{\lambda}=Z$, a contradiction. Applying Goldschmidt's theorem [11], we conclude that $Z O(\Gamma) \triangleleft \Gamma$. This in turn yields $\Gamma=$ $O(\Gamma) N$.

Since $K=E(N)=O^{2^{2}}(N)$, it suffices to show that $[K, O(\Gamma)]=1$. Recall that $E(C(z))=D=C_{K}(z)$. Let $T=C_{R}(z) \in \operatorname{Syl}_{2}(D)$ and $Z(T)=$ $\left\langle t, t_{1}\right\rangle=Z(T) \leqq Z(R)$. Then for $X=O(\Gamma)$, we have $X=C_{X}(z) C_{X}\left(z t_{1}\right) C_{X}\left(t_{1}\right)$. Now $C_{X}(z) \leqq O(C(z))$ and $[O(C(z)), D]=1$ gives $C_{X}(z) \leqq C_{X}\left(t_{1}\right)$. Also $z^{\lambda}=z t_{1}$ for some $\lambda \in Z(R)$, hence $t_{1}=t_{1}^{\lambda} \in D^{\lambda}=E\left(C\left(z t_{1}\right)\right)$. By the same reasoning, $C_{X}\left(z t_{1}\right) \leqq C_{X}\left(t_{1}\right)$ and so $\left[t_{1}, X\right]=1$. But $\left\langle t_{1}^{K}\right\rangle=K$ and therefore $[K, X]=1$ as required.

The next result will be used in conjunction with (3.5).
(3.6) Let $\Gamma_{0}=\Gamma_{1} \times \Gamma_{2}$ with $\Gamma_{1} \cong \Gamma_{2} \cong 6 M_{22}$ and suppose $H=$ $H_{1} \times H_{2}$ is a perfect subgroup of Γ_{0}. Then by reindexing if necessary $H_{1} \leqq \Gamma_{1}$ and $H_{2} \leqq \Gamma_{2}$.

Proof. Let $\widetilde{\Gamma}_{0}=\Gamma_{0} / \Gamma_{1}$ and observe that $\tilde{H}=\widetilde{H}_{1} \widetilde{H}_{2}$ where \widetilde{H}_{i} is perfect and $\left[\widetilde{H}_{1}, \widetilde{H}_{2}\right]=1$. Since $\widetilde{\Gamma}_{0} \cong 6 M_{22}$ and $6 M_{22}$ contains no subgroup which is the central product of two proper perfect subgroups (see Conway [5], p. 235), $\tilde{H} \neq 1$ and either $H_{1} \leqq \Gamma_{1}$ or $H_{2} \leqq \Gamma_{1}$. Assume that $H_{1} \leqq \Gamma_{1}$. Then by the same reasoning applied to Γ_{0} / Γ_{2}, we have $H_{2} \leqq \Gamma_{2}$.
4. Proof of Theorem A. Let G be a group with $O(G)=1$, A a standard component of G with $A / Z(A) \cong J_{4}$ and $X=\left\langle A^{G}\right\rangle$. Furthermore, let $K=C(A)$ and $R \in \operatorname{Syl}_{2}(K)$. It follows from (2.7) that $Z(A)=1$ and from (2.8) that $N(A)=K A$. We shall assume that G is a minimal counterexample to Theorem A. Thus $X \neq A$ whereupon X is simple and $G \leqq \operatorname{Aut}(X)$ by Lemma 2.5 [1].

(4.1) $|R|=2$. Consequently $G=\langle X, R\rangle$.

Proof. Let $g \in G-N(A)$ be chosen so that $Q=K^{g} \cap N(A)$ has a Sylow 2 subgroup T of maximal order. If $m(R)>1$, then by ([3], (3.2) and (3.3)), R is elementary abelian and we may choose g so that $T=R^{g}$. On the other hand, if $m(R)=1$ and T is trivial, then $\Omega_{1}(R)$ is isolated in $C\left(\Omega_{1}(R)\right)$, hence $\Omega_{1}(R)$ is contained in $Z^{*}(G)$ by [10] contradicting $F^{*}(G)$ is simple. Thus in either case, we may assume that T is nontrivial.

Now $Q=N(A)=K \times A$ implies that T is isomorphic to a subgroup of A under the projection map $\pi: N(A) \rightarrow A$. An easy argument shows that Q is tightly embedded in $Q A$. Moreover, $\pi(Q)^{a}=$ $\pi\left(Q^{a}\right)$ for $a \in A$ then implies that $\pi(Q)$ is normalized by $\left\langle C_{A}(\alpha): a \in\right.$ $\left.\pi(T)^{\sharp}\right\rangle$. Assume first that $m(R)>1$ so that R is elementary abelian and $T=R^{g}$. Let $a \in \pi(T)^{\ddagger}$. Then $\pi(Q) \cap C_{A}(\alpha)$ is a normal subgroup of $C_{A}(\alpha)$ with Sylow 2 subgroup $\pi(T) \cong T$. The structure of $C_{A}(\alpha)$ is given in (2.1) and from this we conclude that a belongs to the class $\left(2_{2}\right)$ of A and $\pi(Q) \cap C_{A}(\alpha)=\pi(T) \cong E_{2^{11}}$. But $\pi(T)$ also contains involutions of the class $\left(2_{1}\right)$ and this gives a contradiction.

Assume finally that $m(T)=1$ and let $\langle a\rangle=\Omega_{1}(\pi(T))$. Arguing as before, $\pi(Q) \cap C_{A}(\alpha)$ is a normal subgroup of $C_{A}(\alpha)$ with Sylow 2 subgroup $\pi(T)$, hence by (2.1), $\pi(T)$ has order 2. Since $\pi(T) \cong T$, we may set $T=\langle r a\rangle$ with $1 \neq a \in A$ and $r \in R$. Now $[A, R]=1$ gives $N_{R}(T)=C_{R}(r)$ and since $N_{R}(T) \cong T$ by [2, Theorem 2], we conclude that R has order 2 proving the result.

Since G is a minimal counterexample to Theorem A and A is a standard component of $\langle R, X\rangle$, with $X=\left\langle A^{X}\right\rangle$, it follows that $\langle R, X\rangle$ is also a counterexample to Theorem A. Hence $G=\langle X, R\rangle$.

Notation. By (4.1), we may set $\langle z\rangle=R$ so that $G=\langle X, z\rangle$. Also $C(z)=O(C(z)) \times\langle z\rangle \times A$ by (2.7) and (2.8). Let $T_{0} \in \operatorname{Syl}_{2}(A)$, $T=\langle z\rangle \times T_{0} \in \operatorname{Syl}_{2}(C(z))$ and $\{V\}=\{\langle z\rangle \times U\}=\mathscr{E}_{12}(T)$ where $U=$ $\mathscr{E}_{11}\left(T_{0}\right)$. Recall from (2.4) that $N_{C(z)}(V)=O(C(z)) \times\langle z\rangle \times U K$ where $U K=N_{A}(U), \quad K \cong M_{24}$ and U is $F_{2} K$ isomorphic to the Fischer module.
(4.2) $z^{G} \cap A=\varnothing$.

Proof. Note that z is not a square in G whereas every involution of A is a square by (2.1).
(4.3) Let $N=N(V)$. Then $z^{G} \cap V=z U . N=O(N) \times W K$ where $W=\langle z\rangle Y$ is special of order 2^{23} with $Z(W)=U, Y$ is a homocyclic abelian group of order 2^{22} invariant under K and Y / U is $F_{2} K$ isomorphic to U.

Proof. Since $C_{N}(z)=O(C(z)) \times\langle z\rangle \times U K$, it suffices, in light of (3.1), to show that $z \notin Z(N)$. Assume in fact that $z \in Z(N)$. Then $V=J(T)$ and $T \in \operatorname{Syl}_{2}(N)$ together imply that $T \in \operatorname{Syl}_{2}(G)$. Furthermore V is weakly closed in N with respect to G and so N controls fusion of $C(V)=O(N) \times V$. But V contains reprssentatives of the classes of involutions of $C(z)$ and therefore z is isolated in $C(z)$. Applying the Z^{*} theorem [10], we then have $z \in Z^{*}(G)$ which is incompatible with $G \leqq$ Aut (X).

We continue our analysis using the structure and notation for N set up in (4.3). In order to eliminate the ambiguity in the structure of Y we need the following result.
(4.4) Let $\langle\delta\rangle \in \operatorname{Syl}_{7}(A), \Delta=C(\delta)$ and $\bar{\Delta}=\Delta / O(\Delta)$. Then either $\left.\bar{\Delta} \cong S_{5}\right\} Z_{2}$ or $\bar{\Delta}=E(\bar{\Delta})\langle\bar{z}\rangle$ where $E(\bar{\Delta}) \cong U_{3}(5), L_{3}(5)$ or $L_{2}(25)$.

Proof. According to (2.3), $C_{A}(\delta)=\langle\delta\rangle \times D$ where $D \cong S_{5}$. Moreover if e and d are involutions in D^{\prime} and $D-D^{\prime}$ respectively, then by (2.1), $e \in\left(2_{2}\right)$ and $d \in\left(2_{1}\right)$. We shall first show that z fuses to $z d$ and $z e$ in Δ. We know from (4.3) that z fuses to both $z d$ and $z e$ in G. Set $H=C(z)$ and assume that $(z d)^{g}=z, g \in G$. Now $C_{H}(z d)^{g}=$ $C(\langle z, z d\rangle)^{g}=C\left(\left\langle z^{g}, z\right\rangle\right)=C_{H}\left(z^{g}\right)$. Since $z^{G} \cap H=\{z\} \cup(z d)^{H} \cup(z e)^{H}$ and $C_{H}(z d) \not \equiv C_{H}(z e)$, we may replace g by $g h, h \in H$, if necessary, to insure that $z^{g}=z d$. Thus $C_{H}(z d)^{g}=C_{H}(z d)$. Let $B=O^{2^{\prime}}\left(C_{H}(z d)\right)=$ $\langle z\rangle \times C_{A}(d)$ and $B=B / O_{2,3}(B) \cong$ Aut $\left(M_{22}\right)$. Since $B^{g}=B$ and $\langle\delta\rangle \in$ $\operatorname{Syl}_{7}(B)$, we may assume that $\langle\delta\rangle^{g}=\langle\delta\rangle$. If $\delta^{g} \sim \delta^{-1}$, then g induces an automorphism of $O^{2}(\bar{B}) \cong M_{22}$ in which an element of order 7 is inverted, a contradiction. Therefore $\delta^{g} \sim \delta$ in U and again we may replace g by $g b, b \in B$, if necessary to obtain $\delta^{g}=\delta$ as required. We may prove that z fuses to $z e$ in Δ in the exact same way making use of the fact that $O^{2 \prime}\left(C_{H}(z d)\right) / O_{2}\left(C_{H}(z d)\right) \cong \operatorname{Aut}\left(M_{22}\right)$ by (2.1).

Returning to the structure of $\bar{\Delta}=\Delta / O(\Delta)$, we have $C_{-}(\bar{z})=$ $\overline{O(H)} \times\langle\bar{z}\rangle \times \bar{D}$ so that \bar{D}^{\prime} is standard in \bar{U}. Since $\bar{\Delta}$ has sectional 2 rank at most 4 by a result of Harada [14], we may apply the main theorem of [13] to conclude that $E(\bar{\Delta})$ is isomorphic (i) A_{5}, (ii) $A_{5} \times A_{5}$, (iii) $L_{3}(4)$, (iv) M_{12}, (v) $U_{3}(5)$, (vi) $L_{3}(5)$, (vii) $L_{2}(25)$, or (viii) A_{7}. Furthermore except in case (i), $\bar{\Delta} \leqq \operatorname{Aut}(E(\bar{\Delta}))$. Since $\overline{z d} \sim \bar{z} \sim \overline{z e}$ in $\bar{\Delta}$, and $\bar{d} \nsim \bar{z} \nsim \bar{e}$ by (4.2), we may easily eliminate cases (i), (iii), (iv) and (viii) and show that in case (ii), $\bar{\Delta} \cong S_{5}$? Z_{2}.

REMARK. If $E(\bar{\Delta})$ is simple then both $O_{2^{\prime}, E}(\Delta)$ and $\Delta-O_{2^{\prime}, E}(\Delta)$ contain one class of involutions. In particular, $z \notin O_{2^{\prime}, E}(\Delta)$ and $d \nsim$ $z \nsim e$ together imply that the classes $\left(2_{1}\right)$ and $\left(2_{2}\right)$ of A fuse in G.
(4.5) $\quad Y \cong E_{2^{22}}$.

Proof. It follows from (4.3) that either the result is true or Y is homocyclic of exponent 4. Assume the latter for purpose of a contradiction. We know that $N=O(N) \times W K$. Thus if $\langle\delta\rangle \in$ $\operatorname{Syl}_{7}(K)$, and $\Delta=C(\delta)$, then the structure of $\bar{\Delta}=\Delta / O(\Delta)$ is given by (4.4). Now $C_{Y}(\delta) \cong Z_{4} \times Z_{4}$ and $C_{K}(\delta)$ contains an element of order 3 which acts regularly on $C_{Y}(\delta)$. This implies that $O^{2}(\Delta)$ contains a $Z_{4} \times Z_{4}$ subgroup and we conclude from (4.4) that $\bar{\Delta}=E(\bar{\Delta})\langle\bar{z}\rangle$ with
$E(\bar{J}) \cong L_{3}(5)$. Since $E(\bar{J})$ has wreathed Sylow 2 subgroups of order 2^{5} and \bar{z} acts as the graph automorphism, z must invert $C_{Y}(\delta)$. But the set of all elements of Y inverted by z forms a subgroup of Y properly containing U and invariant under K which forces z to invert Y.

We claim that Y is the unique $\left(Z_{4}\right)^{11}$ subgroup of N. In fact let Y_{1} be another such subgroup of N. Then $W K=\widetilde{W K} / V \cong E_{2^{11}} \cdot M_{24}$ together with $m_{2}\left(\widetilde{Y}_{1}\right)=11$ gives $\widetilde{Y}_{1}=\widetilde{W}$. Therefore $Y_{1} \leqq W=\langle z\rangle Y$ and since z inverts Y, we must have $Y=Y_{1}$. This in turn implies that W must be the unique subgroup of N of its isomorphism type as well. In particular, if $N=N(W)$, then W is weakly closed in its normalizer with respect to G. Hence N contains a Sylow 2 subgroup of G and this in turn forces N to control fusion of $C(W)=$ $O(N) U$. Now the $2 N$ classes of involutions of U are the sets $\left(2_{1}\right) \cap U$ and $\left(2_{2}\right) \cap U$ of A. Also in the remark following (4.4), we observed that the classes $\left(2_{1}\right)$ and $\left(2_{2}\right)$ of A fuse in G if $E(\bar{J}) \cong L_{3}(5)$. Thus N must act transitively on U which is clearly not the case and we conclude that $N<N(W)$.

We now investigate the structure of $N(W)$. First observe that $C(W) \leqq C(V)$ gives $C(W)=U O(N)$. Set $\overline{N(W)}=N(W) / U$ and consider the action of $\overline{N(W)}$ on \bar{W}. Since Y is characteristic in W, \bar{Y} is normal in $\overline{N(W)}$. Also $C_{\overline{N(W)}}(\bar{z})=\bar{N}=\langle\bar{z}\rangle \times O(\bar{N}) \times \bar{Y} \bar{K}$. Therefore we may apply (3.1) to conclude that $N(W)=O(N) \times W^{*} K$ where W^{*} is a 2 -group containing W invariant under $K, W=\langle z\rangle Y^{*}$ where Y^{*} contains Y and is invariant under K with $\bar{Y}^{*} / \bar{Y} F_{2} K$ isomorphic to \bar{Y}.

But $Y^{*} / Y, Y / U$ and U are all $F_{2} K$ isomorphic, hence $\left|C_{Y}(\delta)\right|=2^{6}$ and this in turn gives $\left|C_{W^{*}}(\delta)\right|=2^{7}$ which contradicts $|\Delta|_{2}=2^{6}$.
(4.6) $W \in \operatorname{Syl}_{2}(C(U))$. Hence $Y \in \operatorname{Syl}_{2}(C(Y))$.

Proof. The second statement follows easily from the first. Now $z^{G} \cap Y=\varnothing$ together with $z^{N}=z U$ by (4.3) gives $\left\langle z^{G} \cap W\right\rangle=V$. Thus V is weakly closed in W with respect to G. This implies that $N_{C(U)}(W)=N \cap C(U)=O(N) \times W$ by (4.3), hence $W \in \operatorname{Syl}_{2}(C(U))$ as required.
(4.7) Let $M=N(Y)$ and $\bar{M}=M / Y$. Then
(i) $C_{\bar{m}}(\bar{z})=\bar{N}=\overline{O(N)} \times\langle\bar{z}\rangle \times \bar{K}$.
(ii) $\bar{z} \notin Z^{*}(\bar{M})$.

Proof. Suppose $z^{\alpha} \in z Y, \alpha \in M$. Since $z^{G} \cap W=z^{W}=z U$ by (4.3), αw normalizes V, hence $\alpha w \in N$. This in turn implies that $\alpha \in N$ and we see that $\bar{N}=\overline{C_{m}(z)}=O(\bar{N}) \times\langle\bar{z}\rangle \times \bar{K}$, proving (i).

To prove (ii), let b be an involution of $U K-U$. Since z fuses to $z a$ for any involution $\alpha \in A$ by (4.3), there exists $g \in G$ such that $z^{g}=z b$. By (2.4), we see that $m_{2}(C(z b))=12$ and all $E_{2^{12}}$ subgroups of $C(z b)$ are conjugate. Therefore $\left\langle z b, C_{Y}(z b)\right\rangle=V^{g h}$ for some $h \in$ $C(z b)$. Observe that $C_{Y}(z b)$ is generated by those involutions of $\left\langle z b, C_{Y}(z b)\right\rangle$ which are not conjugate to $z b$. Hence $U^{g h}=C_{Y}(z b)$. Also $W \in \operatorname{Syl}_{2}(C(U))$ by (4.6) implies that $W^{g h} \in \operatorname{Syl}_{2}\left(C\left(C_{Y}(z b)\right)\right)$. Since $\langle Y, z b\rangle \in \operatorname{Syl}_{2}\left(C\left(C_{Y}(z b)\right)\right)$ as well, there exists $k \in G$ such that $W^{\text {ghk }}=$ $\langle Y, z b\rangle$. Finally, $z^{g h k} \in z^{G} \cap\langle Y, z b\rangle=(z b)^{Y}$ implies that $z^{g h k l}=z b$ for $l \in\langle Y, z b\rangle$. Setting $g^{\prime}=g h k l$, we have $z^{g^{\prime}}=z b$ and $W^{g}=\langle Y, z b\rangle$. Therefore $Y^{g^{\prime}}=Y$ and $z \sim z b$ in M. We have shown that $\bar{z} \sim \overline{z b}$ in \bar{M} and thus $\bar{z} \notin Z^{*}(\bar{M})$.
(4.8) $\quad M=O(M)\left(M_{1} \times M_{2}\right)\langle z\rangle$ where $M_{1}^{z}=M_{2} \cong E_{2^{11}} \cdot M_{24}$.

Proof. If follows from (4.7) that $C_{\bar{M}}(\bar{z})=\langle\bar{z}\rangle \times \bar{K}$ and $\bar{z} \notin Z^{*}(\bar{K})$. Therefore, by a result of Koch [18] and (3.1), $\bar{M}=O(\bar{M}) E(\bar{M})\langle\bar{z}\rangle$ where $E(\bar{M}) \cong M_{24} \times M_{24}$. Let M_{1} and M_{2} be the minimal normal subgroups of M which map onto the direct factors of $E(\bar{M})$. By (3.2), $Y=U_{1} \times U_{2}$ where $\left[M_{i}, U_{i}\right]=U_{i}$ and $\left[M_{i}, U_{j}\right]=1, i \neq j$. It is clear that either $O_{2}\left(M_{i}\right)=U_{i}$ or $O_{2}\left(M_{i}\right)=Y, i=1,2$. Assume the latter happens and set $\widetilde{M}_{1}=M_{1} / U_{1}$. Since M_{1} is perfect and U_{2} is central in M_{1}, \widetilde{M}_{1} is a perfect central extension of E_{211} by M_{24}. But this contradicts the fact that M_{24} has trivial multiplier [4]. Therefore $O_{2}\left(M_{i}\right)=U_{i}, \quad i=1,2$. Now $M_{1} \cap M_{2} \leqq O_{2}\left(M_{1}\right) \cap O_{2}\left(M_{2}\right)=$ $U_{1} \cap U_{2}=1$ gives $M_{1} M_{2}=M_{1} \times M_{2}$. Finally $\quad M_{1}^{z}=M_{2} \cong C_{M_{1} M_{2}}(z) \cong$ $E_{2^{11}} \cdot M_{24}$ proving the result.

Notation. From (4.8), let $M_{0}=\left(M_{1} \times M_{2}\right)\langle z\rangle$ with $M_{2}=M_{1}^{z} \cong$ $E_{211} \cdot M_{24}$. Set $M_{1}=U_{1} K_{1}$ with $U_{1}=O_{2}\left(M_{1}\right), K_{1} \cong M_{24}$ and set $M_{2}=$ $U_{2} K_{2}$ with $U_{2}=U_{1}^{z}, K_{2}=K_{1}^{z}$. Furthermore, let $U K=C_{M_{1} M_{2}}(z)$ with $U=C_{U_{1} U_{2}}(z)$ and $K=C_{K_{1} K_{2}}(z)$. Finally, let $S_{1} \in \operatorname{Syl}_{2}\left(M_{1}\right), S_{2}=S_{1}^{z} \in$ $\operatorname{Syl}_{2}\left(M_{2}\right), S=S_{1} \times S_{2}$ and $S^{*}=\langle S, z\rangle \in \operatorname{Syl}_{2}\left(M_{0}\right)$.
(4.9) $\quad S^{*} \in \operatorname{Syl}_{2}(G), S=S^{*} \cap X \in \operatorname{Syl}_{2}(X)$ and $z \notin X$.

Proof. First observe that all involutions of $S^{*}-S$ are conjugate in S^{*} to z and $C_{S^{*}}(z) \in \operatorname{Syl}_{2}(C(z))$. Furthermore, it is easy to see that $z^{G} \cap S=\varnothing$. In fact, if s is an involution of S, then $C_{r}(s)=C_{Y_{1}}(s) \times C_{Y_{2}}(s)$ has order at least 2^{12} gives $m_{2}\left(C_{Y}(s)\right) \geqq 13$ whereas $m_{2}(C(z))=12$ by (2.4). Therefore $z^{S^{*}}=z^{G} \cap S$ and we have at once that $S^{*} \in \operatorname{Syl}_{2}(G)$. It is clear from the Thompson transfer lemma that $z \notin O^{2}(G)$. Since $G=\langle X, z\rangle$, we have $X=O^{2}(G)$. Thus $z \notin X$. Also $S \leqq O^{2}\left(M_{0}\right) \leqq X$ gives $S=S^{*} \cap X \in \operatorname{Syl}_{2}(X)$.
(4.10) Let γ be an element of order 3 of A and $\Gamma=C(\gamma)$. Then $\Gamma=O(\Gamma) E(\Gamma)\langle z\rangle$ where $E(\Gamma)=\Gamma_{1} \times \Gamma_{2}$ and $\Gamma_{1}^{z}=\Gamma_{2} \cong 6 M_{22}$.

Proof. First observe from (2.2) that $C_{r}(z)=O(C(z)) \times\langle z\rangle \times C_{A}(\gamma)$ where $C_{A}(\gamma) \cong 6 M_{22}$. Also by (2.2) we may assume that γ belongs to the class $\left(3_{1}\right)$ of $U K$. Thus we may write $\gamma=\gamma_{1} \gamma_{2}$ where $\gamma_{2}=\gamma_{1}^{2}$ and γ_{i} belongs to the class (3_{1}) of $M_{i}, i=1,2$. Applying (2.6) gives $C_{x_{0}}(\gamma)=\left(C_{w_{1}}\left(\gamma_{1}\right) \times C_{M_{2}}\left(\gamma_{2}\right)\right)\langle z\rangle$ where $C_{M_{1}}\left(\gamma_{1}\right)^{z}=C_{M_{2}}\left(\gamma_{2}\right) \cong E_{32} \cdot 3 A_{8}$. Since $C_{u_{1}}\left(\gamma_{1}\right)$ is isomorphic to a 2 -local subgroup of $6 M_{22}$ which contains a Sylow 2 subgroup of $6 M_{22}$, we may set $R^{*} \in \operatorname{Syl}_{2}\left(C_{x_{0}}(\gamma)\right)$ where $R^{*}=$ $\left(R_{1} \times R_{2}\right)\langle z\rangle, R_{2} \in \operatorname{Syl}\left(C_{\mu_{1}}\left(\gamma_{1}\right)\right)$ and $R_{2}=R_{2}^{z}$ has type $2 M_{22}$. Also $R_{1} \times$ $R_{2} \leqq O^{2}(\Gamma)$. Thus by (3.5), $\Gamma=O(\Gamma) E(\Gamma)\langle z\rangle$ where $E(\Gamma) / O(E(\Gamma)) \cong$ $2 M_{22} \times 2 M_{22}$. But $\quad\left(C_{M_{0}}(\gamma)\right)^{(\alpha)}=C_{M_{1}}(\gamma) \times C_{N_{2}}(\gamma) \leqq E(\Gamma)$ then gives $E(\Gamma)=\Gamma_{1} \times \Gamma_{2}$ where $\Gamma_{2}=\Gamma_{1}^{z} \cong 6 M_{22}$.
(4.11) Let γ_{i} and τ_{i} be representatives of the classes $\left(3_{1}\right)$ and $\left(3_{2}\right)$ respectively of M_{i} with $\gamma_{1}^{2}=\gamma_{2}$ and $\tau_{1}^{z}=\tau_{2}$. Let $\gamma=\gamma_{1} \gamma_{2}$ and $\tau=\tau_{1} \tau_{2}$. Then $\gamma_{1} \tau_{2}, \tau_{1} \gamma_{2}, \tau$ and γ are conjugate in X.

Proof. We know that τ is conjugate to γ in A by (2.2). Since z leaves γ^{x} invariant under conjugation and $\left(\tau_{1} \gamma_{2}\right)^{z}=\gamma_{1} \tau_{2}$, it suffices to show that $\tau_{1} \gamma_{2}$ fuses to γ in X. This in turn may be proved by verifying that τ_{1} fuses to γ_{1} in $C_{X}\left(\gamma_{2}\right)$. Let $P_{i} \in \operatorname{Syl}_{3}\left(M_{i}\right)$ with $P_{1}^{z}=$ $P_{2}, Z\left(P_{i}\right)=\left\langle\gamma_{i}\right\rangle$ and assume that $\tau_{i} \in P_{i}, i=1,2$. Since $C_{H_{0}}(\gamma)^{(\infty)}=$ $C_{M_{1}}\left(\gamma_{1}\right) \times C_{w_{2}}\left(\gamma_{2}\right)$ is contained in $E(\Gamma)=\Gamma_{1} \times \Gamma_{2}$, it follows from (3.6), that subject to reindexing, if necessary, $C_{N_{i}}\left(\gamma_{i}\right) \leqq \Gamma_{i}, i=1,2$. In particular, $P_{i} \in \operatorname{Syl}_{3}\left(\Gamma_{i}\right)$ and $\left\langle\gamma_{i}\right\rangle=O_{3}\left(\Gamma_{i}\right), i=1,2$. Now P_{1} contains an E_{9} subgroup $\left\langle\gamma_{1}, \gamma_{1}^{*}\right\rangle$ all of whose elements of order 3 are conjugate in M_{1} to γ_{1}. On the other hand, M_{22} contains one class of elements of order 3, hence τ_{1} is conjugate in Γ_{1} to an element of $\left\langle\gamma_{1}, \gamma_{1}^{*}\right\rangle$. Therefore, γ_{1} is conjugate to τ_{1} in $\left\langle M_{1}, \Gamma_{1}\right\rangle \leqq C_{x}\left(\gamma_{2}\right)$ as required.
(4.12) $\quad I\left(S_{i}\right)=U_{i}^{X} \cap I(S)$.

Proof. Since S has type $J_{4} \times J_{4}, Y=J(S)$ by (2.4). Therefore $N_{X}(Y)$ controls fusion of Y and we have that $U_{i}^{X} \cap Y=U_{i}, i=1,2$.

We now observe from (2.6) that every involution of $M_{1} M_{2}-Y$ centralizes an element of order 3 of $M_{1} M_{2}$ which is conjugate to $\tau_{1} \tau_{2}=\tau, \gamma_{1} \gamma_{2}=\gamma, \tau_{1} \gamma_{2}$ or $\gamma_{1} \tau_{2}$. Also $C_{x_{i}}\left(\gamma_{i}\right)=C_{U_{i}}\left(\gamma_{i}\right) C_{K_{i}}\left(\gamma_{i}\right) \cong E_{32} \cdot 3 A_{6}$ and $C_{M_{i}}\left(\tau_{i}\right) \cong C_{V_{i}}\left(\tau_{i}\right) C_{K_{i}}\left(\tau_{i}\right) \cong E_{8}\left(L_{3}(2) \times Z_{3}\right)$. In the course of proving (4.11), we showed that up to reindexing, it may be assumed that $C_{M_{i}}\left(\gamma_{i}\right) \leqq \Gamma_{i}, i=1,2$. Let $R=R_{1} \times R_{2} \in \operatorname{Syl}_{2}\left(\Gamma_{1} \Gamma_{2}\right)$ where $R_{i} \in \operatorname{Syl}_{2}\left(\Gamma_{i}\right)$ and $R_{i} \leqq C_{M_{i}}\left(\gamma_{i}\right), i=1,2$. By (3.4), $Z\left(R_{i}\right)$ has order 4 and contains representatives of the 3 classes of involutions of $\Gamma_{i}, i=1,2$. But
then every involution of R_{i} is conjugate to an element of $Z\left(R_{i}\right)$ whereas every involution of $R-R_{i}$ is conjugate to an element of $Z(R)-Z\left(R_{i}\right)$. Since $Y \cap R=\left(U_{1} \cap R_{1}\right) \times\left(U_{2} \cap R_{2}\right)$ with $U_{i} \cap R_{i} \cong E_{32}$, we have $Z\left(R_{i}\right) \leqq U_{i}$ and $Z(R)-Z\left(R_{i}\right) \subseteq U-U_{i}$. Therefore $U_{i}^{X} \cap$ $Y=U_{i}$ then yields $Z\left(R_{i}\right)^{X} \cap Z(R)=Z\left(R_{i}\right)$. We now conclude that $I\left(R_{i}\right)=U_{i}^{X} \cap I(R), i=1,2$ and this in turn gives $I\left(\Gamma_{i}\right)=U_{i}^{X} \cap I(\Gamma)$, $i=1$, 2 .

Our next objective is to show that $I\left(C_{M_{i}}\left(\tau_{i}\right)\right)=U_{i}^{X} \cap I\left(C_{M_{1} M_{2}}(\tau)\right)$, $i=1,2$. By (4.11) there exists $g \in X$ such that $\tau^{g}=\gamma$, hence $\left(C_{M_{1} M_{2}}(\gamma)\right)^{g} \leqq C_{X}(\gamma)$. Since $O^{2}\left(C_{M_{1} M_{2}}(\tau)\right)=C_{M_{1}}\left(\tau_{1}\right)^{\prime} \times C_{M_{2}}\left(\tau_{2}\right)^{\prime}$, we have $\left(C_{M_{1}}\left(\tau_{1}\right)^{\prime}\right)^{g} \times\left(C_{M_{2}}\left(\tau_{2}\right)^{\prime}\right)^{g}=O^{2 \prime}\left(C_{M_{1} M_{2}}(\tau)\right)^{g} \leqq O^{2}\left(C_{X}(\gamma)\right)=\Gamma_{1} \Gamma_{2}$ by (3.5). Furthermore by (3.6), $C_{M_{i}}\left(\tau_{i}\right)^{\prime} \leqq \Gamma_{j_{i}}$ with $j_{1} \neq j_{2}$. But $O_{2}\left(C_{M_{i}}\left(\tau_{i}\right)^{\prime}\right)=$ $C_{U_{i}}\left(\tau_{i}\right) \cong E_{8}$ combined with $U_{i}^{X} \cap \Gamma_{i}=I\left(\Gamma_{i}\right)$ yields $\left(C_{M_{i}}\left(\tau_{i}\right)^{\prime}\right)^{g} \leqq \Gamma_{i}$. Therefore $I\left(C_{M_{i}}\left(\tau_{i}\right)^{g}\right)=U_{i}^{X} \cap I\left(C_{M_{1} M_{2}}(\tau)^{g}\right)$ and this implies that $I\left(C_{M_{i}}\left(\tau_{i}\right)\right)=$ $U_{i}^{X} \cap I\left(C_{M_{1} M_{2}}(\tau)\right), i=1,2$. The same argument then gives $I\left(C_{M_{i}}\left(\tau_{i}\right)\right)=$ $U_{i}^{X} \cap I\left(C_{M_{1} M_{2}}\left(\tau_{i} \delta_{j}\right)\right)$ and $I\left(C_{M_{i}}\left(\gamma_{i}\right)\right)=U_{i}^{X} \cap I\left(C_{M_{1} M_{2}}\left(\gamma_{i} \delta_{j}\right)\right), \quad i \neq j, \quad \delta_{j}=\tau_{j}$ or γ_{j}. Since a conjugate of every involution of $M_{1} M_{2}$ centralizes $\gamma, \tau, \gamma_{1} \tau_{2}$ or $\tau_{1} \gamma_{2}$, we see at once that $I\left(M_{i}\right)=U_{i}^{X} \cap I\left(M_{1} M_{2}\right), i=1,2$. Therefore $I\left(S_{i}\right)=U_{i}^{X} \cap I(S), i=1,2$ proving the result.
(4.13) The following holds:
(i) S_{i} is a Sylow 2 subgroup of $O^{2}\left(C_{X}\left(S_{j}\right)\right)$ and $O^{2}\left(C_{X}\left(U_{j}\right)\right), i \neq j$.
(ii) Every involution of S_{i} is conjugate in $C_{X}\left(S_{j}\right)$ to an element of $U_{i}, i \neq j$.

Proof. Since $U_{j} \triangleleft S, S_{i} \times U_{j} \in \operatorname{Syl}_{2}\left(C_{X}\left(U_{j}\right)\right), i \neq j$. By Gaschutz's theorem we may write $C_{X}\left(U_{j}\right)=C_{j} U_{j}$ where C_{j} is a complement to U_{j} in $C_{X}\left(U_{j}\right)$. Also U_{j} is central in $C_{X}\left(U_{j}\right)$ gives $C_{X}\left(U_{j}\right)=C_{j} \times U_{j}$. Clearly $O^{2}\left(C_{x}\left(U_{j}\right)\right) \leqq C_{j}$. Also $S_{i} \leqq M_{i}$ and $\left[M_{i}, S_{j}\right]=1$ yields $S_{i} \leqq C_{j}$. It now follows directly that $S_{i} \in \operatorname{Syl}_{2}\left(O^{2}\left(C_{X}\left(U_{j}\right)\right)\right)$. The same proof may be used to verify that $S_{i} \in \operatorname{Syl}_{2}\left(O^{2}\left(C_{X}\left(\mathrm{~S}_{j}\right)\right)\right.$ and this completes the proof of (i).

In order to prove (ii), first observe that $S_{j}=\Omega_{1}\left(S_{j}\right)$, hence by (4.12), S_{j} is weakly closed in S with respect to X. Therefore $N_{X}\left(S_{j}\right)$ controls fusion of $C_{X}\left(\mathrm{~S}_{j}\right)$. Since $S_{i} \in \operatorname{Syl}_{2}\left(O^{2}\left(C_{X}\left(S_{j}\right)\right)\right.$) by (i), the Frattini argument gives $N_{X}\left(S_{j}\right)=C_{X}\left(S_{j}\right) N_{X}(S)$. Now $N_{X}(S) \leqq N_{X}(Y)$ where $N_{X}(Y)=M \cap X=O(M)\left(M_{1} \times M_{2}\right)$. Clearly \bar{S} is self normalizing in $\overline{M \cap X}=M \cap X / O(M)$ and this yields $N_{X}(S)=O\left(N_{X}(S)\right) S$. Consequently $N_{X}\left(S_{j}\right)=C_{X}\left(S_{j}\right) S_{j}$. But $\left[S_{i}, S_{j}\right]=1$ implies that $C_{X}\left(S_{j}\right)$ controls fusion of $S_{i} \times Z\left(S_{j}\right) \in \operatorname{Syl}_{2}\left(C_{X}\left(S_{j}\right)\right)$ and the result now follows from (4.12).
(4.14) S_{i} is strongly closed in S with respect to $X, i=1,2$.

Proof. By symmetry, we need only prove the result for S_{1}. Assume in fact that S_{1} is not strongly closed in S with respect to X. Let $s_{1} \in S_{1}$ be an element of minimal order of S_{1} such that $s_{1}^{X} \cap$ $S \nsubseteq S_{1}$. Then $s_{1}^{g}=s_{1}^{\prime} s_{2}^{\prime}$ for some $g \in X, s_{i}^{\prime} \in S, \mathrm{i}=1,2$, and $s_{2}^{\prime} \neq 1$. By (4.12), we may assume that $\left|s_{1}\right|>2$. Also $\left(s_{1}^{2}\right)^{g}=\left(s_{1}^{\prime}\right)^{2}\left(s_{2}^{\prime}\right)^{2}$ together with the minimality of $\left|s_{1}\right|$ implies that s_{2}^{\prime} is an involution. By (4.13ii), s_{2}^{\prime} is conjugate in $C_{X}\left(S_{1}\right)$ to an element of U_{2}, so we may further assume that $s_{2}^{\prime} \in U_{2}$. But U_{2} is weakly closed in S with respect to X by (2.4) and (4.12), therefore $N_{X}\left(U_{2}\right)$ controls fusion of $C_{X}\left(U_{2}\right)$. A contradiction may now be established by observing that $s_{1} \in S_{1} \in \operatorname{Syl}_{2}\left(O^{2}\left(C_{X}\left(U_{2}\right)\right)\right)$ whereas $s_{1}^{\prime} s_{2}^{\prime} \in O^{2}\left(C_{X}\left(u_{2}\right)\right)$ by (4.13i).

We are now in the position to complete the proof of Theorem A. By (4.14) and the Aschbacher-Goldschmidt theorem [12], X is not simple. This of course contradicts our condition that X is simple and $G \leqq$ Aut X.

References

1. M. Aschbacher, Standard components of alternating type centralized by a 4-group, to appear.
2. -, Finite groups of component type, Illinois J. Math., 19 (1975), 87-115.
3. M. Aschbacher and G. Seitz, On groups with a standard component of known type, to appear.
4. N. Burgoyne and P. Fong, The Schur multipliers of the Mathieu groups, Nagoya Math. J., 27 (1966), 733-745, Correction 31 (1968), 297-304.
5. J. H. Conway, Three lectures on exceptional groups, article in "Finite Simple Groups," Academic Press, New York, 1971.
6. L. Finkelstein, Finite groups with a standard component isomorphic to M_{23}, J. Algebra, 40 (1976), 541-555.
7. —, Finite groups with a standard component isomorphic to HJ or HHM, J. Algebra, 43 (1976), 61-114.
8. -, Finite groups with a standard component isomorphic to M_{22}, J. Algebra, 44 (1977), 558-572.
9. J. S. Frame, Computation of characters of the Higman-Sims group and its automorphism group, J. Algebra, 20 (1972), 320-349.
10. G. Glauberman, Central elements of core-free groups, J. Algebra, 20 (1966), 403420.
11. D. Goldschmidt, 2-Fusion in finite groups, Ann. of Math., 99 (1974), 70-117.
12. —, Strongly closed 2-subgroups of finite groups, Ann. of Math., 102 (1975), 475-489.
13. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by at most 4 elements, Memoir Amer. Math. Soc., No. 147 (1974).
14. R. Griess, Personal communication.
15. K. Harada, On finite groups having self-centralizing 2-subgroups of small order, J. Algebra, 33 (1975), 144-160.
16. G. D. James, The modular characters of the Mathieu groups, J. Algebra, 27 (1973), 57-111.
17. Z. Janko, A new finite simple group of order $86,775,571,046,077,562,880$, which possesses M_{24} and the full covering group of M_{22} as subgroups, J. Algebra, 42 (1976), 564-596.
18. J. Koch, Standard components isomorphic to M_{24}, unpublished.
19. G. Seitz, Standard subgroups of type $L_{n}\left(2^{a}\right)$, to appear.

Received July 8, 1976 and in revised form January 17, 1977.
Wayne State University
Detroit, MI 48202

