W_{δ} (T) IS CONVEX

J. KYLE

Stampfli introduced a generalization of the numerical range for any bounded linear operator T on a Hilbert space \mathscr{H} . This is denoted by $W_{\delta}(T)$ and is defined by

$$W_{\delta}(T) =$$
closure $\{\langle Tx, x \rangle : ||\mathbf{x}|| = 1 \text{ and } ||Tx|| \geq \delta \}$.

Stampfli asked whether $W_{\delta}(T)$ is convex. In this short note we provide an affirmative answer to this question.

 $\mathscr{L}(\mathscr{H})$ will denote the set of bounded linear operators on the Hilbert space \mathscr{H} .

LEMMA 1. Suppose S and A belong to $\mathcal{L}(\mathcal{H})$, and that $S=S^*$. Then

$$S(A,\,\delta)=\{x\in\mathscr{H}\colon ||\,x\,||=1 \quad ext{and} \quad ||\,Ax\,||\geqq\delta \quad ext{and} \quad \langle Sx,\,x
angle=0\}$$
 is path connected.

Proof. Suppose x and y belong to $S(A, \delta)$. We may assume that x and y are linearly independent. (If not, they both lie on an arc of

$$\{e^{i\theta}x: 0 \le \theta \le 2\pi\}$$

which lies in $S(A, \delta)$ if x does.)

Choose θ in R such that $e^{i\theta}\langle Sx,y\rangle$ is purely imaginary and let $a=e^{i\theta}x$.

Choose n such that $(-1)^n Re \langle (A^*A - \delta^2 I)a, y \rangle$ is positive and let $b = (-1)^n y$. Then a and b may be joined by a path in $S(A, \delta)$ to x and y respectively. Thus we need only find a path connecting a to b. Let y(t) = ta + (1-t)b and let $x(t) = ||y(t)||^{-1}y(t)$. Then $\langle Sx(t), x(t) \rangle = 0 \Leftrightarrow \langle Sy(t), y(t) \rangle = 0$ and

$$egin{aligned} \langle Sy(t),\,y(t)
angle &=t^2\langle Sa,\,a
angle +(1-t)^2\langle Sb,\,b
angle \ &+2Ret(1-t)\langle Sa,\,b
angle \ &=2(-1)^nt(1-t)Ree^{i heta}\langle Sx,\,y
angle \ &=0 \;. \end{aligned}$$

Also

$$egin{aligned} ||Ay(t)||^2 &= \langle A^*Ay(t), y(t)
angle \ &= t^2 \, ||Aa||^2 + (1-t)^2 ||Ab||^2 \ &+ 2t(1-t)Re \langle A^*Aa,b
angle \end{aligned}$$

484 J. KYLE

$$egin{aligned} & \geq \delta^2(t^2 + (1-t)^2 + 2Ret(1-t)\langle a,b
angle) \ & + 2t(1-t)Re\langle (A^*A - \delta^2I)a,b
angle \ & = \delta^2 ||y(t)||^2 \ & + 2t(1-t)(-1)^*Re\langle (A^*A - \delta^2I)a,y
angle \ & \geq \delta^2 ||y(t)||^2 \ . \end{aligned}$$

Hence $||Ax(t)|| \ge \delta$ and so $t \to x(t)$ is a path connecting a to b in $S(A, \delta)$ as required.

LEMMA 2. Suppose H and K are self-adjoint elements in $\mathcal{L}(\mathcal{H})$. Let

$$V(A, \delta) = \{(\langle Hx, x \rangle, \langle Kx, x \rangle) : ||x|| = 1 \text{ and } ||Ax|| \ge \delta \}$$
.

Then $V(A, \delta)$ is a convex subset of \mathbb{R}^2 .

Proof. We need only show that $V(A, \delta) \cap L$ is connected whennever L is a straight line in \mathbb{R}^2 . Suppose L is given by

$$\alpha \xi + \beta \eta + \gamma = 0$$
.

Let

$$S = \alpha H + \beta K + \gamma I$$
.

Then the mapping π , given by

$$\pi(x)=(\langle Hx,x
angle,\ \langle Kx,x
angle)$$
 is continuous, and $S(A,\delta)=\{x\colon ||x||=1;\ ||Ax||\geqq\delta \ ext{and}\ \pi(x)\in L\}$.

Thus $V(A, \delta) \cap L = \pi(S(A, \delta))$ is connected.

THEOREM 3. Suppose T and A are in $\mathcal{L}(\mathcal{H})$. Then

$$V(T; A, \delta) = \{\langle Tx, x \rangle : ||x|| = 1 \text{ and } ||Ax|| \ge \delta\}$$

is convex.

Proof. Suppose T = H + iK with H and K both self-adjoint. Then

$$V(T; A, \delta) = \{ \xi + i\eta : (\xi, \eta) \in V(A, \delta) \}$$
.

Hence $V(T; A, \delta)$ is convex.

COROLLARY 4. $W_{\delta}(T)$ is convex.

Proof. Take A = T. Indeed we have shown that

$$\{\langle Tx, x \rangle : ||x|| = 1 \text{ and } ||Tx|| \ge \delta\}$$

is convex.

REMARK. It will be noticed that the ideas here are improvements on basic ideas in 1.

REFERENCES

- 1. N. P. Dekker, Joint numerical range and joint spectrum of Hilbert space operators, Thesis, University of Amsterdam, 1969.
- 2. J. G. Stampfli, The norm of a derivation, Pacific J. Math., 33 (1970), 737-747.

Received February 15, 1977.

University of Technology Loughborough Leicestershire, England