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FINITE GROUPS WITH A STANDARD COMPONENT
OF TYPE J,

LARRY FINKELSTEIN

In this paper, it is shown that if G is a core-free group
with a standard component A of type J,, then either A4 is
normal in G or the normal closure of A in G is isomorphic
to the direct product of two copies of J,.

1. Introduction. Janko [17] has recently given evidence for
the existence of a new finite simple group. In particular, Janko
assumes that G is a finite simple group which contains an involution
z such that H = C(z) satisfies the following conditions:

(i) The subgroup E = O,(H) is an extra-special group of order
2% and Cx(E) < E.

(ii) H has a subgroup H, of index 2 such that H /E is isomor-
phic to the triple cover of M,,.

He then shows that G has order 2*.3*.5.7-11°.23-39.31-37-43
and describes the conjugacy classes and subgroup structure of G.
In this paper we shall assume that .J, is a finite simple group which
satisfies Janko’s assumptions and shall prove

THEOREM A. Let G be finite group with O(G) = 1, A o standard
component of G isomorphic to J, and X = (A°y. Then either X = A
or X= A X A.

Our proof follows the outline given in [6] and makes use of
two key facts; namely, that J, has a 2-local subgroup isomorphic to
the split extension of E,: by M, and that J, has one class of ele-
ments of order 3 with the centralizer of an element of order 3 iso-
morphic to the full cover of M, We also make use of the charac-
terization of finite groups with a standard component isomorphic to
M,, which was recently obtained by Koch [18].

2. Properties of J,. In this section, we shall desecribe certain
properties of J, and its subgroups which will be required for the
proof of Theorem A. Most of these properties are found in [17]
and will be listed without proof. A will denote a group isomorphic
to J,.

(2.1) A has 2 classes of elements of order 2 denoted by (2,) and
(2,). If te(2) and E = 0,C(t)), then E is isomorphic to an extra
special group of order 2@, C(F) = Z(E), O,,(C(t))/E has order 3 and
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C(t)/0,,5(C(t)) = Aut (M,,). Moreover, if (8) e Syl (0,,:(C(t))), then (8>
acts regularly on E/Z(E). For z¢<(2,), C(x) is isomorphic to a split
extension of K, by Aut(M,) with C(z) acting indecomposably on
0,(C()).

(2.2) A has one class of elements of order 3. If ¥e€ A4 has order
3, then C(v) is isomorphic to the 6-fold cover of M,,.

(2.3) A has two classes of elements of order 7. If 6€ A has
order 7, then C,(0) = Z, x S; and 0+ 07"

(2.4) Let T,eSyl,(A). Then T, has precisely one E,: subgroup,
denoted by U. N(U)= UK where K = M,. The orbits of K on
U¥ are (2) N U of order 7-11-23 and (2,) N U of order 4-3-23.

In the above, U is isomorphic to the so-called “Fischer” module
for M,. The following is an important property of the Fischer
module.

(2.5) Let (*) 1—- R— V— U—1 be an extension of F,M,, mod-
ules where R is a trivial module of dimension 1 and U is isomorphic
to the Fischer module. Then the extension splits.

Proof. Let U and V be the F,M, modules dual to U and V
respectively. Then we have the extension (3) 1—-U—V—R—1.
It suffices to show that (¥) splits. Since U is not a self dual module
and since there exists precisely 2 nonisomorphic F,M,, modules of
dimension 11 (see James [16]), U is isomorphic to the so-called
Conway module [5]. Thus M, has 2 orbits on (U):. If u, and u,
are representatives of these 2 orbits, then C,,(u,) = Hol (E,) and
Cury () = Aut (M,,). o

Since |V| = 2, there exists a vector ve V — U such that » is
fixed by a Sylow 23 subgroup S of M,. The orbit of M, on (V)
which contains v has order [M,: C,, (v)] and is not divisible by 23.
Therefore, by examining the list of maximal subgroups of M, [5],
together with [M,,: C,, (v)] = 2, we see that C,,(v) contains a sub-
group L isomorphic to M,. Consider the action on V of an M,
subgroup M of L. Then M has no fixed points on U*¥, so in fact

»(M) = {v). Therefore N,, (M) = Aut (M,,) fixes {v) as well. Finally
(L, Ny,(M)) = M, centralizes {v) and the extension splits.

We shall denote by E,.-M,, a split extension of E,:. by M, in

. which E,n is F,M,, isomorphic to the Fischer module.

(2.6) Let M = UK be isomorphic to E,.-M, with U= O0,(M)
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and K = M,. Then the classes of elements of order 2 and 3 of M
and the orders of the centralizers in M of a representative A are
as follows

Class | Cu(V) | [ Cu(N) |
() 2" 2%.3%5
@) o 20.8:.5.7-11
(25) 2 27.3.7
(2) 2 27-3
(25) 2° 2°-3-5
(25) 26 2%.3.5
(3) 2 2°.3%5
(3,) 2 2°-3%-7

Moreover, if N, €(3,) N K then C,(\,) = Cy(\)Cx(x;) with Cx(\,) iso-
morphic to the 3-fold cover of A;, Cx(M\,) = Z, X L,(7) and where
Cx(\)/[{n;) acts faithfully on Cy(\;), © = 1, 2.

Proof. Let A be an involution of M — U, &, &, +++, &, the
orbits of C,(ANU/U) on AnCy(\) and «, an element of &, 1 =1, «--, n.
Then «, is conjugate to «; in M exactly when 7 =j and also
[Cyla))| = |Cx(ZNU)|/|7|. Now K has 2 classes of involutions with
representatives A and % having centralizers in K of order 2“-3.7
and 2°-3-5 respectively. Noting that the action of K on U is dual
to the action of K on the Conway module, it is easy to see that
[Cy(\)| = 2"and [Cy(n)| = 2°. Observe that U has 8 orbits on ACy()\),
each of which has length 16. Moreover an element of order 7 of
Cx(\) fixes 2 points of Cy(\) and therefore must permute 7 of these
orbits. Since |C,(\)| = [Cx(M)| |Cpx(N)| = 27-8-7, it then follows that
C,(WU/U) acting on ACy(\) has one orbit of length 16 and one orbit
of length 7.16 = 112 with )\ an element of the orbit of length 16.
This accounts for the classes (2;) and (2,). Similar reasoning ac-
counts for the classes (2;) and (2,). We already know from (2.4)
that M has orbits on U* of lengths 4-3-23 and 7-11-23 and thus
the classes of involutions of M are as described.

Let ¥ and 7 be representatives of the classes of element of
order 3 of K with Cg(7) isomorphic to the 3-fold cover of A, and
Cx(t) = Z5 X Ly(7). Clearly ¥ and 7 are representatives of the 2
classes of elements of order 3 of M. It suffices to determine the
orders of Cy(7) and Cy(z). As before, we may appeal to the action
of K on the Conway module to obtain |Cy(7)]| = 2° and |Cy(z)| = 2°
as required.

NotaTioN. If H is a simple group, then nH will denote a proper
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n-fold covering of H. If the multiplier of H is cyclic, then nH is
unique up to isomorphism. Also let E,-34, be the group isomor-
phic to the centralizer of an element of order 3 of the class (8,) of
Eyi-M,. Note that E,,-34; is isomorphic to a 2-local subgroup of
6.M,.

(2.7) The Schur multiplier of J, is trivial.
Proof. See Griess [14].
(2.8) Aut(J) = J,.

Proof. Let A = J, and suppose that @ ¢ Aut (4). We may imbed
A in Aut (A) and assume by way of a contradiction that a¢ A but
a*e A for some prime p. Set G = {4, a).

By (2.4), we may assume that a e Ny (U) where U is an E,u
subgroup of A, N,(U) = UK = E,u-M,, and K = M,,. Since Aut (K) =
K, we may further assume that Ny (U) = Ny(U)/U ={(@) x K. It
is known [16] that U is an absolutely irreducible F,K module, hence
by a result of Schur, we have [a, U] = 1. Two cases now arise;
namely [a, K] =1 and [e, K] # 1.

If [a, K] # 1, then it is clear that @ is a 2-element. Also the
fact that 0'((U, @)) is a proper K invariant subgroup of U forces
U0'KU, @)) = 1. Hence (U, a) = E,: and K acts indecomposably on
(U, «y. Without loss, we may assume that « is centralized by a
Sylow 23 subgroup of K. By arguing as in (2.5), it then follows
that Cx(a) = M,,. Therefore in either case, we have that Cyx(e) =
UK, where K, is an M, subgroup of K.

Let ¥ be an element of order 3 of K,. Then Cr(Y) = Z; X 4,
implies that C,(7) = E;, by (2.6). Also C,(7) = 6M,, and m,(C,(7)) =5
[4] gives O,(C4(7)) = Cy(7). Setting C,(7) = C,(M/Z(C7)) = M, we
conclude that a centralizes a subgroup of C,(7) isomorphic to a split
extension of E, by A,. But no nontrivial automorphism of M,
centralizes such a subgroup [9] and therefore [a, C,(7)] £ Z(C.(7)).
Bv the 3-subgroup lemma, we then have C,(7) £ C,(@). Since 7 is
inverted by an element of K, < C,(«), it follows that N,({(7)) < C,(«)
as well.

Finally, let <{t) = O,(C,(7)) so that C,(t) = E-N,<{7)) by (2.1),
where E = 0,(C,(t)) is extra special of order 2®. Observe that C,(7)
acts irreducibly on E/(t). Combining this with [C,(7), @] =1 and
Cix(@) 2 UN E > {t), we conclude that F < C,(@). Therefore we are
in the position where C, () = C,(tf) and Cyx(a@) = UK, or UK with
K,= M,.. But C,(tf) contains a Sylow 2 subgroup of N, ,(U) implies
that Cyx(@) = UK and this gives C,(a) = (UK, C,(t)>. An easy argu-
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ment shows that C,(a) is simple with Cj,«(t) = C4(t). Thus by
Janko’s theorem [17], |C(@)| = | A| which of course gives 4 = C,(a),
a contradiction.

3. Preliminary results. In this section we present certain
technical results which are necessary for the proof of Theorem A.

(8.1) Let G be a group, A a standard component of G with
C(4) of 2 rank 1. Let SeSyl,(N(A4)). Assume that S¢Syl (G) and
Z(S) = AC(A). Then [4, O(G)] = 1.

Proof. See Seitz [19].

(3.2) Let M be a group containing an involution z such that
C(z) = O(C(z)) x {(z) x UK where K = M,, and U is F,K isomorphic
to the Fischer module. Let V =<z, U) and N = N(V). Then either

(i) ze€Z(N) or

(ii) N=ON) x WK where W = {(z)Y is special of order 2%
with Z(W) = U and where Y is a homocyclic abelian group of order
2% invariant under K with Y/U F,K isomorphic to U.

Proof. Assume that z¢ Z(N) and let N = N/O(N). By (2.2),
the orbits of K on U* are tX¥ of order 1771 and z* of order 276
with Cg(x) = Aut (M,,). Moreover both ¢ and x are squares in UK,
hence 2" NU = @. Now the orbits of C(z) on V* are precisely

Orbit {z} tx x¥ (zt)* (zx)X
Length 1 1771 276 1771 276

Since z¢ Z(N) and 2" N U = @, z¥ must be a union of some of the
sets {2}, (2t)%, (zx)*. But |[2"]| is a divisor of |L,(2)| then gives
2V = zU.

Representing N on 2" = zU, we have |N| = 2"|Nyx(V)|, hence
|N| = 2®|M,,|. Moreover U is generated by those involutions of V'
not conjugate to z so that U <] N. Assume that Cy(U) = O(N)V.
Then N/V acts faithfully on U and is therefore isomorphic to a
subgroup of L,(2). Let SeSyl, (K) so that Ng(S) is isomorphic to
a Frobenius group of order 10-11. Since S fixes 2 points of zN, it
follows that |Cx(S)| = 2|C5(<Z, 8>)| = 2:-11. Hence a Sylow 11 sub-
group of N/V has centralizer of even order which contradicts the
fact that a Sylow 11 subgroup of L, (2) has centralizer of odd order.
We conclude that C,(U) properly contains O(N)V.

It is easy to see from the action of K on Cy(U) that Cy(U) =
ON)W where W/U = E,:. Furthermore, Cy,(z) = V implies that
Z(W)= U and [z, W] = U. Thus W is a special 2-group of order
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2® with Z(W) = U. We will in fact show that N = O(N) x WK.
To see this, observe that V{K”) covers N together with [VK, O(N)]=
1 implies that N = O(N)C,(O(N)). A simple argument establishes
that O*(Cy(O(N))) = WK and therefore N = O(N) x WK. For the
remainder of the proof, we may assume that O(N) = 1.

Consider the homomorphism ¢: W— U by o(w) = [z, w]. It is
eagsy to see that ¢ induces an F,K isomorphism between W/V and
U. But then W/U is an F,K module which satisfies, the hypotheses
of (2.5) and thus W/U = V/U x Y/U where Y/U is F,K isomorphic
to U. It remains for us to show that Y is a homocyclic abelian
group. Assume not. Then by the action of K on Y, Z(Y) = U.
Let L be a subgroup of K isomorphic to Aut (M,,). It follows from
the properties of the Fischer module that |Cy,,(L)| = |Cy(L)| =2
with Cy,y(L) and Cy(L) the unique proper L invariant submodules of
Y/U and U respectively. Let (yU) = Cy,;(L) so that L normalizes
(y, Uy. Since y¢Z(Y), 1+# [y, Y] < U and since L normalizes
Ky, U>, Y] =]y, Y] we must have [y, Y] = Cy(L). This in turn
implies that [Y: Cy(y)] = 2. But L normalizes Cy({y, U)) = Cy(¥),
hence Cy(y)/U as well and this gives a contradiction.

(8.3) Let Y= FEyp and M a subgroup of Aut(Y) such that
M=M x M, with M,=M,=M,. Then Y=Y,PY, where [Y,, M,]=
Y, and [Y,, M;] =0, 1 % 7.

Proof. Let ¥ be an element of order 23 of Aut(Y). If 7 acts
regularly on Y, then C,.,(7) is isomorphic to GL,(2") or is cyclic.
Otherwise dim (Cy(7)) = 11 and Croen(7) = Zs X L,(2). Let 7, M,
be an element of order 23. Then it is clear that dim (Cy(7,)) = 11.
If we set Y, = Cy(7;), © # j, then an easy argument verifies that
Y, and Y, satisfy [Y, M;] =0, i# j and [Y,, M;]=Y,, 1=1,2 as
required.

In the next result, we list certain properties of 2M,, which are
required for (3.5).

(8.4) Let D= 2M,, TeSyl,(D). Then

(i) D has 3 classes of involutions.

(ii) Z(T) has order 4 and contains representatives of the classes
of involutions of D.

(ili) T has precisely 2 E;, subgroups, say F, and F,. Each is
normal in 7T and self-centralizing in D. Also N(F)/F,= 4, and
N(F)/F, = S,

Proof. See Burgoyne and Fong [4].
(8.5) Let I' be a group with an involution 2z such that C(z) =
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O(C(2))D{z) with D = E(C(z)) and D/O(D) = 2M,,. Assume further
that I" has a 2-subgroup R* = (R, X R,){z) where R, = R} has type
2M,,and R=R, X R,<O0YI'). Then I'=0(")E(I"){z) with E(I")/O(E("))=
2M,, x 2M,,.

Proof. By assumption and (8.4)(iii), B has a normal subgroup
V=V, xV, where V,<|R, and V,; = FE,, ¢ =1,2. If a is an in-
volution of R, then m,(Cy (@) =3, i=1,2, gives my(Cxa)) = T.
Since m,(C(z)) = 6, it follows that 2’ N B = . Also all involutions
of R* — R are conjugate to z which then implies that 2" N B* = z%.
Since Cr.«(z) € Syl, (C(z)), we see that R* eSyl,(I'). Furthermore by
the Thompson transfer lemma and assumption, z¢ O¥I") and Re
Syl, (O(I")). Let 4 = O¥I).

We now examine the structure of C(D). Observe that Cy,)(2) =
O(C(2)){z, t) where {t) = O(D). By a result of Suzuki, C(D) has
dihedral or semidihedral Sylow 2 subgroups. Let Z e Syl, (C«(D)) so
that (Z, z) € Syl, (C(D)). Since Cx(z) € Syl, (D) and Z(R) = Cx(Cx(?)) €
Syl, (C4(Cx(z))), we may assume that Z < Z(R). Therefore Z is ele-
mentary abelian by (3.4)(ii) and we have either (Z, z) = D, and
Z = E, or Z ={t). Let N= N(Z) and N = N/Z. In either case,
{Z) e Syl,(C3(D)) and C3(Z) < Nyz(D) together imply that D is a
standard component of N. By Theorem A [8] and (3.1), E(N) =
(D¥y, Z(E(N)) has odd order and E(N)/Z(E(N)) = M,, X M,. Let
K = E(N) have components K, and K, with K? = K, and K,/Z(K,) =
M,. Then D = Cx(D) and D/O(D) = 2M,, implies that K/O(K) =
2M,, X 2M,,. Thus |Z| =4 and K = O0¥(C4«(Z)).

Note that R < K. Without loss, we may assume that R, < K,
1=1,2. By (8.4iii), let V, and W, be the 2 E,, subgroups of R,
with Cr (V) = O(K)V,, Cx (W) = O(K)W,, Nk (V)/Cr (V) = S; and
Ny, (W)/Cx,(W)= A, i=1,2. Set W= W, xW,, M= N(W)and M =
M/W. Then MNK=EMNK)OMNK) with E(MNK)/OEMnK))=
As X A;. Since Wi=W,, Cu(zW) = N({z, W)) = WCy(z). Also K =
K K, with K? = K, implies that C,,x(z) involves A,. Hence by
(3.4iii), Cx(z) = () x O(Cx(Z)(D N M) where DN M = E(C3{Z)) and
DNM/OMDN M) = A;. It now follows that DN M is a standard
component of I and we have from Proposition 2.3 [7] and (3.1)
that M = O(M)E(M){z) with E(M)/O(E(M)) = A; X A, Furthermore
E(MN K) = E(M) then implies that Z = C,(E(M)) and this yields
Z <M.

Our next goal is to show that ZO(') <{I’. Towards this end,
observe that W, W, xV,, V. X W, and V, X V, are the only E,u
subgroups of R and that S; is not involved in N (W) whereas S;
is involved in N(W, x V,), N, (V,x W, and N4V, x V,). This
prevents W from fusing in 4 to W, x V,, V., x W, or V, x V, and




48 LARRY FINKELSTEIN

yields W <{ N,(R). Now Z(R) contains representatives of the classes
of involutions of K by (3.4i), hence of 4 as well. Since Z < Z(R),
Z fails to be strongly closed in R with respeet to 4 only when
Z*NZ(R) £ Z for some neA, If in fact this happens, then we
may choose M€ N,(R). But W <] Ny(R) implies that e N,(W) and
Z <|N,W) then gives Z*=Z7, a contradiction. Applying Goldschmidt’s
theorem [11], we conclude that ZO(I') <{|I'. This in turn yields I"' =
O(I')N.

Since K = E(N) = O¥(N), it suffices to show that [K, O(I")] = 1.
Recall that E(C(z)) = D = Cg(z). Let T = Cg(2) € Syl, (D) and Z(T) =
(t, t,y=Z(T)<Z(R). Then for X=0(I'), we have X=C(z)Cx(2t,)Cx(t,).
Now Cx(?) < O(C(z)) and [O(C(z)), D] = 1 gives Cyx(z) < Cy(t,). Also
2* = zt, for some \eZ(R), hence ¢, = t!e€ D* = E(C(zt))). By the
same reasoning, Cy(2t) < Cy(t,) and so [t, X]=1. But (¥ =K
and therefore [K, X]| = 1 as required.

The next result will be used in conjunction with (3.5).

(3.6) Let I'y'=1I,x I, with I, =TI, = 6M, and suppose H =
H, x H, is a perfect subgroup of I, Then by reindexing if neces-
sary H <[, and H,< I,

Proof. Let I’y = I'yI, and observe that H = H,H, where H, is
perfect and [H, H,)] = 1. Since I", = 6M,, and 6M,, contains no sub-
group which is the central product of two proper perfect subgroups
(see Conway [5], ». 235), H+#1 and either H, < I, or H,=<T..
Assume that H,<I',. Then by the same reasoning applied to I'y/I",,
we have H, < I',.

4. Proof of Theorem A. Let G be a group with O(G) =1,
A a standard component of G with A/Z(A) = J, and X = (A%).
Furthermore, let K = C(4) and R e SyL,(K). It follows from (2.7) that
Z(A) = 1 and from (2.8) that N(4) = KA. We shall assume that G
is a minimal counterexample to Theorem A. Thus X #* A whereupon
X is simple and G < Aut (X) by Lemma 2.5 [1].

(4.1) |R|=2. Consequently G = (X, R).

Proof. Let ge G — N(A) be chosen so that @ = K° N N(A) has
a Sylow 2 subgroup 7 of maximal order. If m(R) > 1, then by
(3], (8.2) and (8.3)), R is elementary abelian and we may choose g
so that T = R’. On the other hand, if m(R) =1 and T is trivial,
then 2,(R) is isolated in C(2,(R)), hence 2,(R) is contained in Z*(G)
by [10] contradicting F*(G) is simple. Thus in either case, we may
assume that 7' is nontrivial.
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Now @ = N(4) = K x A implies that T is isomorphic to a sub-
group of A under the projection map m: N(A) — A. An easy argu-
ment shows that @ is tightly embedded in QA. Moreover, ©(Q)* =
7(Q%) for a € A then implies that =(Q) is normalized by (C,a):ae
o(T)*. Assume first that m(R) > 1 so that R is elementary abelian
and T = R°. Letaern(T)". Then n(Q) N C,(a) is a normal subgroup
of C,(a) with Sylow 2 subgroup n(T) = T. The structure of C,(a)
is given in (2.1) and from this we conclude that a belongs to the
class (2,) of A and 7(Q) N C,(a¢) = n(T) = E,.. But #(T') also contains
involutions of the class (2,) and this gives a contradiction.

Assume finally that m(7) =1 and let <{a) = 2,(z(T')). Arguing
as before, 7(Q) N C.(a) is a normal subgroup of C,(a) with Sylow 2
subgroup 7(T'), hence by (2.1), #(T) has order 2. Since #(T)= T,
we may set T =<(ra) with 1 ac A and reR. Now [4,R]=1
gives Ni(T) = Cix(r) and since N (T)=T by [2, Theorem 2], we
conclude that R has order 2 proving the result.

Since G is a minimal counterexample to Theorem A and 4 is a
standard component of (R, X ), with X = (A%), it follows that (R, X)
is also a counterexample to Theorem A. Hence G = (X, R).

NOTATION. By (4.1), we may set {(z) = R so that G = (X, z).
Also C(z) = O(C(z)) x (z) x A by (2.7) and (2.8). Let T,eSyl, (4),
T =<z x T,eSyl,(C(z)) and {V} ={(z) X U} = &£(T) where U =
Z.(T). Recall from (2.4) that Ny, (V) = O(C(z)) x {z) x UK where
UK=NJ(U), K= M, and U is F,K isomorphic to the Fischer
module.

“42) 2°nNA= Q.

Proof. Note that z is not a square in G whereas every involu-
tion of A is a square by (2.1).

(4.3) Let N= N(V). Then2°NV =2U. N =O(N) x WK where
W = (2)Y is special of order 2® with Z(W) = U, Y is a homocyeclic
abelian group of order 2® invariant under K and Y/U is F,K iso-
morphic to U.

Proof. Since Cy(z) = O(C(z)) x {z) x UK, it suffices, in light of
(3.1), to show that z¢ Z(N). Assume in fact that ze Z(N). Then
V = J(T) and T eSyl, (N) together imply that T € Syl, (G). Further-
more V is weakly closed in N with respect to G and so N controls
fusion of C(V) = O(N) x V. But V contains reprssentatives of the
classes of involutions of C(z) and therefore z is isolated in C(z).
Applying the Z* theorem [10], we then have z e Z*(G) which is in-
compatible with G < Aut (X).
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We continue our analysis using the structure and notation for
N set up in (4.3). In order to eliminate the ambiguity in the struc-
ture of Y we need the following result.

(4.4) Let (3)eSyl,(4), 4= C®) and T = 4/0(4). Then either
I= 8,12, or = E(J)z) where E(T) = Uy5), Ly5) or Ly(25).

Proof. According to (2.8), C,(6) = (6) x D where D= S;. More-
over if ¢ and d are involutions in D' and D — D’ respectively, then
by (2.1), e€(2,) and d€(2,). We shall first show that z fuses to zd
and ze in 4. We know from (4.3) that z fuses to both zd and ze
in G. Set H = (C(2) and assume that (zd)’ =z, g€ G. Now Cy(zd)’ =
C((z, zd))* = C((#z%, z)) = Cyx(z°). Since 2¢ N H = {z} U (2d)* U (ze)” and
Cu(2d) # Cy(ze), we may replace g by gh, he H, if necessary, to
insure that z° = zd. Thus Cy(2d)’ = Cx(2d). Let B = 0¥(Cy(zd)) =
(#)y X C,(d) and B = B/0,,(B) = Aut (M,). Since B° = B and {j)¢€
Syl; (B), we may assume that (0)’ = {6). If 6 ~ 7, then g induces
an automorphism of O%B) = M,, in which an element of order 7 is
inverted, a contradiction. Therefore 6° ~é in U and again we may
replace g by gb, be B, if necessary to obtain 6 = 0 as required.
We may prove that z fuses to ze in 4 in the exact same way making
use of the fact that O*(Cy(2d))/0,(Cx(2d)) = Aut (M,,) by (2.1).

Returning to the structure of 4= 4/0(4), we have C:(Z) =
O(H) x () x D so that D’ is standard in 4. Since 4 has sectional
2 rank at most 4 by a result of Harada [14], we may apply the
main theorem of [13] to conclude that E(dJ) is isomorphic (i) A,
(i) A; x A4, (iii) Ly4), (iv) M., (v) Us(5), (vi) Ly(5), (vii) Ly(25), or
(viii) A,. Furthermore except in case (i), 4 < Aut(E(4)). Since
2d~Z~2in 4, and d #Z+ & by (4.2), we may easily eliminate
cases (i), (iii), (iv) and (viii) and show that in case (i), 4= S, Z,.

REMARK. If E(4) is simple then both O, x(4) and 4 — O, z(d)
contain one class of involutions. In particular, z ¢ O, z(4) and d +#
z + ¢ together imply that the classes (2,) and (2,) of A fuse in G.

“.5) Y= B

Proof. It follows from (4.3) that either the result is true or
Y is homocyclic of exponent 4. Assume the latter for purpose of a
contradiction. We know that N = O(N) x WK. Thus if ()€
Syl; (K), and 4 = C(9), then the structure of 4 = 4/0O(4) is given by
(4.4). Now Cy(0) = Z, X Z, and Ck() contains an element of order
3 which acts regularly on Cy(d). This implies that O*4) contains a
Z. % Z, subgroup and we conclude from (4.4) that 4 = E(4){z) with
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E(d) = Ly(5). Since E(d) has wreathed Sylow 2 subgroups of order
2°and 7z acts as the graph automorphism, z must invert Cy(6). But
the set of all elements of Y inverted by z forms a subgroup of Y
properly containing U and invariant under K which forces z to
invert Y.

We claim that Y is the unique (Z,)" subgroup of N. In fact
let Y, be another such subgroup of N. Then WK = ﬁ/ VzEu M,
together with m,(Y,) = 11 gives Y, = W. Therefore Y, < W= ()Y
and since z inverts Y, we must have Y = Y,. This in turn implies
that W must be the unique subgroup of N of its isomorphism type
as well. In particular, if N = N(W), then W is weakly closed in
its normalizer with respect to G. Hence N contains a Sylow 2 sub-
group of G and this in turn forces N to control fusion of C(W) =
O(N)U. Now the 2 N classes of involutions of U are the sets
2)NU and (2)NU of A. Also in the remark following (4.4), we
observed that the classes (2,) and (2,) of A fuse in G if E(4) = Ly(5).
Thus N must act transitively on U which is clearly not the case
and we conclude that N < N(W).

We now investigate the structure of N(W). First observe that
C(W) < C(V) gives C(W) = UO(N). Set N(W) = N(W)/U and con-
sider the action of N(W) on W. Since Y is characteristic in W, ¥
is normal in N(W). Also Cy(Z) = N = () x O(N) x YK. There-
fore we may apply (8.1) to conclude that N(W) = O(N) x W*K
where W* is a 2-group containing W invariant under K, W = (z)Y*
where Y* contains Y and is invariant under K with Y*/Y F,K iso-
morphic to Y.

But Y*/Y, Y/U and U are all F,K isomorphic, hence | Cy(d)| = 2°
and this in turn gives |Cy.(0)| = 2" which contradicts |4], = 2%

(4.6) WeSylL,(C(U)). Hence Y eSyl, (C(Y)).

Proof. The second statement follows easily from the first. Now
2°NY =@ together with 2¥ = 2U by (4.3) gives Z*NW) =1V,
Thus V is weakly closed in W with respect to G. This implies that
Nep! (W) = NN C(U) = O(N) x W by (4.3), hence W eSyl,(C(U)) as
required.

(4.7 Let M= N(Y) and M = M/Y. Then

(i) Ci() = N=0N) x (& x K.

(i) zeZ*(M).

Proof. Suppose z°czY, ae M. Since z° N W = 2" = zU by (4.3),

aw normalizes V, hence aw e N. This in turn implies that ae N
and we see that N = C,(z) = O(N) x () x K, proving (i).
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To prove (ii), let b be an involution of UK — U. Since z fuses
to za for any involution @ € A by (4.3), there exists g€ G such that
2* = zb. By (2.4), we see that m,(C(zb)) = 12 and all E,. subgroups
of C(zb) are conjugate. Therefore (zb, Cy(zb)) = V** for some he
C(zb). Observe that Cy(zb) is generated by those involutions of
{zb, Cy(zb)) which are not conjugate to zb. Hence U** = Cy(zb).
Also WeSylL(C(U)) by (4.6) implies that W¢* e Syl, (C(Cy(2b))). Since
(Y, 2b) € Syl, (C(Cy(zb))) as well, there exists k€ G such that W*** =
(Y, zby. Finally, z¢** €¢2° N (Y, 2b) = (2b)" implies that z***' = zb for
1e(Y, zby. Setting ¢’ = ghkl, we have 2 = zb and W* = (Y, 2b).
Therefore Y = Y and z ~ zb in M. We have shown that z ~ 2b
in M and thus 7 ¢ Z*(M).

(4.8) M = O(M)(M, x M){z> where M: = M, = Ey-M,.

Proof. If follows from (4.7) that Cz(Z) = () x K and z ¢ Z*(K).
Therefore, by a result of Koch [18] and (3.1), M = O(M)E(M){Z)
where E(M) = M, x M,. Let M, and M, be the minimal normal
subgroups of M which map onto the direct factors of E(i). By
3.2), Y=U, x U, where [M,, U] = U, and [M,, U;] =1, 1 # 3. It
is clear that either O, M, = U, or O,(M,)=Y, ©=1,2. Assume
the latter happens and set i, = M,/U,. Since M, is perfect and U,
is central in M, M, is a perfect central extension of E,. by M,,.
But this contradicts the fact that M, has trivial multiplier [4].
Therefore O,(M,) = U,, i =1,2. Now M, N M, < O,(M) N O,(M,) =
UNU,=1 gives MM, =M, x M,. Finally M = M, = Cy,,,(?) =
E,i-M,, proving the result.

NoTaTION. From (4.8), let M, = (M, X M,)}<{z) with M,= M: =
En-M,. Set M,= UK, with U, = 0,(M,), K, = M, and set M, =
UK, with U, = U;, K, = Ki. Furthermore, let UK = C,,,(2) with
U = Cyp,(?) and K = Cgk,(2). Finally, let S, eSyl, (M), S,= Sie
Syl, (M), S= 8, x 8, and S* = (S, z) € Syl, (M,).

(4.9) S*eSyl(6), S=8*NXeSy,,(X) and z¢ X.

Proof. First observe that all involutions of S* — S are conju-
gate in S* to z and C(2) € Syl, (C(z)). Furthermore, it is easy to
see that 2N S = @. In fact, if s is an involution of S, then
Cy(s) = Cy,(s) X Cy,(s) has order at least 22 gives my(Cy(s)) = 18
whereas m,(C(z)) = 12 by (2.4). Therefore z°° = 2°N S and we have
at once that S*eSyl,(G). It is clear from the Thompson transfer
lemma that z¢ O0*G). Since G = (X, z), we have X = 0¥G). Thus
z¢X. Also S < O(M,) < X gives S = S* N XeSyL (X).
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(4.10) Let 7 be an element of order 3 of A and I" = C(¥). Then
I' =O0)E(N)}{zy where E(I'Y =T, x ', and I'; = I', = 6M,,.

Proof. First observe from (2.2) that C:(2) = O(C(z)) X () X C4(7)
where C,(Y) = 6M,,. Also by (2.2) we may assume that 7 belongs
to the class (8,) of UK. Thus we may write ¥ = 7,7, Where 7, = 7}
and v, belongs to the class (8,) of M,, 1 =1, 2. Applying (2.6) gives
Cu,(7) = (Ci, (7)) X Cy(7,)){z) Where Cy (7,)" = Cy,(7,) = Ey-84, Since
Cyu,(7,) is isomorphic to a 2-local subgroup of 6M, which contains a
Sylow 2 subgroup of 6M,,, we may set R* € Syl, (C,,(7)) where R* =
(R, x R)<#), R, €Syl (Cy,(7)) and R, = R; has type 2M,,. Also R, X
R, < OXI"). Thus by (3.5), I' = O(I")E(I'){z) where E(I")/O(E(I')) =
2M,, x 2M;,.  But  (Cy (M) = Cy,(7) X Cy,(Y) = E(I') then gives
EIN=1T,xT, where I'y, = I'? = 6M,,.

(4.11) Let 7, and 7, be representatives of the classes (3,) and
(3,) respectively of M, with v =17, and 7i =17, Let 7= 77, and
T = 7,7,. Then 7.7, 7,7, ¢ and 7 are conjugate in X.

Proof. We know that 7 is conjugate to v in A by (2.2). Since
z leaves 7* invariant under conjugation and (z,7,)* = 7.7., it suffices
to show that 7,7, fuses to v in X. This in turn may be proved by
verifying that 7, fuses to 7, in Cx(7,). Let P,eSyl;(M,;) with P; =
P,, Z(P;) = {7,y and assume that 7,€P,, ¢ =1,2. Since C, (V) =
Cu (7)) X Cyy(7,) is contained in E(I") = I', x I, it follows from (3.6),
that subject to reindexing, if necessary, C,,(v) =1, +=12. In
particular, P, e Syl;(I",) and {(v,> = O,(I",), © = 1,2. Now P, contains
an FE, subgroup <7, v¥> all of whose elements of order 3 are conju-
gate in M, to 7,. On the other hand, M,, contains one class of ele-
ments of order 3, hence 7, is conjugate in I, to an element of
{7, 7¥>. Therefore, 7, is conjugate to 7z, in (M, I';) < Cy(7,) as
required.

(4.12) I(S,) = U n I(S).

Proof. Since S has type J, x J,, Y = J(S) by (2.4). Therefore
N;(Y) controls fusion of Y and we have that U NY=U,,1=1, 2.

We now observe from (2.6) that every involution of MM, — ¥
centralizes an element of order 3 of M,M, which is conjugate to
TT, =7, W=7, 77 or 7T, Also Cy,(7) = Cyp,(V)Cx,(V:) = Ey34,
and Cy, (7)) = Cy,(7))Cx (7;) = Ey(Ls(2) X Z;). In the course of proving
(4.11), we showed that up to reindexing, it may be assumed that
Cu(V)=T,;,71=1,2. Let R=R, X R,eSyl,(I".I",) where R, eSyl,(I",)
and R, = Cy,(7), i =1,2. By (38.4), Z(R,) has order 4 and contains
representatives of the 8 classes of involutions of I',, 1 = 1,2. But



54 LARRY FINKELSTEIN

then every involution of R, is conjugate to an element of Z(R),)
whereas every involution of R — R, is conjugate to an element of
Z(R) — Z(R;). Since YN R = (U,NR) x (U,NR,) with U,NR, = E,,
we have Z(R,) = U, and Z(R) — Z(R,) < U — U,. Therefore UFf N
Y = U, then yields Z(R,)* N Z(R) = Z(R,). We now conclude that
IR) = UfNIR), © =1, 2 and this in turn gives I(I";) = UF N I(I),
=1, 2.

Our next objective is to show that I(C,,(z.))) = UF N I(Cuu,(7)),
+=1,2. By (4.11) there exists g€ X such that 7 =7, hence
(Coyr,(M)? = Cx(7).  Since O0¥(Ciyyu,(7)) = Cu (7)) X C(z)’, we have
(€l % (Carfe))? = 0¥ (Car ()Y = O¥(Cx(¥)) = I, by (3.5). Fur-
thermore by (3.6), C,,(7,) = [I';, with j, # j,. But O0y(Cy(c)) =
Cy,(v) = E; combined with UfN I, = I(I",) vyields (Cy(c)) =T
Therefore I(Cy,(7,)?) = U N I(C, x,(7)°) and this implies that I(Cy,(c))=
Uf N I(Cy,uy(7)), © =1,2. The same argument then gives I(Cy, (7)) =
ufn I(CMle(TiBJ')) and I(CMi(A/z‘)) = UfnN I(CMle('yiaj)): 1#£ 7, 0;=7;
or ¥;. Since a conjugate of every involution of M, M, centralizes
Y, T, V,.T, O T,%,, we see at once that I(M,) = Uf N I(M,M,), + =1, 2.
Therefore I(S;) = Uf N I(S), ¢« = 1, 2 proving the result.

(4.13) The following holds:

(i) S, is a Sylow 2 subgroup of O*(Cx(S;)) and O*(Cx(U;)), ¢+ J.
(ii) Every involution of S, is conjugate in Cx(S;) to an element
of U, 1+ J.

Proof. Since U; <] S, S; x U; € Syl, (Cx(U;)), © # j. By Gaschutz’s
theorem we may write Cx(U;) = C;U; where C; is a complement to
U; in Cx(U;). Also U; is central in Cy(U,) gives Cx(U;) = C; x U;.
Clearly OX(C(U,)) < C;. Also S, < M, and [M,, S;] =1 yields S; < C;.
It now follows directly that S, e Syl,(0(Cx(U;))). The same proof
may be used to verify that S, eSyl, (0%(Cx(S;)) and this completes
the proof of (i).

In order to prove (ii), first observe that S; = 2,(S;), hence by
(4.12), S; is weakly closed in S with respect to X. Therefore N(S;)
controls fusion of Cx(S;). Since S, €Syl (0*(Cx(S;))) by (i), the
Frattini argument gives Nx(S;) = Cx(S;)Nx(S). Now N,(S) < Nx(Y)
where N(Y)=Mn X = OM)M, x M,). Clearly S is self nor-
malizing in M N X = M N X/O(M) and this yields Nx(S) = O(N(S))S.
Consequently N;(S;) = Cx(S;)S;. But [S,, S;] = 1 implies that Cx(S;)
controls fusion of S; x Z(S;) € Syl, (Cx(S;)) and the result now follows
from (4.12).

(4.14) S, is strongly closed in S with respect to X, 1 =1, 2.
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Proof. By symmetry, we need only prove the result for S,.
Assume in fact that S, is not strongly closed in S with respect to
X. Let s,€8, be an element of minimal order of S, such that sfn
SZS,. Then s?=sis; for some geX, s;eS, i=1,2, and s; # 1.
By (4.12), we may assume that [s,| > 2. Also (s})? = (s})*(s:)* together
with the minimality of |s,| implies that s; is an involution. By
(4.13i1), s; is conjugate in C,(S,) to an element of U, so we may
further assume that s;e U,. But U, is weakly closed in S with
respect to X by (2.4) and (4.12), therefore N(U,) controls fusion of
Cy(U,). A contradiction may now be established by observing that
s, €S, € Sy, (O*(Cx(U,))) whereas sis; ¢ O*(Cx(u,)) by (4.13i).

We are now in the position to complete the proof of Theorem
A. By (4.14) and the Aschbacher-Goldschmidt theorem [12], X is
not simple. This of course contradicts our condition that X is simple
and G < Aut X.

REFERENCES
1. M. Aschbacher, Standard components of alternating type centralized by a 4-group,
to appear.
2. , Flinite groups of component type, Illinois J. Math., 19 (1975), 87-115.

3. M. Aschbacher and G. Seitz, On groups with a standard component of known type,
to appear.

4. N. Burgoyne and P. Fong, The Schur multipliers of the Mathiew groups, Nagoya
Math. J., 27 (1966), 733-745, Correction 31 (1968), 297-304.

5. J. H. Conway, Three lectures on exceptional groups, article in “Finite Simple
Groups,” Academic Press, New York, 1971.

6. L. Finkelstein, Finite groups with a standard component isomorphic to M, J.
Algebra, 40 (1976), 541-555.

7. , Flinite groups with a standard component isomorphic to HJ or HHM, J.
Algebra, 43 (1976), 61-114.

8. , Finite groups with a standard component isomorphic to M., J. Algebra,
44 (1977), 558-572.

9. J. S. Frame, Computation of characters of the Higman-Sims group and its automor-
phism group, J. Algebra, 20 (1972), 320-349.

10. G. Glauberman, Central elements of core-free groups, J. Algebra, 20 (1966), 403-
420.

11. D. Goldschmidt, 2-Fusion in finite groups, Ann. of Math., 99 (1974), 70-117.

12. , Strongly closed 2-subgroups of finite groups, Ann. of Math., 102 (1975),
475-489.

13. D. Gorenstein and K. Harada, Finite groups whose 2-subgroups are generated by
at most 4 elements, Memoir Amer. Math. Soc., No. 147 (1974).

14. R. Griess, Personal communication.

15. K. Harada, On finite groups having self-centralizing 2-subgroups of small order,
J. Algebra, 33 (1975), 144-160.

16. G. D. James, The modular characters of the Mathieu groups, J. Algebra, 27 (1973),
57-111.

17. Z. Janko, A new finite simple group of order 86,775,571,046,077,562,880, which
possesses My and the full covering group of M. as subgroups, J. Algebra, 42 (1976),
564-596.




56 LARRY FINKELSTEIN

18. J. Koch, Standard components isomorphic to Mss, unpublished.
19. G. Seitz, Standard subgroups of type L, (2%), to appear.

Received July 8, 1976 and in revised form January 17, 1977.

WAYNE STATE UNIVERSITY
DeTrOIT, MI 48202





