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FIXED POINT THEOREMS FOR ACYCLIC
AND DENDRITIC SPACES

T. B. MϋENZENBERGER AND R. E. SMITHSON

A mod is a partially ordered set (X, ^ ) such that: (i)
x Ay exists for all x, yeX. (ii) L(x) is totally ordered for
all xeX. (iii) (X, ^ ) is conditionally complete and order
dense. Fixed point theorems for certain functions on totally
ordered mods are extended to multifunctions on arbitrary
mods by using weak continuity conditions. Characterizations
of continuity are also given for certain functions on mods.
Mods are shown to be algebraic models for acyclic and
dendritic spaces.

l Introduction* A number of papers giving fixed point theorems

for decreasing or increasing functions on partially ordered sets have
appeared in the last twenty years. For example there is Tarski's
classic result for increasing functions on a lattice [15] and Davis'
subsequent proof of the converse [3]. Abian and Brown extended
Tarski's theorem to more general partially ordered sets [2], and in
[11] and [13] Smithson further extended the results of [2], [3], and
[15]. Ward used the fixed point property for increasing functions
to characterize compactness of the interval topology in semi-lattices
[16]. (See also [6] in this regard.) Abian gave a sufficient condition
for decreasing functions on totally ordered sets to have fixed points
[1], and then Metcalf and Payne extended Abian's result to include
functions which were neither decreasing nor increasing [4].

It will be shown that certain highly technical conditions used by
Abian, Metcalf and Payne are forms of continuity which parallel
assumptions used by Muenzenberger and Smithson in another context,
where the underlying algebraic structure common to trees was iso-
lated in the concept of a semitree and fixed point theorems were
proved for multifunctions satisfying weak continuity conditions on
semitrees [5]. Further the fixed point theorem of Abian, Metcalf,
and Payne will be extended to include multifunctions on non totally
ordered sets.

In the following (X, <;) will denote a nonempty partially ordered
set X with partial order <;. A subset A of X is a toset just in case
A is totally ordered. Infima and suprema are defined in the usual
way, and x < y means x ^ y and x Φ y. For xeX and A c X, define
L(x) = {y: y ^ x}9 M(x) = {y:x^ y}, and M(A) = U {M(x): x e A}. Also

x Λ y = inf {x, y] when the latter exists. A function /: X—> X is
decreasing (increasing) if and only if for all x, y e X, x ^ y implies
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f{y) ^ f(χ) (f(χ) ^ f{y)).

DEFINITION. A partially ordered set (X, <*) is a mod if and only
if the following hold:

( i ) For all x, y e X, x Λ y exists.
(ii) For all xeX,L(x) is a toset.
(iii) Each nonempty subset of X which is bounded above (below)

has a supremum (infimum) in X.
(iv) If x < y, then there is a z e X such that x < z < y.
The word mod derives from the terms triod, m — od, and so

forth. We shall frequently refer to the mod X when we mean the
mod (X, ^ ) .

In the language of [5] and [7], a mod is just a semitree perhaps
with some endpoints erased.

For x, y in a mod X, define

r \L{y) n M(x) if x ^ y .

{[% Λ y, x] U [x A y, y] if x and y are not comparable .

The set [x, y] is called the chain with endpoints x and y. A
set AdX is chainable if and only if x,yeA implies [x, y]c.A. For
A, B c X, define

[A, B] = U {[&, l / ] : ^ 4 and y e B] .

It turns out that the family of chains completely determines the
structure of a mod.

Before continuing the development of the fixed point theorems
we shall show that two important and large classes of spaces admit
natural mod structures. Thus the following fixed point theorems
apply to these spaces.

DEFINITION. A Hausdorff space X is acyclic if and only if each
two distinct points x, y in X are the endpoints of a unique arc [x, y]
in X. (In this context arcs need not be separable.)

If X is an acyclic, space then we define a partial order ^ on X
as follows: Fix an element e e l . Then, for x, y eX, x ^ y if and
only if x e [β, y]. The proof that ^ is a partial order is straightfor-
ward and is omitted.

THEOREM 1.1. If X is an acyclic space, then (X, ^) satisfies
conditions (i) through (iv). That is, an acyclic space admits the
structure of a mod.

Proof. Since the partial order <̂  has a least element e, condition
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(iii) implies (i). Next note that since X is acyclic, L(x) = [e, x] for
each x and thus is totally ordered. Hence, (ii) holds. Also since
L(x) is the arc [e, x], the partial order is order dense. Moreover,
suppose that A is a nonempty subset of X which is bounded above.
Then A c L(x) — [e, x] for some xeX. Then a0 — sup A exists in
L(x). If b is another upper bound for A, then AaL(b) Π L(x) which
is a compact subset of L(x) and hence, aQ eL(b) Π L(x). Thus a0 is
the supremum of A in X. Finally let A be any nonempty subset
of X and let B = fl [L(a): aeA}. Then BcL(a) for each aeA and
60 = sup B e L(α) for each α e i . Further, if x e L(a) for each aeA,
then # e J5 and hence, 60 = inf A. Thus (iii) holds.

DEFINITION. A connected Hausdorff space is called dendritic if
and only if any two distinct points can be separated by the omission
of a third point.

A dendritic space X is given a partial order as follows: Fix an
element e e X, then x <; y if and only if x = e, x = y or x separates
e and y. Dendritic spaces and their order structure have been studied
extensively by Ward in [17]. In [17] Ward establishes much of what
is needed to show that a dendritic space with the above partial
order is a mod. Unfortunately, there is a gap in the proof of one
of the key propositions in [17] (Lemma 8.2). In effect what is needed
to complete the proof of Lemma 8.2 in [17] is: If x, y are any two
elements of X, then inf {x, y) exists in X. The proof of this latter
statement is fairly involved and is given by Muenzenberger and
Smithson in [8]. Then, given this, from Lemma 8.2 of [17] we get
that each nonempty set which is bounded above has a supremum in
X and this implies that each nonempty set has an infimum in X.
That L(x) is a chain follows from Theorem 1 of [17] and the fact
that <; is order dense is given by Theorem 3 of [17]. Thus we have:

THEOREM 1.2. A dendritic space admits the structure of a
mod.

2. Natural topologies on mods* Let X be a mod throughout
this section. The lower (upper) interval topology ^L(^M) is that
with subbasis for the closed sets consisting of all L(x) (M(x)) for x e
X. The interval topology J7~Ί is generated by J7~L U w^i. A set
C a X is closed under infima (suprema) precisely when inf A e
C (sup A G C) for every nonempty toset AaD which is bounded below
(above). The inf (sup) topology ^(Sf) is that whose closed sets are
exactly those which are closed under infima (suprema). The chain
topology <ίf is ^ Π &. Equivalently C c X is ^ closed if and only
if inf A, sup AeC for every bounded nonempty set AaC. The
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topology ^ arose naturally in studying semitrees [5], [7]. In general
Ί c ^ , and S~τ = ^ in a totally ordered mod.

DEFINITION. A function f:X*-+X is nonoscillatory from above
if and only if for each nonmaximal x and each maximal toset A c
M{x) - {x},

Π{f([x,u)):ueA} = {f{x)}.

The function / is nonscillatory from below if and only if for each
nonminimal x,

Π {f([u, x]): u<x} = {f(x)} .

This definition could be made for multifunctions, and the following
results would remain valid. See [4] for information and intuition
regarding these two concepts of Metcalf and Paynh. We limit our-
selves to proving that they are weak continuity conditions.

THEOREM 2.1. Let f: X —>X where X is a mod. Then
( i ) f is nonoscillatory from above if and only if f~\x) is J?

closed for all x e X.
(ii) f is nonoscillatory from below if and only if f~\x) is S^

closed for all x e X.

Proof. Suppose that / is nonoscillatory from below. Let A be
a nonempty subset of f~(x) which is bounded above and let a = sup A.
For any u < a, there is v e f~\x) such that u < v < a. Then x e Π
{f([u, a]): u < a}. So x = f(a) since / is nonoscillatory from below,
and f~\x) is £? closed. Suppose conversely that f~\x) is £f closed
for all x e X and let v e Π {f([u, x]):u < x}. Then for u < x there
is a set B c [u, x] Π f~\v) such that x = sup B. But f~\v) £f closed
implies that v = f(x), which completes the proof of (ii). The proof
of (i) is similar to the above proof and so is omitted.

COROLLARY 2.2. Let X be a mod. A function f: X~> X is non-
oscillatory from above and below if and only if f~\x) is & closed
for all x 6 X.

COROLLARY 2.3. Let X be a mod and f:X->X. If f~\x) is
^~u *^L, or ^fM closed for each xeX, then f is nonoscillatory from
above and below.

COROLLARY 2.4. Let X be a totally ordered mod. A function
f:X~+X is nonoscillatory from above and below if and only if
f~\x) is ^ Ί closed for all xeX.
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It is easy to see that the converse of Corollary 2.3 is false, and
so it is necessary that X be totally ordered in Corollary 2.4. In the
next section we shall need the following lemma which was proved
in less generality in [5].

LEMMA 2.5. Let X be a mod and let CaX. If C is bounded
below, chainable, ^ closed, and nonempty, then inf CeC.

Proof. Let c0 = inf C and let ceC. Then A = C f] [c0, c] is a
nonempty toset in C and hence a — inf A e C. If c0 = a, then we are
done. Thus suppose that c0 < a. Then there exists xeC such that
a $L x. But c0 ̂  a A x < a and a A x e C since C is chainable. This
contradicts a = inf A and completes the proof.

3. A fixed point theorem* In this section we prove an extension
of the main theorems in [1], [4], [5], and [12]. We do not assume
that X is totally ordered in the main theorem, but we do assume
the existence of maximal elements. An example will show this is
necessary. The setting in our theorem is essentially a semitree
perhaps with the least element erased.

THEOREM 3.1. Let X be a mod in which every nonempty toset
has a supremum. Suppose that F:X—+X satisfies:

( i ) For all xe X, F(x) is chainable and ^ closed.
(ii) Every nondegenerate chain contains a nonendpoint x such

that F~\x) is either ^ closed (S? closed) or chainable.

(iii) If x^y and F{y) n M(F(x)) = 0 , then [F(x\ F(y)]a
F([x, y]).

(iv) There exists xoeX such that F(x0) ΓΊ M(x0) Φ 0 . Then F
has a fixed point.

Proof. First assume that every nondegenerate chain contains a
nonendpoint x such that F~\x) is either S? closed or chainable. Let

S = {ίcel: Fix) n Mix) Φ 0} .

Let A be a maximal toset in S and set a = sup A. Note that if
F(x) Π M(x) Φ 0 and x <£ F(x), then F{x) c M(x). So we have two
cases to consider.

I. Suppose that F(a)aM(a). Let i = inf F(a). By Lemma 2.5,
i 6 F(a). Suppose a < i and pick x so that a < x < i. For any
y e F{x), i A y < x < i. So x e [i, y] c [F(x), F(a)] c F([a, x]). Thus
x e F(z) for some z satisfying a ^ z ^ x. Now z = a is impossible,
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z = x means that x is a fixed point, and a < z < x contradicts a =
sup A since zeS. Therefore in any event we have a fixed point.

II. Suppose that F(a)ΠM(a)= 0 . Since F(a) is ^ closed,
there exists b < a such that F(a) Π [b, a] = 0 , and since jP(α) is
chainable, we may in fact assume that F(a) Π M([6, α]) = 0 . By (ii)
we may further assume that F~\b) is either S* closed or chainable.
For any x satisfying b < x < a and F(x) Π Af(α?) ^ 0 , either a; is a
fixed point or else b e [F(x), F(a)] c F([x, a]). In the later event, there
exists y such that x < y < a and b e F(y). Applying the argument
repeatedly, we locate a fixed point of F or else we construct a toset
B c F~\b) Π [6, α] such that α = sup B. If F" 1^) is &> closed, then
α e F"\b) which is a contradiction. If F~\b) is chainable, then there
exists a point c such that 6 < c < α and [c, a] — {α}ci<7~1(6). Choose
α? so that c < x < a and (̂a?) n M(x) Φ 0 . But b e F(x) implies that
x e F(x) since F(x) is chainable. So we have a fixed point.

The case where every nondegenerate chain contains a nonendpoint
x such that F~\x) is either ^ closed or chainable is handled by
considering the set

/ = {x e X: x0 <; x and #0 <; z ^ a? implies .F(z) Π M{z) Φ 0} .

The argument here is dual to the above as it amounts to turning
X upside down. It is similar to one in [5] and is therefore
omitted.

Question. Can (ii) replaced by the following?
(ii)' Every nondegenerate chain contains a nonendpoint x such

that F~\x) is either ^ closed, £f closed, or chainable.

The reader may easily construct simple examples of functions
on the unit interval that satisfy (ii)' and all conditions in Theo-
rem 3.1 except (ii). It is also seen that no hypothesis on F in
Theorem 3.1 can be dropped. Moreover the hypotheses on X are
essential.

EXAMPLE. Let X be the triod

{(x, 0 ) : - 1 ̂  x < 1} U {(0, y):0£y£l}

in the plane and let ^ be the cut point partial order on X with least
element ( —1, 0), We let / : X—> X be any fixed point free function
that pushes the two closed arms of the triod over into the half open
arm and slides the later toward the missing maximal element. Speci-
fically let
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/(fa v)) = (— H (» — y)f 0 j for (a?, y) e X .

Observe that / satisfies all four conditions in Theorem 3.1. The
problem is that X contains a nonempty toset with no supremum.
Moreover, there exists beX such that f(b) <; b. So it is necessary
that X be totally ordered in the following corollary due to Metcalf
and Payne [4].

COROLLARY 3.2. Let X be a totally ordered mod. Suppose that
f: X—>X is a function satisfying:

( i ) If xύy and if f(y) £ f(x), then [f(y), f(x)\ c f([x, y\).
(ii) The function f is either nonoscillatory from above or from

below.
(iii) There exist a,beX such that a ^ 6, a <; f(a)f and f(b) <̂  b.

Then f has a fixed point.

Proof. Using Theorem 2.1, we have all the necessary conditions
on / to apply Theorem 3.1, and the requirement that every nonempty
toset have a supremum is replaced by the existence of b. A suitable
modification of the above proof finishes the argument here.

4* Decreasing functions* In this section we shall prove some
results which will be required in §5.

DEFINITION. Let X be a mod (topological space). A multifunction
F:X—*Xis chainable (connected) if and only if F(C) is chainable
(connected) for each chainable (connected) set CaX. Further F is
point chainable (closed) if and only, if F(x) is chainable (closed) for
each xeX.

The first lemma is a [folk theorem in topology [9], and it does
not extend to multif unctions.

LEMMA 4.1. Let f: X—+Y where X, Y are Hausdorff spaces. If
f is connected and f~ι(y) is connected for all y e Y, then f~\y) is
closed for all y e Y.

The second lemma does extend to multif unctions on more general
spaces [10].

LEMMA 4.2. Let f:X~+X where (X, '<&) is a tolly ordered mod.
Then f is continuous if and only if f is connected and f~\x) is
closed for all xe X.
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COROLLARY 4.3. Let f: X-—X where (X, cίf) is a totally ordered
mod. If f is connected and decreasing, then f~\x) is connected and
closed for each xe X. Hence f is continuous.

Proof. Let a,bef~ιix) where a <: b and let ce[a,b]. Then
x == fib) ^ f{c) ^ fia) = x. Hence f(c) = x. So f~\x) is chainable
and therefore connected. (In fact chainability and connectedness
coincide in a totally ordered mod (X, &).) Apply Lemmas 4.1 and
4.2.

We next demonstrate that the following condition introduced by
Abian [1] is a form of continuity.

Abian's condition. Let / : X—+X where X is a mod. If A c X
is a toset, then

/(inf A) = sup f(A) and /(sup A) = inf /(A)

whenever both sides of the equalities exist.

THEOREM 4.4. Let /:X—>X be decreasing where (X, ^ ) is a
mod. Then f is continuous if and only if f satisfies Abianys
condition.

Proof. Suppose that / is continuous. Let A c X be a toset
and let a = sup A. Then fia) is a lower bound for /(A) and thus
fia) S inf /(A). Suppose that /(α) < inf /(A). Pick p so that /(α) <
p < inf /(A). Then Mip) is a closed set which contains /(A) and
does not contain fia). This is a contradiction since αeA* implies
/(α)e/(A*)c/(A)*. Hence /(sup A) = inf /(A). An analogous
argument shows the other equality. Suppose conversely that /
satisfies Abian's condition. Let C c l be closed and let Acf~\C)
be bounded and nonempty. Then /(A) is bounded, sup/(A) = /(inf A),
and inf/(A) = /(sup A). Since fiA)cC which is closed, inf /(A) and
sup/(A) are in C. Thus inf A and sup A are in f"\C) completing
the proof.

A similar argument establishes the following.

THEOREM 4.5. Let f:X—>X be increasing where (X, rtf) is a
mod. Then f is continuous if and only if for every toset AaX,
/(inf A) = inf /(A) and /(sup A) = sup /(A) whenever both sides of
the equalities exist.

We now generalize the concept of decreasing function. Observe
that for functions the following definition reduces to the prior one.
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DEFINITION. Let X be a mod. Then F:X—>X is decreasing if
and only if x <; y implies

1. For all z e Fix), L{z) Π F{y) Φ 0.
2. For all z e F(y), M(z) n F(x) Φ 0.

LEMMA 4.6. Let F: X~+ X be decreasing where X is a nonempty
mod. Then there exist a,beX such that a <; 6 e F(a) and F{a) Π
M(a) Φ 0 Φ Fib) n Lib).

Proof. Let xeX. If F(x) Π M(x) Φ 0, then take a = a? and
δ 6 jF(α) Π Λf(α). If i*Xa;) Π M{x) = 0, then take y e F(x) and set a =
x Λ y. By condition 2, there is δ e Λf(#) Π i^(α). In either case a and
& have the desired properties.

To indicate some of the flavor of other results obtainable for
decreasing functions on mods, we state but do not prove two theorems
that perhaps reflect their progenitors stated above.

THEOREM 4.7. Let f: X—> X where {X, <£*) is a mod. If f is
chainable and f~\x) is chainable for all x e X, then f~ι(x) is closed
for all xeX.

THEOREM 4.8. Let F: X—> X where X is a totally ordered mod.
If F is decreasing and point chainable, then F~\x) is chainable
for each xeX.

The last theorem does not extend to arbitrary mods.

5* Fixed points for decreasing multifunctions • In this section
we derive Abian's result [1] from Theorem 3.1 and then prove some
generalizations that are independent of Theorem 3.1. The first lemma
is similar to one in [14] and follows from Corollary 3.2.

LEMMA 5.1. Let f:X—+X be continuous where (Y,^) is a
totally ordered mod. If there exist a, b eX such that at^b, a^ f(a),
and /(&) ^ b, then f has a fixed point.

LEMMA 5.2. Let f:X—>X where (X,^) is a totally ordered
mod. If f is connected and decreasing, then f has a fixed point.

Proof. Let xeX. If x ^ f{x), then take a — x and b = f{x).
If f{x) <Ξ x, then set a — fix) and b — x. In either case apply Corol-
lary 4.3 and Lemma 5.1.

Abian's theorem [1] then follows from Theorem 4.4 and Lemma
5.2.
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COROLLARY 5.3. Let f: X—• X where X is a totally ordered mod.
If f is decreasing and satisfies Ahian's condition, then f has a
fixed point.

We now generalize Abian's theorem to decreasing multifunctions
on arbitrary mods.

THEOREM 5.4. Let F: X-+X where (X, <£*) is a mod. If F is
chainable, decreasing, and point closed, then F has a fixed point.

Proof. F r o m L e m m a 4.6 t h e r e e x i s t a,beX s u c h t h a t α <; 6 e
F(a) and F(a) n M(a) Φ 0 Φ F(b) f] L(b). Set

S = {x 6 X: a ^ x < b and Fix) f) M(x) Φ 0}

and let c = sup S. Again we have two cases to consider.

I. Suppose that F(c) c M(c) and let i = inf F(c). By Lemma 2.5,
ieF(c). Suppose c<i and pick x so that c < x < i. But the
chainable set F([c, x]) meets M(x) and its complement. So # e F([c, x])9

and this case is completed as in the proof of Theorem 3.1.

II. Suppose that F(c)f)M(c) = 0 . Since F{c) is <if closed, there
exists #0 < c such that JP(C) Π [X09 C] = 0 , and since .F(c) is chainable,
we may assume that F(c) Π Λf([a?0> c]) = 0 . Let u satisfy x0 < u <c
and F(u) Π Λf(w) ^ 0 . Now the chainable set F([u, c]) meets M(%)
and its complement. So there exists x such that u<ί% <c and u e
F(x). Pick v to satisfy £c < v < c and F(i;) Π M(v) Φ 0 . But u e F{x)
implies F(y) Π L(u) Φ 0 since F is decreasing. Thus F(v) meets Λf(v)
and L(v). So v is a fixed point.

COROLLARY 5.5. Every chainable dereasing function on a mod
into itself has a fixed point.

By slight modifications of the hypotheses, a plethora of hybrids
of Theorem 3.1 and 5.4 can be obtained. We indicate but two examples
of these.

THEOREM 5.6 Let (X, &) be a mod and suppose that F: X—>X
satisfies:

( i ) F is point chainable and point closed.
(ii) F is decreasing.
(Hi) If x^y and F(y) ΓΊ M{F(x)) — 0 , then F([x, y]) is chainable.
Then F has a fixed point.
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THEOREM 5.7. Let (X, c^) be a mod and suppose that F: X —*X
satisfies:

( i ) F is point closed.
(ii) If x<y, then F(y) Π M(F(x)) = 0 .
(iii) F is chainable.
(iv) There exists xoeX such that F(x0) Π Λf(a?0) Φ 0 . Then F

has a fixed point.

EXAMPLE. 1. Let X = [0,1] and define F: X->X by F(x) = 1 if
0 <; £ < 1 and 2̂ (1) = [0,1). Then JP is chainable and decreasing but
does not have a fixed point. So the point closed hypothesis is necessary
in the above theorems.

2. If X = [0,1] and F is defined by F(l) = [0, 1/2] and F(x) =
[1/2,1] for 0 ^ x < 1, then ί7 is chainable, decreasing, and point closd
but F~\l) is not closed. Thus Lemma 4.1, Corollary 4.3, and Theorem
4.7 do not extend to multifunctions. In particular a chainable de-
creasing point closed multifunction on a totally ordered mod need
not be upper semicontinuous, but it must have a fixed point.
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