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INFINITE TENSOR PRODUCTS OF C*-ALGEBRAS

BRUCE E. BLACKADAR

The infinite tensor product A = R (4,, p;) of a family
of C*.algebras A, with respect to projections p;c A; is ex-
amined. The primitive ideal space and the characters of 4
are completely described in the case where each A, is simple,
or separable and nuclear. If A is not type I, an explicit
construction is given of a factor representation of A generat-
ing an arbitrary hyperfinite factor. In addition, new results
are obtained about primitive ideals and characters of a tensor
product of two C*-algebras. Examples are given of various
phenomena, providing solutions to previously published prob-
lems.

In this paper, the structure of an infinite tensor product A =
® (4, p,) of a family of C*-algebras A, with respect to projections
p, €A, is studied. Most structural questions about such algebras
can be reduced to analogous questions about the structure of finite
tensor products. In particular, the primitive ideal space and char-
acters of A4 can be completely described in the case where each A4,
is simple, or separable and nuclear. If A is not type I, an explicit
construction is given of a factor representation of A generating an
arbitrary infinite hyperfinite factor.

More detailed information about A is available if each A, is type
I. Conditions are given for when A is type I, CCR, GTC, or con-
tinuous trace, and examples are given of various phenomena, some
of which are new. In addition, some new results are obtained about
characters of finite tensor products.

There has been considerable work recently studying the struture
of certain non-type-I C*-algebras. The work of Glimm on UHF C*-
algebras and Dixmier on matroid C*-algebras led to the study of
AF algebras (inductive limits of finite-dimensional C*-algebras) by
Bratteli and others. It seems possible that a reasonable structure
theory for inductive limits of type I C*-algebras can be developed,
although the situation can become quite complicated. In this paper,
we discuss a particular type of inductive limit of C*-algebras, the
infinite tensor product. It is hoped that some of the results and
methods of this paper will be useful in studying the general situation.

The results of this paper have immediate application to the
representation theory of restricted direct product groups (such as
adele groups), since the group C*-algebra of such a group is an in-
finite tensor product of the C*-algebras of the coordinate groups.

The organization of the paper is as follows:
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Section 2 is a summary of the constructions and notation used.
Section 3 contains results on finite tensor products. The two main
results are a complete description of the primitive ideals (Theorem
3.3) and characters (3.7, 3.8) of a tensor product of two C*-algebras
under the hypothesis that one of the algebras be separable and
nuclear, or that both be simple.

Section 4 is a description of the primitive ideal space of an
infinite tensor product of type I algebras. Conditions are given for
the product to be type I, CCR, GTC, or continuous trace and several
examples are included, such as a CCR C*-algebra with no finite
composition series {J,} such that (J,../J,)" is Hausdorff, solving an
open question.

Section 6 contains an infinite product weight construction which
is used to describe all characters of an infinite tensor product of
C*-algebras in certain cases, including products of type I algebras,
simple algebras, or separable nuclear algebras. It is shown that a
primitive ideal of an infinite tensor product of type I C*-algebras
is the kernel of a (necessarily unique) traceable factor representa-
tion if and only if it is locally closed.

Section 7 is an explicit construction of a large family of factor
representations of an infinite tensor produect of C*-algebras. If A
is an infinite tensor product of a countable number of separable
type I C*-algebras, and if A is not type I, then an explicit construec-
tion is given of a representation of A generating a given infinite
hyperfinite factor.

The work of this paper generalizes results of Guichardet [6]
and Moore [9]; many of the results extend those of Tomiyama [11]
to infinite tensor products. Some of this paper was part of the
author’s doctoral dissertation at the University of California, Berkeley
(1975), and he expresses his appreciation to his adviser, Calvin C.
Moore, for a great deal of help and guidance. He is also grateful
to the referee for pointing out a number of errors and obscurities
in the original draft.

2. Definitions and notation. In this section we will briefly
review some constructions which have appeared before in the liter-
ature, in order to establish notation.

(a) Let X, (¢€I) be locally compact topological spaces with
compact open subspaces Y,. Let X = {(---z;---)ellX;:x,€Y, a.e.}.
(In this paper, “almost everywhere” will always mean “for all but
a finite number.”) If F is a finite subset of I, set X, = [[;cr X,

2 =Tlier Yy, Zr = Xz X Y% Z, is locally compact, and if ECF,
Z ; is an open subset of Z,. Topologize X = U Z, by letting SC X
be open if and only if SN Z, is open for all F. X is then locally
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compact, and each Z, is open in X.

DEFINITION. X = [[i.;(X;, Y;) is the restricted direct product
of the X, with respect to Y..

If G, are locally compact topological groups with compact open
subgroups K,, then G = II'(G,, K;) is a locally compact topological
group under coordinatewise multiplication, and K = I[[K, is a com-
pact open subgroup. If each G, is second countable and I is count-
able, then G is also second countable.

(b) If B and C and C*-algebras, the algebraic tensor product
B(® C can be completed with respect to the least C*-cross norm to
give the C*-tensor product B® C. This is the only tensor product
we will consider in this paper; we will mostly be concerned only
with nuclear C*-algebras, for which all C*-cross norms coincide. If
B and C are von Neumann algebras, we can also form the von
Neumann algebra tensor product B® C. The symbol ® will always
denote algebraic tensor product, ® the C* product, and @ the von
Neumann product. Also, if B is a C*-algebra, we will use the nota-
tion Pr(B) to denote the set of ideals of B which are kernels of
factor representations of B. Pr(B) = Prim (B) for most, if not all,
C*-algebras, including all separable or GCR C*-algebras. We will
also write B for the smallest C*-algebra with an identity containing
B (i.e., B = B if B has an identity, otherwise B is B with identity
adjoined.)

(¢) Let A, (€I) be C*-algebras, and let p, be a nonzero projec-
tion in A, If FC I is finite, let A, = @,.r 4, as above. Write
Pr = Qierv.. If EC F, define an isomorphic embedding o, of A,
into A, by 05 (@) = ¢ Q Pp—z. Then {A;, 05z} form a directed sys-
tem of C*-algebras; let A = @{AF, Ozp}

DEFINITION. A = @,.; (4, p;) is the infinite tensor product of
the A, with respect to p,.

If each A, is separable and I is countable, then A is separable.
There is a canonical embedding o, of A, into A, such that if £ C F,
Oy = 0po0gp. Also, there is a projection pe A with p = d(p;) for
all . For any F, we will use the notation B, = @,.r (4;, »)), ¢~
the distinguished projection of By; then A = A, ® By, » = - R ¢y.

ExamprEs. (1) If each A; has an identity 1,, then @(4,, 1,) is
the ordinary infinite tensor product @A4,.

(2) If X, (¢€I) are locallyc ompact Hausdorff spaces with com-
pact open subspaces Y;, let A, = C(X,), continuous functions vanish-
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ing at infinity; then @(Cy(X)), xr,) = C(/I'(X,, Y,)) under the obvious
identification of functions.

(3) Let G =1II'(G,, K,); assume that C*(G,) is nuclear for all ¢
(see Theorem 3.2). Then we may identify C*(G) with @.., C*(G)).
Let Hy = Gr X K} < G; define an isomorphic embedding ¢, of C*(Gr)
into C*(Hy) S C*(G) by ¢x(a) = a @ xx%. If ES F, ¢p = ¢r°05p, SO
there is an embedding of @ (C*(G,), xx,) into C*(G), which is surjec-
tive since, for any F, the image contains all functions supported on
H, which depend on only a finite number of coordinates.

(d) If 2Z (1el) are Hilbert spaces with unit vectors &, € 57,
write o7 = @Q,.; (54, &) for the infinite tensor product of the 5%
with respect to &, as in [9]. If M, is a von Neumann algebra on
7, write M = ®,., (M,, 57, &) for the von Neumann algebra on
o7 generated by the images of the M,. If each M, is a factor, M
is a factor.

The above constructions depend, of course, on the parameters
(Y, », &) chosen; however, the parameters may be changed or left
undefined in a finite number of coordinates without changing the
product. For convenience, we will usually assume they are defined
everywhere.

3. Finite tensor products. In this section, we discuss the
primitive ideal space and the characters of a tensor product of two
C*-algebras. Some of the most basic questions about finite tensor
products are still unsolved, but the recent work of Connes, Effros
and Choi, and Lance allows us to solve the relevant problems for
separable nuclear C*-algebras, which are by far the most important
ones in applications.

Let B and C be C*-algebras. If = is a factor representation of
Band p of C, then 7 ® p is a factor representation of B&Q C. The
map j: (ker z, ker p) — ker (7 & p) gives a well-defined injective map
from Pr (B) X Pr(C) into Pr (B® C), which maps Prim (B) x Prim (C)
homeomorphically onto a dense subspace of Prim (B &) C).

If (I, J)ePr(B) x Pr(C), j(I, J) is the kernel of the composite
map BRQC—BRC)/IRC+ BRJ)—(B/I)R(C/]); if B/I or C/J
is nuclear, then j(I,J) =IQ C + B® J. (See [6, §§ 6 and 7].) There
is also a map 7: Pr(B®C)— Pr (B) X Pr(C) defined as follows: if
7 is a factor representation of B® C, = extends uniquely to B® C,
since BQC is an ideal in B®C. Set m,(() =7(bd®1), m(c)=
n(l®c). = and 7w, are factor representations of B and C respec-
tively, called the restrictions of # to B and C. Set 7(kerw) =
(kerz,, kerw,). If KePr(BRC), r(K) = (I, J), where I and J are
the kernels of the composite maps B—B® C—(B® C)/K and
C—»B®C—(B®C)K, so r is well defined. 707 is the identity.
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If 4 is a character on B and + a character on C, then ¢
is defined to be the character on B & C corresponding to the factor
representation 7; & Ty

DerFINITION 3.1. A pair (B, C) of C*-algebras is said to have
property (Pr) if the map j:Pr(B) x Pr(C)— Pr(B® C) is surjec-
tive. (B, C) is said to have property (Ch) if every character on
B® C has the form ¢ & 4, for characters ¢ and + on B and C
respectively.

Properties (Pr) and (Ch) are closely related, although it is not
clear that either one implies the other.. Properties (Pr) was studied
by Tomiyama [11], who called it property (F). Wassermann [12] has
shown that if B is the group C*-algebra of the free group on two
generators, then (B, B) does not satisfy (Pr); no examples are known
of C*-algebras not satisfying (Ch). Itis shown below that if either
B or C is separable and nuclear, or if both B and C are simple, then
(B, C) satisfies both properties.

Recall that a C*-algebra B is nuclear if the algebraic tensor
product B () C has a unique C*-cross norm for every C*-algebra C.
We summarize some recent results of Connes [3], Choi and Effros
[2], and Lance [7], in the following theorem.

THEOREM 3.2. Let B be a separable C*-algebra. Then B s
nuclear 1f and only if every factor representation of B generates
o hyperfinite factor. If J is an ideal of B, then B tis nuclear if
and only if both J and BJJ are nuclear. Furthermore, the class
of muclear C*-algebras is closed under finite tensor products, in-
ductive limits (hence under infinite tensor products), and crossed
products by arbitrary amenable groups. The group C*-algebre of
any locally compact (second countable) group which is amenable or
connected is nuclear.

THEOREM 3.3. Let B be a nuclear C*-algebra, C any C*-algebra.
Then (B, C) satisfies (Pr).

Proof. Follows immediately from [11, Theorem 5] and [2].

It is reasonable to conjecture that, for a fixed C*-algebra B,
(B, C) satisfies (Pr) for every C if and only if B is nuclear.

We now turn to the property (Ch). We first need two lemmas,
the first of which is closely related to Lemma 13 of [6].

LEMMA 3.4. Let N, and N, be factors on a Hilbert space %,
with N, S N}; suppose the map @: N, (® N,— L (S#) given by n, &
N, — NN, extends to an isometry of the C*-temsor product N, ® N,
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nto L(S7). Suppose that the von Neumann algebra N generated
by N, and N, is a semifinite factor, and that the C*-algebra gener-
ated by N, and N, has nonzero intersection with the ideal J of N
which is the norm-closure of the “trace-class” operators of N. Then
N, and N, are semifinite, and if N has a cyclic and separatng
vector, them 57 can be written 57X 54 with N, = N,®1, N, =
1®N,, N=N,® N,.

Proof. There are two cases: (1) N is finite. Then N, and N,
are finite, and the result is well known (see [6, Lemma 13]). (2) N
is not finite, in which case J# N. &N, ® N,)NJ = {0}, so &7*(J)
is a nontrivial ideal in N, ® N,. Therefore, either N, or N, is not
simple. We will reduce to case (1) in two steps. First, write
& =7 QW with N, = (7)) Q M,, with M, a factor which is a
simple C*-algebra. (Every factor can be written as a tensor product
of a type I factor and a factor which is a simple C*-algebra.)
N,=1Q® M, for a factor M, on % N= L (7)Q® M, where M is
the von Neumann algebra generated by M, and M,. M is a semifinite
factor; let I be the norm-closure of the ideal of “trace-class” elements
of M. Let J,J, I, be the minimal nonzero norm-closed (not neces-
sarily proper) ideals of N, N, and M, respectively. J ®J, is a
simple C*-algebra and hence is the minimal nonzero ideal of N, ® N,,
so O(J, R J,) = J. Let m,e M, m,cl, be nonzero, and let s be a
rank 1 projection in < (77). Then s@ m,ed,, 1Q m,ed, and so
s@mm, =(QRQmIARQm,)edJ,RJ,) < J. Thus mm,cl, and
mm, = 0 by [6, Prop. 0], so the C*-algebra generated by M, and
M, has nonzero intersection with I, and so M,, M,, M, and I satisfy
the hypotheses of the lemma. If M is finite, we are in case (1) and
so we are finished; otherwise M, is not simple and we can reduce
again in the same way. After the second reduction, we must be in
case (1).

LeEMMA 3.5. Let N, and N, be semifinite factors with minimal
ideals J, and Jy; let N = N, N,, J the minimal ideal of N, K =
JNIN,® N,). If pe N¥, +ye N; with @|d, =0 or |J, =0, then
(@)K =0.

Proof. We use the language and notation of [10]. Let 7, and
7, be traces on N, and N,, and 7 =7, & 7, a trace on N. (See §5.)
If peN,, 09 <7, then pR7,=7,oR, =<7, and so R, maps J
into J,. Similarly, if i€ N,,, 0 <+ =< 7,, Ly maps J into J,. Linear
combinations of such functionals are weak-* dense in N} and NJ;
this can be seen as follows. Let w be the GNS representation of
N, on 57 with respect to 7,. Any normal state ¢ of N, is a vector
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state from 57 [7,(N,) has a cyclic and separating vector, thus is
spatially isomorphic to w(N)]. If ¢ = ¢, is the vector state corre-
sponding to the vector 7(a) for some a €N, then o, (r) = 7,(a*za) <
llal’z(x) for x€ Nf, and so 0 =1/|la| ¢, <7,. Since {9(a):aecN.}
is dense in 2% {p.:aeN.} is weak-* dense in (NV,)i, and so linear
combinations are dense in N¥; similarly for N¥. So it follows from
the argument in [10, Prop. 3.8] that J & F(J, J,).

If N, and N, are hyperfinite with separable preduals, then it
may be proved that K = J, ® J,. It would be interesting to know

if this is true in general.

COROLLARY 3.6. Let B and C be C*-algebras with factor re-
presentations ™ and p respectively. If mQ o is a traceable repre-
sentation of B C, then © and p are traceable.

Proof. Let N, = n(B)", N, = p(C)", J, and J, the minimal ideals
of N,and N,. If n(B)NJ, = {0} or po(C)NJ, = {0}, then for any non-
zero element ¢ of 7(B)&® o(C) <= N,Q N, there are linear funectionals
@e N, yye Nf with o|J, =0 or «|J,=0, and (p K )(x) = 0. But
by Proposition 3.5, (p Q)| K=0, so z ¢ K. Thus n(B)Qzn(C)NJ = {0}.

The author is indebted to L. Brown for pointing out an error
in an earlier proof of 3.6.

THEOREM 3.7. Let B and C be C*-algebras. If B 1is separable
and nuclear, then (B, C) satisfies (Ch).

Proof. Let w be a traceable factor representation of B C on
57, and let N=n(BRC)', N,=n(BR1)", N,==r(1&®C)’. N,
N,, N, are factors, N, & N;, and N, and N, together generate N.
We may assume that N has a cyclic and separating vector. Since
B is nuclear, N, is semidiscrete, so the map @: N, (® N; — L (5F)
extends to an isometry of N,® N,— & (5#°), and by restriction
to an isometry of N,® N,— £ (5#). So N, N, N, satisfy the
hypotheses of Lemma 3.4, and thus we can write & = &R 54,
n =7, R 7, w, and 7, are traceable by Corollary 3.6.

THEOREM 3.8. Let B and C be simple C*-algebras. Then (B, C)
satisfies (Ch).

Proof. Let w be a traceable factor representation of BR C; «
is faithful since BQ C is simple. Let N = (B C)", J = m.(N).
T(BRC)NJ = {0}, so t(BRC)<=J. Let beB*, ceC*; let f be a
continuous function from [0, ) to [0, 1] with f = 0 in a neighbor-
hood of 0 and f(b) # 0, f(c) # 0. Then #(f(b) ® f(c)) em. (N)*, and
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T(f(b) ® f(c)) # 0, so 0 < (m(f(d) ® f(c))) < 0. Thus, Lemma 13
of [6] shows that 7 = 7w, ® 7,, and Corollary 3.6 shows that 7z, and
7, are traceable.

4. Primitive ideals and irreducible representations. In this
section, we characterize the primitive ideal space of an infinite tensor
product of C*-algebras in terms of the primitive ideals of the co-
ordinate algebras.

Let B be a C*-algebra, ¢ a projection in B. Set Pr?(B) =
{(JePr(B):q¢J}, Prim?(B)={J e Prim (B): ¢ ¢ J}, B* = {x € B: n(q) # 0}.

PROPOSITION 4.1. B? is a compact open subset of B; Prim? (B)
18 compact and open in Prim (B).

Proof. It suffices to prove the proposition for B’. B’ is open
in B by definition of the topology of B. B?= {zeB:||n(q)|l = 1},
so B¢ is compact by [5, Prop. 3.3.7.]

Let G be a locally compact group, and K a compact open sub-
group of G. We may identify G with C*(G)". Let ¢ be the char-
acteristic function of K. Set /sz = {reG: w|K contains the trivial
representation of K}. G%X = C*G)". If G is abelian, Gx = K.

For the rest of this section, let A; (1€ I) be a collection of C*-
algebras with projections p,, and A = @,.; (4;, ;). For each F, we
write A=A, By as in §2(c). We will assume that (4, By)
satisfies (Pr) for each F'; in particular, if each A, is nuclear, this
condition will be satisfied.

There is a map r: Pr (4) — I7 Pr (4,), defined as in § 3.

LEMMA 4.2. Let JePr(4), »(J) = (J;). Then J,cPrri(4,) for
almost all .

Proof. Let F < I be finite, and suppose there is an 7 ¢ F' with
v,€d;,. Then if E=FU{i}, 0,(47) =4 Q0. RS A R Q
B, < J. Since Uoz(4;) is dense in A, there must be an F' with
0:(Ap) £ J, so p,¢J, for all i ¢ F.

The following lemma provides a general method for constructing
representations of inductive limits of C*-algebras.

LEmMMA 4.3. Let {B,, 0.} be a directed system of C*-algebras,

and B = lim{B,, 0,}. Let @, be fived, and let 27 be a Hilbert
—_

space with a set {2, a > a,} of closed subspaces, directed by in-

clusion, with \J 27, dense in 22, For a > o, let w, be a repre-
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sentation of B, on i, with w, = (Tz00.4)| %, for a, < a <p.
Then there 1s a unique representation m™ of B on 55~ with n, =
(mo0,)| 2%, for each o > o, where o, 1s the canonical embedding
of B, into B. If each m, is nondegenerate, ™ is nondegenerate.

Proof. Let a > a, be fixed, and let beB,; for 8> a, set
7(0.(D)) = mp(044(b)) on T3, If @ < B <7, w(0.(D)) = 7s(045(b)) on 75,
so the definition of 7(0.(b)) is unambiguous. w(0.(b)) is defined on
U 2%, and ||7(0.(b))|| = ||b]|, so m(0.(b)) extends to an operator on
%. w defines a norm-decreasing homomorphism of U ¢.(B,) into
L(7), hence extends to a homomorphism of B into .#(57). The
uniqueness of 7 is clear. If each 7, in nondegenerate, each .77, is
in the essential subspace of 7, so 7w is nondegenerate.

LEMMA 4.4. Let (J,)ell Pr(A,), J,€Prri(A,) for almost all <.
Then there is a J€Pr (A) with »(J) = (J;). If J,€Prim(4,) for all
1, then JePrim (A).

Proof. Let m, be a factor representation of A, on S5# with
kernel J;; choose 7, irreducible if J,€Prim (4,). Let EC I be a
finite set with p, ¢J; for i ¢ E. Let & be a unit vector in 57 with
g erangew, (p,) fori¢ E. Let 22 = Q (5%, &), and if F D K is finite,
let 27 = 54 & (@icr &). We may consider 7, = @,.»7; as being
defined on %7. If ECS F < D, np = (Tpo0zp)| %7, 850 we may form
the representation 7 as in Lemma 4.3. n(A)” = @(n.(4.)", 2%, &),
so 7w is a factor representation, and if each =z, is irreducible, then
7 is irreducible. It is clear that »r(ker w) = (J)).

The following lemma is well known, but apparently does not
appear in this general form in the literature. It is the most im-
portant tool in reducing questions about infinite tensor products to
ones about finite products.

LEMMA 4.5. Let B be a C*-algebra, {B,} (x€2) a set of C*-
subalgebras of B with U B, dense in B. Let J be a closed 2-sided
ideal of B. Then J s the closed ideal generated by U (J N B,). If
UB. is an algebra (in particular, if the B, are nested), then
U N B,) is dense in J.

Proof. Let J, be the closed ideal generated by U (J N B,) and
let @ be the quotient map of B onto B = B/J,. Set B, = &(B,),
J = @(J). It suffices to show J =0. Let ¥ be the quotient map
of B onto B/J. JNB,=0, so ¥|B, is injective, hence an isometry.
So ¥ is an isometry on B, hence injective.
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COROLLARY 4.6. If each B, is stmple, B is simple. So @ (A,, ;)
is stmple of and only if each A, is simple.

COROLLARY 4.7. Let JePr(4), r(J) = (J,). Then J s generated
by U, ® ®..; (4, ;). So the map r is injective.

COROLLARY 4.8. If Pr(A,) = Prim (4,) for each i, then Pr(A) =
Prim (A).

Putting together 4.2, 4.4, 4.7 and 4.8, r gives a (set-theoretic)
bijection between Pr (A) and II'(Pr (4,), Pr*: (A4))).

Now assume that Pr (4;) = Prim (A4,) for each 7 (this assumption
will be satisfied, for example, if each A, is separable, simple, or
type I). Then 7 gives a bijection between Prim (4) and X =
II'(Prim (4,), Prim?:(4,)). Give X the restricted direct product to-
pology (Prim (4,) is locally compact, and Prim?: (4,) is compact and
open by Prop. 4.1).

THEOREM 4.9. r:Prim (4) — X is a homeomorphism.

Proof. A=A, ® B, and Prim (4) = Prim (4,) X Prim (B,) with
the product topology, so the composite of » with each coordinate
projection is continuous. Let F C I be a finite set. If JePrim (4)
with #(J) = (J;), then (J,) ¢ Z; = [Licr Prim (4,) X [1:.r Prim?: (4,) if
and only if 0,(4;) & J (see Lemma 4.2).

So (X~ Z;)={JePrim(A): 6,(4;) S J}, a closed set in
Prim (4), so »"'(Z7) is open. Therefore, r is continuous, since X
has the weakest topology making each Z, open and all the coordinate
projections continuous. It remains to show that if {J*} = »*({(J§)})
is a subset of r'(Z5), and J = r7*(J;) with J; in the closure of {J¢}
for each ¢, then J is in the closure of {J°}. Set J, = .J* then J
is in the closure of {J°} if and only if J,&J. If E2 F, then
JeNog(4z) = 05(J3), where JZ is the ideal of A; corresponding to
{(J:ie E}. Jg is in the closure of {Jg} for each E, so J, N dx(Az) =
Ne0:(J2) S 0x(J5) = JN0ox(A;). So by Lemma 4.5, J, < J.

COROLLARY 4.10. If each A, is type I, them Prim(4)=
IT" (4, A%).

COROLLARY 4.11.A(a2 If G =11 (G, K,) with each G, type I,
then Prim (G) = I1' (G,, G¥9). . ~
b) If G =T11'(G, K,) is abelian, then G = I1' (G,, K}).



INFINITE TENSOR PRODUCTS OF C*-ALGEBRAS 323

4.11(b) is undoubtedly well known, and is readily proved directly.
It appears as Corollary 12 of [6]. It should also be noted that
Example 2 of Section 2(c) is a special case of Theorem 4.9.

5. Infinite tensor products of type I algebras. This section
describes some of the finer structure of an infinite tensor product
of type I algebras. Theorems 5.1 and 5.3 are previously known
results included for completeness.

If B is a C*-algebra with projection ¢, and if n» is a cardinal
set (B9, = {r ¢ B: dim n(q) = n}.

THEOREM 5.1. A = R4, p,) is type 1 if and only +f each A,
18 type 1 and AP = (A¥), a.e.

Proof. See [6, Theorems 7 and 8|.

A sharper form of one direction of this theorem is given next,
while a strong form of the converse will be proved in Theorem 7.4.

THEOREM 5.2. Suppose each A, is typel. Let (z,) eIl (A, A
with nie(ﬁfi)l a.e. Construct te A as in Lemma 4.4. Then if 0
18 any factor representation of A with ker o = kerw, then o is a
multiple of x.

Proof. The proof is similar to the proof of Theorem 6 of [9].

THEOREM 5.3. If, for each %, the elements of Ari ~ (/I‘{i)l sepa-
rate the points of A,, then @ (4., p;) s NGCR.

Proof. See [6, Theorem 7.]

ExAMPLE. Let &7 be a separable Hilbert space, B= L& (%) +
C1, ¢ a rank 1 projection in FZ(5#). Let I be a countable index
set, and let 4, = B, », = q for each %, A = @(4,, ;). A is sepa-
rable, and A is type I by Theorem 5.1. A contains no closed points,
i.e., A has no maximal closed ideals. (Of course, other examples of
such C*-algebras are known: see [5, 4.7.17].)

PROPOSITION 5.4. A = ®(A, p,) is FD (all ze A finite-dimen-
sional) if and only ¢f each A, is FD and, for almost all i, every
element of A is one-dimensional. A is BD (dim 7 bounded for all
weA) if and only if each A, is BD and all but finitely many A,
are commutative.
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Now we examine when A is CCR, GTC, or has continuous trace.
If B is a C*-algebra and weB, « is CCR if =(b) is compact for
every be B, as in [5, 4.7.12.]. Use the notation J(B) to denote the
ideal which is the closure of the ideal 2(B) of elements of con-
tinuous trace; denote by K(B) the union of the transfinite sequence
J. where J.,,/J, = J(B/J,); K(B) is the smallest ideal of B such that
J(B/K) =0. B has continuous trace if J(B)= B; B is GTC if
K(B) = B.

We assume from now on that each A, is type I, and 4 =

® (Ai, pi)'

THEOREM 5.5. Let me A, r(ker @) = (J;), 7, € A, with kerz, = J,.
Then © is CCR if and only if each w, is CCR and =, (A%), a.e.
So A is CCR if and only if each A, is CCR and A? = (A7), a.e.

Proof. See [9, Theorem 8]. The last assertion also follows from
4.10 and 5.1, since A is CCR if and only if A is type I and Prim (4)
is a T, space.

Now assume that A% = (A7),.

THEOREM 5.6. If p,eJ(A) ae., then J(A) = [UsrorJAN,
K(A) = [Ur 0:(KA)]; of p,eJ(A) for infinitely many 1, then
J(4) = K(A) = {0}.

Proof. Let E be a finite set such that A% = (ff’g’i)1 and p; € J(4,)
for all t¢E. IM(4,) is a dense hereditary ideal of J(4,), and so
contains all projections of J(4,). So p,eM(4,) for all t¢E. If
F 2 E, it can then be readily verified that ¢,eM(B;). It follows
from [11, Lemma 4] that a ® ¢, € J(A) if and only if aeJ(4r); so
J(A) N op(4r) = J(Ar). By Lemma 4.5, J(4) = [Ur (J(4) N 0:(45)]” =
[Uro:(J(Ar))]". Similarly, it may be verified that K(A) N ox(4r) =
o(K(45)), so K(4) = [Uro-(K(45r)]~. Conversely, if J(4) =0, by
Lemma 4.5 there is a finite set F' such that J(A)Noz(4;) =0. If
a®qred(A)t, a # 0, let f be a continuous function from [0, ) to
[0, 1], vanishing in a neighborhood of 0, with f(a) # 0; f(a ® qr) =
f(@)® qr e M(A)*, so f(a) e M(A;) and g, € M(B;). But this implies
», € M(A,) for every i ¢ F'.

COROLLARY 5.7. A = @ (4,, p,) has continuous trace i.f and only
if each A; has continuous trace and A} = (AY), a.e.

It is interesting and instructive to examine the situation where
A has continuous trace. More generally, if each A, is a C*-algebra
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defined by a continuous locally trivial field of C*-algebras over a
locally compact space X;, then p, will correspond to a compact open
subspace Y, of X;, and A = @(A4,, p;,) will be the C*-algebra defined
by a continuous field of C*-algebras over [['(X,, Y;), where the C*-
algebra at the point (---z,---)e[[' (X, Y) is @ (4.(x,), p.(x,)). (See
[10, Lemma 3.3].)

COROLLARY 5.8. AA = Q(4, p;) i1s GTC if and only +f (1) each
A; 138 GTC (2) A7 = (AY), a.e. () p;eJ(A) a.e.

ExampLES. (a) Let B be the C*-algebra of sequences of 2 x 2
matrices converging to a diagonal inatrix, as in [5, 4.7.19], and let
g be a projection in B with B? = (B9),; for example,

(G0 6 B o (B G ()

Let I be a countable index set, and let A = @,.; (4, »;) where
A, = B, p, = q for each 7. A is CCR, but there cannot be a finite
sequence {%/,} of increasing open sets in A with A4 = U %, and
%, ~ %,_, Hausdorff. For if B, denotes the tensor product of k
copies of B, A contains a copy of B, for each k, and the restriction
of {Z,} gives such a sequence for B,c But if % is a Hausdorff
open subset of B,, B, ~ % contains a copy of B, ,, so such a se-
quence for B, must contain at least k + 1 elements by induction.
In particular, there cannot be a finite composition series {J,} for A
with (J,:./J,)" Hausdorff. This provides a solution to Problem 4.7.25
of [5]. A is GTC if and only if qe€J(B), which is the set of se-

quences converging to 0. Thus, if ¢ = <<(1) 8) <é 8) > J(4) =

K(4) =0, and A contains a dense set of points which are not sepa-
rated (see [5, 3.9.4 and 4.7.9]).

(b) Let B be the C*-algebra of sequences of 2 X 2 matrices
converging to a scalar multiple of the identity, and let ¢ be a projec-

tion of B with B’ = (B?),; for example, q = <<(1) 8), <8 8), .. -), and

let A be the tensor product of a countable number of copies of B
with respect to ¢. A is Hausdorff, so 4 is GTC (this also follows
from Corollary 5.7), but the GTC composition series for A does not
have finite length. In fact, A does not have a finite composition
series {J,} such that J,.,/J, has continuous trace.

(¢) In (a) and (b) above, let each A, = B C, p, = (0, 1); then
A = Q@(4, p,) has the same properties as before, and has only finite-
dimensional irreducible representations.

Remark. All of the above C*-algebras are AF algebras.
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Finally, we examine the question of when a primitive ideal of
an infinite tensor product is locally closed (i.e. open in its closure).
If Bis a C*-algebra and K € Prim (B), set K° = {J ¢ Prim (B): J2K}.
(set K°= B if K is closed in Prim (B)). Then K is locally closed
if and only if K°= K; in this case K°/K is a simple C*-algebra,
said to be the simple C*-algebra lying above K. If K is the kernel
of a traceable irreducible representation w on a Hilbert space 57
K'=g(&¥%5(e£)) + K, so K is locally closed, and K°/K is an
elementary C*-algebra. In particular, if B is type I, every element
of Prim (B) is locally closed.

PrOPOSITION 5.9. The point (---x,---)ell'(X;, Y,) s locally
closed if and only +f =, is locally closed in X, for each i and =z,
18 closed in Y, for almost all i. Hence, 1f A = @ (4,, p,) such that
(47, By) satisfies (Pr) for each F, and Je Prim (4), »(J) = (J,), then
J is locally closed im Prim (A) if and only +f J; is locally closed
in Prim (4,) for all © and p,eJ? ~ J;, for almost all <.

Proof. The proof of the first assertion is straightforward, and
is omitted. The second assertion follows from the fact that the
closure of {J;} in Prim”:(A4,) = {K € Prim (A): K2 J, p, ¢ K}; for almost
all 4, p,¢J; and if p,¢J,, {J;} is closed in Prim?: (4;) if and only if
p;eJi

COROLLARY 5.10. . If A=@ (A4, ), each A, type I, Jc Prim (4),
r(J) = (J)), and w, € A, with kerzw, = J;, then J is locally closed in
Prim (4) if and only +f 0 < dim 7,(p;) < o for almost all 1.

The author thanks Philip Green for valuable discussion concerning
5.9 and 5.10.

6. Infinite product weights and characters. In this section,
we define an infinite product weight construction on an infinite tensor
product of C*-algebras which is a generalization of the construction
of an infinite product state, which is then used to determine all the
characters on such a C*-algebra. This construction was done in-
dependently for traces by Guichardet [6].

Let ¢ be a lower semicontinuous (lsc) weight on a C*-algebra
B. Write N,={x € B: ¢g(x*x) < =}, M, = N3N, N; = {& € B: g(z*z) =0},
7y the representation from the GNS construction on 2£; = /Ny, 1,
the canonical map of N, into 57;. ¢ extends a weakly lower semi-
continuous weight ¢ on the universal enveloping von Neumann algebra
B by setting & = sup {f: fe B%, f < ¢}, where f is the canonical ex-
tension of f to B. (See [3] for details.)
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DEFINITION. ¢ is said to be weakly semifinite if @ is semifinite.

For example, if ¢ is semifinite, or if M, is dense in B, then ¢
is weakly semifinite. If ¢ is weakly semifinite, m,; 5%; can be
identified with 7, 5#%, and niB)" = &£ (<#), where <7 is the left
Hilbert algebra (3t; N N;)/N;.

If. ¢ and + are lsc weights on B and C respectively, we can
define a lsc weight ¢ ® + on B C as follows. Let F = {feBj}:
f<¢on B}, G={geC* g=<+ on C*}, and for 2€(BRC)", set
(6 @ v)(x) = SUD; < (fR®g)x). If ¢ and + are weakly semifinite,
6 X+ can be d”eescribed alternatively as the weight defined by the
full left Hilbert algebra corresponding to <% (o) &, where % =
O N M)/N;, & = (W N NG)/N3, so that mye, = 7, Q@ 7,

Now let A =@ (4, »;), and let ¢, be a lsc weakly semifinite
weight on A,. Suppose that, for almost all ¢, ¢,(p;,) =1; let £ =
{i: 9.(p,) = 1}. Let .o/ be the left Hilbert algebra (3 NN;5)/N,,; let
7; = 1;3,(p;) for 1¢ E; let .27 = (© (.27, 7;) be the set of linear com-
binations of elementary tensors of the form @ &,, where & = 7, a.e.
Then .& has a natural structure as a left Hilbert algebra. Let ¢
be the weight on A defined by the corresponding full left Hilbert
algebra.

DEFINITION. ¢ is called the infinite product weight of the ¢,,
denoted @,.; ¢;-

¢ is lsc and weakly semifinite; ¢ is a semifinite trace if and
only if each ¢, is a semifinite trace. If each ¢, is a positive linear
functional, ¢ is not necessarily a positive linear functional:

PROPOSITION 6.1. ¢ is a positive linear functional if and only
if each ¢, 1s bounded and II|¢;|| < . In this case, ||¢|| = II| ¢l

If {4.}, ¢, and &7 are as above, then the completion of .o~ is
% = @ (5%, M) and the representation m, is the representation
® 7,, on 57, defined as in Lemma 4.4; w,(4)" = @ (7,,(4)", 54, 1))
Thus ¢ is factorial if and only if each ¢, is factorial. In particular,
¢ is a character if and only if each ¢, is a character, so we have
a way of constructing characters on A.

Now we will show that, if (4, By) satisfy (Ch) for each F (in
particular, if each 4, is type I, or if each is separable and nuclear,
or if each is simple), then every character on A is an infinite tensor
product. Let + be a character on 4; for each F, write 4 = A, Q B,

W= ¢r QP for characters ¢, on Ay, ¥, on Br. ¢ = @icr ¢y
where ¢, is a character on A,.

LEMMA 6.2. For almost all 7,0 < ¢,(p;,) < oo.
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Proof. Let Jy = Ny; Jy is a closed 2-sided ideal of A4, and Jy 2
Ny. By Lemma 4.5, there is a finite set F’< 1 for which Jy Nox(45) 2
NynNog(Ar). Let aecA; have oy(a)edy, J(ox(a))>0. a@qr=
or@)edy = J;, &Iy, so aed,, qreJy, (see [6, Lemma 7]). For
igF, let E=F U{i}; Br= A, ® Bp, ¥r = 6. @z, Iy, = Iy, ® Iy
0r =0 Q®qz€Js, @ Jy,, s0 p;ed,,. But N, contains all projections
of J,, s0 ¢(p) < . Also, v(0s(a)) >0, so v(gs) >0, and so
$(p;) > 0.

Let F # @ be a finite set with 0 < rz(gr) < = as above; then
0 < ¢y(p;) < = for 1¢ F. For i¢F, renormalize ¢, so that ¢,(»,) =1,
and form ¢ = @ ¢,. Let ac A; with 0 < ¢,(a) < <o; then (o.(a)) =
¢r(a)¥r(qr), 80 0 < (op(a)) < oo.  Also, 0 < ¢(a5(a)) = gr(a) < .
Renormalize ¢ so that ¢(oy(a)) = y(05(a)) by renormalizing one of
the ¢, 1€ F. Then ¢ is still @¢;, and if £ 2 F, ¢ and + agree on
0x(Ag).

LEMMA 6.3. ¢ = .

Proof. ¢ and + agree on N, N (U 0x(4z)), which is dense in RN,
in its pre-Hilbert space structure, so the lemma follows from the
argument in the proof of [5, Lemma 6.5.3].

We summarize the previous considerations in a theorem.

THEOREM 6.4. Let A= @ (4, »,); suppose, for each F <1
finite, (Ap, Br) satisfies (Ch). Then every character of A is of the
Jorm @ ¢;,, where ¢, is a character on A, with ¢,(p;) =1 a.e.

If each A, is type I, the situation is very nice, since there is a
one-one correspondence between primitive ideals and characters. The
result can be stated as follows:

THEOREM 6.5. Let A = @(A,, p,) such that (Ay, By) satisfies (Pr)
and (Ch) for each F; let JePrim (4), r(J) = (J;). Suppose, for each
1, J; 1s the kernel of a traceable irreducible representation @, of A,
(in particular, if A, is type I). Set n, = dimz,, 7, = dim7,(p,).
There is a finite set E with r, > 0 for 1 ¢ E. Then

(@) J 1s the kernel of at most one traceable factor representation.

(b) J s the kernel of a traceable factor representation if and
only if J is locally closed in Prim (A), i.e., tf and only if r. <o for
almost all i. The corresponding character is @ ¢;, where ¢, is the
character of A, corresponding to w,;, normalized so that ¢,(p;) =1 a.e.

(¢) J is the kernel of a traceable factor representation with
finite trace 1f and only if n, < o for all © and Iliczn/r. < co.

(d) J is the kernel of a traceble irreducible representation if
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and only if r, =1 for almost all 4.

Proof. (a) and (b) have been proved above and in 5.10. (c)
follows from 6.1, since if 4 is the trace on a I, factor normalized
so that an r-dimensional projection has trace 1, then ||| = n/r.
Proof of (d): (=) follows from (b) and 5.2; (=) follows from 6.7.5
and 4.1.10 of [5], since if 7, > 1 for infinitely many 4, then two
nonequivalent irreducible representations with kernel J can be con-
structed by the method of Lemma 4.4 (see [6], or [9, p. 170]).

Theorem 6.5(c) clarifies and generalizes Proposition 12 of [6].

It is worth noting that if J is locally closed in Prim (4) then
ST =@, p,) + JI/J = @JYJ, B;). If J, is the kernel of a
traceable irreducible representation, then JJ/J, is elementary. So
under the hypotheses of Theorem 6.5(b), J°/J is a matroid C*-algebra.
The existence and uniqueness of trace on a matroid C*-algebra was
proved by Dixmier. Thus, 6.5(a) and (b) can be restated as follows:
J is the kernel of a (necessarily unique) traceable factor representa-
tion of A if and only if there is an ideal K of A containing J with
K/J a matroid C*-algebra. This observation is due to Philip Green.

Without the hypothesis that J, be the kernel of a traceable
irreducible representation, all four conclusions can fail. (a) can fail
if one of the A,’s has two nonequivalent traceable factor represen-
tations with the same kernel; (d) will fail if one of the J,’s is not
the kernel of a traceable irreducible representation. (b) can fail as
follows. If J is not locally closed it can still be the kernel of a
traceable factor representation: let B be a separable C*-algebra with
identity which is not simple, but which has a faithful II, factor
representation (e.g., B = C*(G), where G is a countable discrete
amenable group with infinite conjugacy classes), and let 4 = @(4,, 1,)
with A, = B. A has a faithful II, factor representation, but 0 is
not locally closed in Prim (4). Conversely, a separable simple C*-
algebra need not have any characters, so J could be locally closed
but not the kernel of a traceable factor representation. (c) can be
rephrased as follows.

PROPOSITION 6.6. Let A = @ (4, p,) such that (Ay, By) satisfies
(Pr) and (Ch) for each F. Let JecPrim(A), r(J)=(J,). Let E be
a finite set for which p,¢J;, for i ¢ E. Then J ts the kernel of a
traceable factor representation of A with finite trace if and only
1f there is a traceable factor representation w, of A, with finite
normalized trace t, for each <, with ker=w, =J;, such that

Iz l/zi(p:) < oo
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Theorem 6.5 shows that an infinite tensor product of type I C*-
algebras has only a limited number of characters. On the other
hand, we will now show that such a C*-algebra has enough char-
acters to separate points. We first need a lemma which is almost
certainly known.

LEMMA 6.7. Let B be a type I C*-algebra, q a projection in B.
Then there is @ we B with 0 < dim7(q) < . Hence there is a
(suitably normalized) character ¢ on B with ¢(q) = 1.

Proof. Let {J.} (1 £ a < 0) be a composition series for B, with
Jup/J. CCR. Let B be the first ordinal for which geJ,. If v is a
limit ordinal for which ¢geJ,, U.<;J. is dense in J,, so there is an
a <7 and red, with ||¢ — 7| <1. Let @ be the quotient map of
J, onto J;/J,; || ®(q) — D(r)|| = ||®(g)]] < 1. But &(q) is a projection,
so @(q) = 0, i.e., geJ,. So B is not a limit ordinal. Let ¥ be the
quotient map of J; onto J,/J,_,; T(q) # 0, so there is a 7w, € (J/Js_1)"
with 7(¥'(¢)) # 0. But J,/J,_, is CCR, so 0 < dim 7,(¥(q)) < . Let
T, = T,o ¥, © the extension of «, from J; to B.

THEOREM 6.8. Let A= @ (A, p;), each A, type 1. Then the
characters of A separate the points of A, i.e., ©f a € A", there is a
character ¢ of A with ¢(a) > 0.

Proof. Let 4, be a character on A, with +(p,) = 1. Let ac A},
and let ¢ be a character on A, with ¢,(a) > 0 (4, is type I). Let
=07 QR (@icr ¥); d(@r(a)) > 0. Let J={N,: ¢ a character on A}.
J is a closed 2-sided ideal of A4, and J N 07(4;) = {0} for each F', so
J =0 by Lemma 4.5.

A particular application of 6.5 and 6.8 is to Adele groups.

THEOREM 6.9. Let G be an algebraic group defined over Q, G,
the points rational over Q,, G, the adele group of G. (It is known
that each G, is type I.)

(@) An element of Prim (G,) is the kernel of a traceable factor
representation 1f and only if it is locally closed, and the represen-
tation, 1f it extists, 1s unique. The traceable factor representations
of G, separate the points of C*(G,).

(b) If each G, is CCR (for example, if G is nilpotent), then
every ideal of Prim (G,) s the kernel of a unique traceable factor
representation.

ExaMPLES. (a) Let 57 be a separable Hilbert space, B =
F& () + C1, I a countable index set, A, = B, K, = L& (5#) =
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A, A=®(4,1). A, ={\, ), where w, is faithful and \, is one-
dimensional; ker, = K,. If JePrim(4), r(J) =J, m A, with
ker w, = J,, then J is the kernel of a traceable factor representation
if and only if J, = K, a.e., i.e., if and only if 7, is one-dimensional
for almost all <. Thus, 0 €Prim (A), but 0 is not the kernel of a
traceable factor representation. From 6.5(d), every traceable factor
representation (hence every traceable representation) is type I, and
A has enough traceable irreducible representations to separate the
points of A. But A is not type I; in fact, A is NGCR by Theorem
5.3. :

(b) A slightly more complex version of the same phenomenon
occurs in the context of group representations. Let {p,} be an
arbitrary sequence of prime numbers; let G, be the p,-adic ax + b
group, K, the compact open subgroup of integral points, and G =
G({p;}) = II'(G;, K;). (See [1].) G, consists of a family of one-dimen-
sional representations and one faithful infinite-dimensional represen-
tation w,, and there is an infinite-dimensional space of vectors invariant
under w,(K,). As above, every traceable factor representation of
G is type I, and there are enough to separate the points of C*(G),
although C*(G) is NGCR.

7. Construction of factor representations. In this section, we
show how to construct representations of 4 = @ (4,, p;) generating
a given hyperfinite factor. We do not make any restrictions on the
C*-algebras A..

DEFINITION. Let M be a factor. A generating system for M is
a family of mutually commuting type I subfactors of M which
together generate M. M is said to be hyperfinite if it has a gen-
erating system.

Since any type I factor has a generating system consisting of
finite-dimensional factors, every generating system for a factor M
has a “refinement” consisting of finite-dimensional subfactors. Thus,
if M has a separable predual, the above definition is easily seen to
be equivalent to the usual definition of a hyperfinite factor.

For a factor M, we will use the notation w(M) to denote the
smallest cardinal of a o-weakly dense subset of M (=topological
weight of M,). For notational convenience, we will alway assume
that hyperfinite factors are infinite-dimensional, and that a generating
system {M,} (1€ I) for a factor M satisfies card I = w(M).

DEFINITION. A von Neumann algebra M is called maximally infi-
nite if M = MQ & (5#), where dim 5% = w(M). If M has separable
predual, “maximally infinite” is the same as “properly infinite”.
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DEFINITION. Let {P;} (i€I) be a set of projections in a von
Neumann algebra M. Set lim inf {P,} = sup, (inf,, P,), where F' runs
over finite subsets of I. {P,} is said to be fundamental if
lim inf P, = 1.

LEMMA 7.1 Let M be a hyperfinite factor with gemerating sys-
tem {M.}, and let P,e M, be a projection with inf P, # 0. Then
{P,} is fundamental.

Proof. For any finite F, (inf,;,, {P;}))e{M;:i€ FY, so lim inf {P,}
is in {M;:ieI} = M’; also lim inf {P,} = inf {P,} # 0.

LEMMA 7.2. Let M be a maximally infinite hyperfinite factor,
I an index set with card I = w(M). For each i, let A, = L E(57),
dim &7 < w(M). Let p, be o 2-dimensional projection in A,, and
let A=@ (A4, ;). Then there is a representation n of A with
w(A)" = M.

Proof. The proof is virtually identical to the proof of [8, p.
850], which is essentially Glimm’s proof that a non-GCR C*-algebra
has a non-type-I factor representation.

LEMMA 7.8. Let M be o maximally tnfinite hyperfinite factor;
let {n;} (i€I) be cardinals with n, < w(M), card I = w(M). Then
M has a generating system {M;} with M, a I,, factor, and & funda-
mental set of projections {P,} with P,e M,, dim P, =2 (dimension
in M,).

Proof. Let A= @ (A4, p,) with A, = L& (57,), dim 57 = n,,
dim p, = 2, and let 7 be as in Lemma 7.2. For each 7, let 7, be
the restriction of 7 to A, as in §3 (regarding A = A, R [®;.: (4;, )],
and set M, =m,(A4,)’. {M,} is a generating system for M. Put
P, = m,(p;); then inf P, = (@ p;) =0, so {P;} is fundamental by
Lemma 7.1.

THEOREM 7.4. Let A = Q® (A, p)Gel),card] =n. Letw, cA,,
7, € A a.e., with n, = dim 7, < n. Set I, = {i: dim 7,(p,) = 2}; sup-
pose card I, = n. Then, 1f M is any maximally infinite hyperfinite
Sactor with w(M) = n, there is a representation ©w of A with
w(A)" = M, such that the restriction of to A, is a multiple of «,.

Proof. Let I, = {i:dimz{p,) < 2}; card, < n. Set A =
®ieI1 (Air pi)? Az = ®ie[2 (A“ pi). Form 72,'2€A2 on &7 as in Lemma
4.4, If m is a representation of A, with 7,(4,)” = M, then let 7 =
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T, @ 7, be the corresponding representation of 4 = A, ® 4,. n(A)' =
M® Z(57) = M since dim 57 < n. Thus, we may assume I, = I.
Let M, and P, be as in Lemma 7.3, and let 5 be the Hilbert space
of 7#,. Since dim 7,(p,) = 2, weé may identify < (57,) with M, in
such a way that P, < w,(p,). Let M act on a Hilbert space .5¢7; set
Qr = inf,, . {P;}, and let 2/ = Q,2#. Since {P;} is fundamental,
U %% is dense in %7 Let My ={M;:4icF}' =@®,.r M, a type I
factor.

For each 7, we may write % = 4R 7;, M, = L (Z)R1
using the above identification of M,; and <°(57); more generally,
we can write ¥ = 545 QR V7, My = L (574) R 1 with 575, = @, .r 7.
Let o, be the representation (@;.,7,)®1 of A, on K. If EQF,
Qre{M,:icF}), so 2% is an invariant subspace for p,. Also, if
@€ Ap, 05(0r5(a) is of the form 0,(a) ® (®icsmr Tp) ®1). But
P, < p(p;) for each 17, so pgo;z(e¢)) and p(a) agree on 77 =
(I:cg~r P.)>#3). Thus, the subspaces .¢7 and the representations
or satisfy the conditions of Lemma 4.3, so we may form the corre-
sponding representation 7 of A on .2¢. The restriction of 7 to A4,
is 0, so wA)" 2 p,(A)" = M,;; Thus wn{4)’ 2 M. But if acAd,,
w(op(a))=Ry0r(a), where R,=inf,., 0,p,), so w{o{a}))e M, T(A)"'S M.

This theorem is closely related to Marechal’s theorem [8] which
states that, if B is a separable C*-algebra which is not type I, and
if M is an infinite hyperfinite factor with separable predual, there
is a representation 7 of B with n(B)”" = M. If A is a infinite tensor
product, Theorem 7.4 gives an explicit construction of such a repre-
sentation, whereas Marechal’s method is somewhat nonconstructive.

If B is a C*-algebra, we put an equivalence relation ~ on B by
letting 7@ ~ p if ker # = ker p and wn(B)" = p{(B)”. This equivalence
relation is much weaker than quasi-equivalence (for example, it will
not distinguish between irreducible representations with the same
kernel), but if B is not type I this relation is probably the strongest
one for which there is any reasonable hope of understanding the set
of equivalence classes. If A = @ (4,, ».), where each A, is separable
and type I and where there are only countably many ¢ (so A is
separable), then A is nuclear, so every factor representation of A
generates a hyperfinite factor. Thus, Theorem 7.4 and Theorem 6.5
together give an explicit construction of a representative of each
equivalence class of A under ~.
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